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Abstract

M-estimators and M-kernel estimators with a redescending ψ-function are not

in general consistent. This is often handled by means of coupling the estimator

to a consistent one. Coupling the estimator to the (inconsistent) starting point

improves the jump preserving properties. However, the consistency depends heavily

on the shape of the density of the residuals. This paper shows inconsistency under

convenient conditions as well as consistency—even at jump points—under somewhat

stronger conditions.
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1 Introduction

Consider the task of estimating a one-dimensional regression function m : [0 , 1] −→ IR
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. . . ≤ xn ≤ 1. The random variables are assumed to have the form Yi := m(xi)+εi, where

the residuals εi (the “noise”) are independently identically distributed.

Härdle and Gasser (1984) developed a robust function fitting method with weak

jump preserving properties by combining the ideas of kernel estimation and robust M-

estimation. They considered mn(x) to be a zero of

hn,x(y) :=
n
∑

i=1

ki(x)ψ(y − Yi),

where the kernel weights ki(x) are defined as
∫ si

si−1

1
hn
K(x−u

hn
)du (with xi ≤ si ≤ xi+1) and

the derivative of the score function, ψ, is assumed to be monotone increasing. Obviously,

this is equivalent to the definition of mn(x) being a minimum of

n
∑

i=1

ki(x)ρ(y − Yi), ρ a primitive of ψ, (1)

since ρ(y) is convex.

Chu et al. (1998) introduced an M-kernel estimator based on that of Härdle and

Gasser but with the important difference that ψ(y) is redescending.

In awareness of the fact that the number of zeros of (1) may be greater than 1, they

defined mn(xj) as the root closest to the starting point Yj in the—with respect to (2)—

descending direction. By exploiting the existence of several local minima of (2) and the

fact that the estimator may jump from one minimum to another when changing x slightly,

they improved the jump-preserving properties remarkably. Especially in image smoothing,

the estimator shows its strong properties: if the deviation of the residuals is not too large,

even sharp corners are preserved.

This is a unique feature which distinguishes this estimator from the other smoothers

based on M-kernel estimators: none of the common M-kernel smoothers, especially not the

robust ones, are able to preserve corners. Figures 1 to 6 show how useful corner-preserving

smoothing can be. In Figures 4 and 5, a monotone (the median kernel smoother) and the

(corner-preserving) redescending M-kernel smoother of Chu et al. (1998) try to recon-

struct the original image (Fig. 1, created by Smith and Brady (1997)) from the noisy one

(Fig. 2). Figure 3 shows also the result for the classical mean kernel smoother. There
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Figure 1: Original Image Figure 2: Noisy Image

Method Absolute Distance Quadratic Distance

Noisy Image 26.32 1644.9

Mean Kernel Smoother 33.47 2122.0

Monotone M-Kernel Smoother 14.23 566.9

Redescending M-Kernel Smoother 13.87 291.1

Adaptive Weights Smoother 20.09 500.8

Table 1: Absolute and quadratic distance between the original and the reconstructed

image

is no question which one does the better job. There are other edge preserving smooth-

ing methods as those based on wavelets and related methods (see e.g. Donoho et al.

(1995), Candès and Donoho (1999), Donoho (1999) and the references therein). Recently

Polzehl and Spokoiny (2000, 2003) proposed edge preserving kernel smoothers based on

an adaptive choice of the kernel. In Polzehl and Spokoiny (2000), the so called AWS

(adaptive weights smoothing) method is compared with several other smoothing methods

and appeared superior. Since the method of Chu et al. (1998) was not included in that

comparison study, we compared here the method of Chu et al. also with the AWS method

(Fig. 6). Table 1 provides the mean of the absolute and the quadratic distances between

the original image and the image reconstructed by the different methods. It turns out
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that the method of Chu et al. is even better than the AWS method for this example.

Figure 3: Mean Kernel Smoother Figure 4: Monotone M-Kernel

Smoother

Figure 5: Redescending M-Kernel

Smoother

Figure 6: Adaptive Weights

Smoother

Because of these good edge preserving smoothing properties of the estimator of Chu

et al. (1998), we study here its consistency. As in Chu et al., we study the consistency at

first for the one-dimensional case. The proofs for the two-dimensional case are similar and

lead to consistency even at sharp corners. But for this, some arguments from differential

geometry are necessary which will be the topic of another paper (see already Hillebrand

(2003)).
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The proofs of consistency also in the one-dimensional case are not trivial. Under the

assumptions given in the paper of Chu et al. (1998), the estimator is unfortunately not

consistent even for smooth functions.

Since the M-kernel estimator with the kernel weights ki(x) ≡ 1 is equivalent to the

corresponding M-estimator Mn(x) being a minimum of

n
∑

i=1

ρ(y − Yi),

it is reasonable to take into account research which deals with the consistency of M-

estimators.

For convex ρ (i.e. monotone ψ), consistency of M-estimators (see Huber (1964 and

1981), Serfling (1980) or Jurec̆ková, Sen (1996)) can be transfered to consistency of M-

kernel estimators (see Härdle and Gasser (1984), Tsybakov (1986) and Koch (1996)).

However, the case of a redescending score function is much more complicated. The main

problem is caused by the fact that several local minima exist in general. If the location

and scale parameter are estimated simultaneously, then there are score functions as that

of the Cauchy M-estimator leading to a unique local minimum (see Copas (1975), or Kent

and Tyler (1991) for more general score functions).

But as soon as the scale parameter is not estimated simultaneously, the local mini-

mum is not unique in general. This causes well known consistency problems. Convergence

of the global minimum of such redescending M-estimator can be derived by some addi-

tional global assumptions (see, for example, Huber (1981), Freedman and Diaconis (1982),

Jurec̆ková and Sen (1996) and Mizera (1994 and 1996)). Freedman and Diaconis show

how sensitive M-estimates in this case can be to irregular distributions. In three examples,

they present estimators with nonmonotone score functions which are not consistent if the

random variables have a multimodal density. Referring to the examples, they note that

uniqueness of the global maximum is not enough. For symmetric density functions which

are nondecreasing on (−∞, 0), they show consistency. Moreover, the global minimum has

the drawback of being difficult to compute.

Alternatively, one can take some local minimum. The most practicable approaches
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achieve consistency by coupling the estimator to some consistent one (Andrews et al.

(1972), Collins (1976), Portnoy (1977), Clarke (1983, 1986)).

But the special feature of Chu et al.’s estimator is that it is coupled to the (inconsistent)

starting point! However, this idea is somewhat risky which is demonstrated in this paper.

Consistency may be achieved, even at large jump points, under some special assump-

tions on the density function f of the residuals: f has to be strongly unimodal with

maximum in 0, i.e. strongly monotone increasing on (−∞, 0] and strongly monotone de-

creasing on [0,∞) (Assumptions A). For consistency at jump points, we additionally need

that f has limited support so that the supports of the distributions of the observations

on the right and left side of the jump are not overlapping (Assumptions A0). This means

that we need a large signal to noise ratio for the consistency at jump points.

On the other hand, the estimator is always inconsistent if the density function has

saddle points which is the case under the Assumptions (B) and in the paper of Chu et al.

(1998).

This article shows existence and uniqueness of the estimator in Section 2. In Section

3, consistency in a smooth region under Assumptions A, and in Section 4, consistency

at a jump point under Assumptions A0 is shown. This in particular implies asymptotic

normality as shown in Härdle and Gasser (1984). The consistency results are given for a

scale parameter converging to zero as Chu et al. (1998) used. But the proofs show that

the consistency results hold also for a fixed scale parameter so that the results of Härdle

and Gasser (1984) and Tsybakov (1986) are extended to jumps and to nonmonotone

score functions. Finally, inconsistency of the estimator under Assumptions B is proven in

Section 5.

2 Assumptions, existence and uniqueness of mn(x)

The precise definition of the estimator is

mn(x) := arg min {|y − Yi0| : y is element of Nn(x)} (2)
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where

Nn(x) := {y ∈ IR : y is local minimum of −Hn,x(y)

with y ≤ Yi0 if −H ′
n,x(Yi0) ≥ 0 and y > Yi0 if −H ′

n,x(Yi0) < 0
}

and

Hn,x(y) :=
1

n

n
∑

i=1

Khn
(x− xi)Lgn

(y − Yi),

i0 := arg mini∈1,...,n |x − xi|1 and the kernel weights ki(x) = Khn
(x − xi) are given by

Khn
(x) := 1

hn
K( x

hn
), likewise Lgn

(y) := 1
gn
L( y

gn
), for kernel functions K, L : IR → IR with

bandwidths hn, gn ∈ (0,∞). The function L is the score function ρ used in robustness

literature and in the introduction (see (1)). The parameter gn can be interpreted as a

scale parameter as well. The following results are shown for gn → 0, but they also hold

under slight modifications for fixed scale. Since it is easier to handle zeros of a function

instead of minima, we notice that mn(x) is an element of {y : H ′
n,x(y) = 0}.

Consider now the assumptions:

A The regression errors ǫi are independent identically distributed with expectation 0

and with a density function f supported on a bounded or unbounded interval I ⊂ IR

and with a Lipschitz continuous derivative f ′ which has the property f ′(y) 6= 0 for

all y ∈ I \ {0} (i.e. f is strongly unimodal in 0).

A0 As Assumption A, but with the additional assumption that f is supported on a

bounded interval (a1, a2) and a2 − a1 < d (where d is the jump height, see C2).

B The regression errors ǫi are independent identically distributed, f(y) is symmetric

with a unique local and global maximum (i.e. f is (weakly) unimodal) and supported

on IR, has a Lipschitz continuous derivative and fd(y) := f(y) + f(y − d) has two

maximizers at y = 0 and y = d. These are assumptions Chu et al. (1998) have

used.

Further assumptions are

1If x = xi+xi+1

2
, then define i0 := i.
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C1 The design points are xi =
i− 1

2

n
, i = 1, . . . , n.

C2 The regression function is m(x) := µ(x)+d11[t ,∞)(x), where m(x) is defined on [0, 1],

µ(x) is Lipschitz continuous on (0 , 1), t ∈ (0 , 1) and |d| > 0, w.l.o.g. d > 0.

C3 With n→ ∞ we have gn → 0, hn → 0 and 1
nhng4

n
→ 0.

C4 K(u) is positive on (−1 , 1), 0 on IR\ [−1 , 1], bounded, continuous except at a finite

number of points, Lipschitz continuous between the discontinuities and
∫

K(u)du =

1.

C5 L(v) is a nonnegative function, has a Lipschitz continuous derivative, L(0) 6= 0,
∫

L(v)dv = 1,
∫

L(v)|v|dv <∞ and
∫

L′(v)|v|dv <∞.

We assume Assumptions C1 to C5 throughout the whole paper. Observe that these as-

sumptions in particular imply that f , f ′, L and L′ are bounded and hence f and L are

Lipschitz continuous. Further, it follows that
∫

(L′(v))2 |v|dv < ∞,
∫

L′(v)dv < ∞ and
∫

(L′(v))2 dv <∞.

Lemma 1 The estimator given by (2) always exists and is unique.

Proof.

Obviously, the estimator is unique; only existence has to be shown.

Let M := 1
n

∑n

i=1Khn
(x− xi). From

∫

L(v)dv = 1 and the continuity of L it follows that

lim
y→±∞

L(y) = 0.

L(0) 6= 0 implies Hn,x(Yi0) > 0. Therefore, b1, b2 exist such that

Lgn
(y) <

Hn,x(Yi0)

M
for all y ∈ (−∞, b1] ∪ [b2,∞).

Let (Y(i))1≤i≤n0
be the order statistic of {Yi : |x− xi| ≤ hn, 1 ≤ i ≤ n} (i.e. Y(1) ≤ . . . ≤

Y(n0)). Then

−Hn,x(Y(1) + b1) > −Hn,x(Yi0) < −Hn,x(Y(n0) + b2).
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Consider first −H ′
n,x(Yi0) ≥ 0. Since H ′

n,x(y) is continuous, then there is a local minimum

of −Hn,x(y) in
[

Y(1) + b1 , Yi0

]

.

If −H ′
n,x(Yi0) < 0 then there is a local minimum in

[

Yi0 , Y(n0) + b2
]

.

Since there always exists at least one local minimum in descent direction then Nn(x) is

not empty and hence the estimator exists. 2

3 Consistency of mn(x) under Assumptions A in a

smooth region

In this chapter, stochastic convergence will be shown for all x where m(x) is smooth

which means for all x ∈ (0, 1) \ {t} since we only have one jump at t. The main theorem,

Theorem 1, only holds under Assumptions A. However, Theorem 1 bases on the Lemmas

2 to 4 which also hold under Assumptions B and will be used in Section 5 as well.

Theorem 1 Under Assumptions A, we have for all x ∈ (0 , 1) \ {t} and all ε > 0,

lim
n→∞

P (|mn(x) −m(x)| > ε) = 0.

We prepare the proof with some lemmas. For this purpose we set

Jn := {i : |x− xi| ≤ hn} .

First of all, note that the sum of the kernel weights resp. of their pth power have the

following behavior (compare, e.g., Eubank (1988)):

Lemma 2 Let p ≥ 1, x ∈ (0 , 1) \ {t}. Then under Assumptions A or B,

1

n

n
∑

i=1

Kp
hn

(x− xi) =
1

hp−1
n

∫

Kp(u)du+O

(

1

nhp
n

)

.
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To be able to examine the asymptotic behavior of mn(x), we have to show that H ′
n,x(y)

converges for a fixed x ∈ (0 , 1) \ {t}.
As a special feature of the estimator, Chu et al. (1998) introduced the parameter gn

which tends to zero as n→ ∞. This means that, for large n, Lgn
(y− Yi) > 0 only if Yi is

very close to y. In other words, asymptotically, H ′
n,x(y) “counts” the observations of same

value which means that Hn,x(y) behaves asymptotically like a density estimator: we will

show that H ′
n,x(y) converges to f ′(y − m(x)). Hence, the proofs have some parallels to

those of density estimation, compare e.g. Parzen (1962). First it will be shown that the

sequence of expectations EH ′
n,x(y) converges uniformly and then the uniform stochastic

convergence of H ′
n,x(y) is proven.

Lemma 3 Let x ∈ (0 , 1) \ {t}. Then under Assumptions A or B,

sup
y∈IR

∣

∣EH ′
n,x(y) − f ′(y −m(x))

∣

∣ = O(gn) +O(hn) +O

(

1

nhn

)

.

Proof.

With partial integration and substitution we obtain:

sup
y∈IR

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Khn
(x− xi)Exi

d

dy
Lgn

(y − Yi) − f ′(y −m(x))

∣

∣

∣

∣

∣

= sup
y∈IR

∣

∣

∣

∣

1

n

n
∑

i=1

Khn
(x− xi)

∫

d

dy

1

gn

L

(

y −m(xi) − u

gn

)

f(u)du− f ′(y −m(x))

∣

∣

∣

∣

= sup
y∈IR

∣

∣

∣

∣

1

n

n
∑

i=1

Khn
(x− xi)

∫

1

g2
n

L′

(

y −m(xi) − u

gn

)

f(u)du− f ′(y −m(x))

∣

∣

∣

∣

= sup
y∈IR

∣

∣

∣

∣

1

n

n
∑

i=1

Khn
(x− xi)

∫

1

gn

L′ (v) f(y −m(xi) − vgn)dv − f ′(y −m(x))

∣

∣

∣

∣

= sup
y∈IR

∣

∣

∣

∣

1

n

n
∑

i=1

Khn
(x− xi)

∫

L (v) f ′(y −m(xi) − vgn)dv −
∫

L(v)f ′(y −m(x))dv

∣

∣

∣

∣

≤ sup
y∈IR

{

1

n

n
∑

i=1

Khn
(x− xi)

∫

L (v) |f ′(y −m(xi) − vgn) − f ′(y −m(x))|dv
}

+O

(

1

nhn

)

≤ sup
y∈IR

{

1

n

n
∑

i=1

Khn
(x− xi)

∫

L (v)
(

D1D2|x− xi| +D1|vgn|
)

dv

}

+O

(

1

nhn

)
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=
1

n

∑

i∈Jn

Khn
(x− xi)

∫

L (v)
(

D1D2|x− xi| +D1|vgn|
)

dv +O

(

1

nhn

)

≤ 1

n

∑

i∈Jn

Khn
(x− xi)

(
∫

L(v)dv O(hn) +

∫

L(v)|v|dv O(gn)

)

+O

(

1

nhn

)

= O(hn) +O(gn) +O

(

1

nhn

)

,

where D1 is a Lipschitz constant of f ′ and D2 is a Lipschitz constant of m(x). 2

Lemma 4 Under Assumptions A or B,

lim
n→∞

P

(

sup
y∈IR

|H ′
n,x(y) − f ′(y −m(x))| < ε

)

= 1 for all ε > 0.

Proof.

Because of Lemma 3, we only have to show

lim
n→∞

P

(

sup
y∈IR

|H ′
n,x(y) − EH ′

n,x(y)| < ε

)

= 1 for all ε > 0.

By Chebychev’s inequality, it suffices to show that

lim
n→∞

E sup
y∈IR

|H ′
n,x(y) − EH ′

n,x(y)|2 = 0.

Let l′(u) :=
∫

e−iuwL′(w)dw be the Fourier transform of L′. It follows that L′(w) =

1
2π

∫

eiuwl′(u)du. Let further ϕn(u) := 1
nhn

∑n

k=1K
(

x−xk

hn

)

e−iuYk .

Then

H ′
n,x(y)

=
1

nhng2
n

n
∑

k=1

K

(

x− xk

hn

)

L′

(

y − Yk

gn

)

=
1

nhng2
n

n
∑

k=1

K

(

x− xk

hn

)

1

2π

∫

e
iu
(

y−Yk
gn

)

l′(u)du

=
1

nhngn

n
∑

k=1

K

(

x− xk

hn

)

1

2π

∫

eiu(y−Yk)l′(gnu)du

=
1

nhngn

n
∑

k=1

K

(

x− xk

hn

)

1

2π

∫

eiuyl′(gnu)e
−iuYkdu

=
1

2πgn

∫

eiuyl′(gnu)
1

nhn

n
∑

k=1

K

(

x− xk

hn

)

e−iuYkdu
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=
1

2πgn

∫

eiuyl′(gnu)ϕn(u)du

and

sup
y∈IR

∣

∣H ′
n,x(y) − EH ′

n,x(y)
∣

∣

= sup
y∈IR

∣

∣

∣

∣

H ′
n,x(y) −

1

2πgn

∫

eiuyl′(gnu)Eϕn(u)du

∣

∣

∣

∣

= sup
y∈IR

∣

∣

∣

∣

1

2πgn

∫

eiuyl′(gnu)(ϕn(u) − Eϕn(u))du

∣

∣

∣

∣

≤ sup
y∈IR

{

1

2πgn

∫

|eiuy||l′(gnu)||ϕn(u) − Eϕn(u)|du
}

=
1

2πgn

∫

|l′(gnu)||(ϕn(u) − Eϕn(u))|du.

Because of the generalized Minkowski inequality, i.e.

(
∫
(
∫

f(x, u)du

)p

dx

)
1

p

≤
∫
(
∫

(f(x, u))p dx

)
1

p

du,

and the independence of the observations Yk, we have

E
1

2 sup
y∈IR

|H ′
n,x(y) − EH ′

n,x(y)|2

≤ E
1

2

(

1

2πgn

∫

|l′(gnu)||ϕn(u) − Eϕn(u)|du
)2

≤ 1

2πgn

∫

|l′(gnu)|E
1

2 |ϕn(u) − Eϕn(u)|2du

=
1

2πgn

∫

|l′(gnu)|E
1

2

∣

∣

∣

∣

∣

1

nhn

n
∑

k=1

K

(

x− xk

hn

)

(

e−iuYk − Ee−iuYk
)

∣

∣

∣

∣

∣

2

du

=
1

2πgn

∫

|l′(gnu)|
(

1

n2h2
n

n
∑

k=1

K2

(

x− xk

hn

)

E
∣

∣e−iuYk − Ee−iuYk
∣

∣

2

)
1

2

du

=
1

2πnhngn

∫

|l′(gnu)|
(

∑

i∈Jn

K2

(

x− xk

hn

)

E
∣

∣e−iuYk − Ee−iuYk
∣

∣

2

)
1

2

du

≤ 1

2πnhngn

∫

|l′(gnu)|
(

∑

i∈Jn

max
x∈[−1,1]

|K2(x)| · 4
)

1

2

du
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≤ 1

nhngn

∫

|l′(gnu)| du
(

nhnC
2
)

1

2

=
1√

nhng2
n

∫

|l′(u)| du C,

where C is a constant. Since

1

nhng4
n

n→∞−→ 0,

the claim follows. 2

Proof of Theorem 1.

Since −f(y −m(x)) has no saddle points and exactly one local extreme point in m(x),

which is a minimum (Assumption A), then it is sufficient to show that mn(x) converges

to the unique zero of f ′(y −m(x)).

From the special shape of f (see Fig. 7) it follows that for all sufficiently small ε1 > 0

and ε′ > 0 there exist C1, C2 ∈ IR and δ > 0, n0 ∈ IN such that

−ε′ ε′

y

y

f’(y)

0C C1 2

f(y)

0

Figure 7: f(y) and f ′(y)
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(i) P (C1 ≤ Yi0 −m(x) ≤ C2) ≥ 1 − ε1 for n ≥ n0 and

(ii) |f ′(y)| ≥ δ for all y ∈ [C1 , −ε′] ∪ [ε′ , C2].
(3)

Considering the results of Lemma 4 we obtain that for arbitrarily small ε2, there exists

n1 ≥ n0 such that with probability of at least 1 − ε2 for all n ≥ n1,

sup
y∈IR

|H ′
n,x(y) − f ′(y −m(x))| < δ.

This implies

1.

H ′
n,x(y) > 0 on [m(x) + C1,m(x) − ε′]

and

H ′
n,x(y) < 0 on [m(x) + ε′,m(x) + C2]

2. at least one zero of H ′
n,x(y), which is a local minimum of −Hn,x(y), lies in the

ε′-environment of m(x).

We conclude that, if Yi0 −m(x) lies in [C1 , C2] and supy∈IR |H ′
n,x(y)− f ′(y−m(x))| < δ,

the closest local minimum of −Hn,x(y) in descending direction lies in (m(x)−ε′ , m(x)+ε′).

Therefore

P (|mn(x) −m(x)| ≥ ε′)

≤ P

(

Yi0 −m(x) /∈ [C1 , C2]

∨ sup
y∈IR

|H ′
n,x(y) − f ′(y −m(x))| ≥ δ

)

≤ ε1 + ε2.

2

For any closed interval [a, b] ⊂ (0, t) ∪ (t, 1), we even have uniform convergence under

assumption A, i.e.

lim
n→∞

P

(

sup
x∈[a,b]

|mn(x) −m(x)| > ǫ

)

= 0
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for all ǫ > 0, since the constants used in the proofs of Lemma 3 and 4 are independent of

x and the property (3) holds uniformly for x ∈ [a, b]. However, if the jump point t is an

element of [a, b] ⊂ (0, 1), then there is no uniform convergence under assumption A. The

reason is that, for every n, we can find x so close to t that a proportion α of the kernel Khn

lies on the left hand side and a proportion 1−α lies in the right hand side of t. ThenHn,x(y)

approximates the value of the mixture distribution αf(y−µ(x))+ (1−α)f(y−µ(x)−d).

If ǫ′ of property (3) is small enough, then the interval [C1, C2] of (3) contains two different

local maxima. With a probability not going to zero the starting point Yi0 lies more close

to the wrong local maximum. This can be only avoided if the supports of f(· − µ(x))

and f(· − µ(x) − d) are not overlapping, i.e. if Assumption A0 is satisfied. For that see

Section 4.

If h(y) =
∫

L(v)f(y −m(x) − v)dv is strongly unimodal in m(x), i.e. satisfies the same

conditions as f(y − m(x)), then Theorem 1 holds also for fixed scale. For fixed scale,

Theorem 1 is then an extension of the result of Härdle and Gasser (1984) which concerns

only L with monotone L′. However, the introduction of a shrinking scale parameter gn

provides that the consistency depends only on the density f and not on the interrela-

tion between L and f . Note that for fixed scale we only need a reduced version of the

Assumption C5, in particular
∫

L(v)dv = 1 is not needed.

Note also that the consistency of the estimator implies its asymptotic normality if the

second derivative of L satisfies the same conditions as the first derivative. This follows as

in Härdle and Gasser (1984) who extended Huber’s (1981) proof of asymptotic normality

for M-estimators. This proof is based on a Taylor expansion and the asymptotic normality

of H ′
n,x(y) (see Proposition 1 in Section 5).
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4 Consistency of mn(x) at a jump point

under Assumptions A0

Since the jump point t of m may never be included in the grid points xi =
i− 1

2

n
, we study

the asymptotic behavior of mn at points close to t by looking at the two sequences

ξ−n :=
⌈nt− 1

2
⌉ − 1

2

n
and

ξ+
n :=

⌈nt− 1
2
⌉ + 1

2

n
.

Notice that ξ−n is exactly the largest design point below t. The point ξ+
n is the smallest

design point larger than t and coincides with t if t is a grid point. It follows that, for every

ξ−n and ξ+
n , respectively, about 50 percent of the observations which are relevant for the

estimator because they lie inside the bandwidth of ξ−n and ξ+
n , respectively, are measured

on the “wrong” side of the jump. But nevertheless, mn is consistent in ξ−n and ξ+
n in the

following sense.

Theorem 2 Let Assumptions A0 hold. Then for all ε > 0

lim
n→∞

P
(

|mn(ξ−n ) − µ(t)| > ε
)

= 0 and

lim
n→∞

P
(

|mn(ξ+
n ) −m(t)| > ε

)

= 0.

Note if t is a grid point for some n0, then we even have a subsequence (nk)k∈IN such that

lim
k→∞

P (|mnk
(t) −m(t)| > ε) = 0 for all ε > 0. (4)

From the proof of Theorem 2, it follows that the property (4) holds as well if the subse-

quence (nk)k∈IN is defined as all n with |t− ξ+
n | < |t− ξ−n |. For this subsequence we even

have uniform convergence under Assumption A0 on [a, b] ⊂ (0, 1) with t ∈ [a, b] (see the

remarks after the proof of Theorem 1).

Proof.

Consistency is only shown in ξ−n . Consistency in ξ+
n can be proven analogously. By

standard arguments it can be shown that

1

n

⌈nt− 1

2
⌉

∑

i=1

Khn
(ξ−n − xi) =

∫ 1

0

K(u)du+O

(

1

nhn

)

.
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Define λ :=
∫ 1

0
K(u)du and fd,λ(y) := λf(y) + (1 − λ)f(y − d).

Observe that, as sketched in Fig. 8,

f ′
d,λ(y)



























































































= 0 : y ≤ a1

> 0 : a1 < y < 0

= 0 : y = 0

< 0 : 0 < y < a2

= 0 : a2 ≤ y ≤ a1 + d

> 0 : a1 + d < y < d

= 0 : y = d

< 0 : d < y < d+ a2

= 0 : y > d+ a2.

−ε′ ε′ ε′ ε′<0C C
y

d+C d d+ad+Cd+aaa

d0
y

d− d+11 2 2 1 2 21

f(y)

f’(y)

Figure 8: fd,λ(y) and f ′
d,λ(y), here shortly denoted by f(y) and f ′(y)

As in (3), for all sufficient small ε′, ε1 > 0 there exists δ > 0 such that

|f ′
d,λ(y)| > δ ∀ y : y ∈ [C1 ,−ε′] ∪ [ε′ , C2],

where C1 and C2 are chosen such that P (C1 ≤ Yξ−n
− µ(t) ≤ C2) ≥ 1 − ε1 for all n ≥ n0,

n0 ∈ IN . Of course, a1 < C1 < C2 < a2.
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As in Chapter 3, with f ′
d,λ(y) instead of f ′(y), we can show that for arbitrarily small

ε2, δ > 0, there exists n1 ≥ n0, such that for all n ≥ n1

P

(

sup
y∈IR

|H ′
n,ξ−n

(y) − f ′
d,λ(y − µ(t))| ≥ δ

)

< ε2.

We conclude that, if Yξ−n
−µ(t) lies in [C1 , C2] and supy∈IR |H ′

n,ξ−n
(y)− f ′

d,λ(y−µ(t))| < δ,

the closest local minimum of −Hn,ξ−n
(y) in descent direction lies in (µ(t) − ε′ , µ(t) + ε′).

Therefore

P (|mn(ξ−n ) − µ(t)| > ε′)

≤ P

(

Yξ−n
− µ(t) /∈ [C1 , C2]

∨ sup
y∈IR

|H ′
n,ξ−n

(y) − f ′
d,λ(y − µ(t))| ≥ δ

)

≤ P
(

Yξ−n
− µ(t) /∈ [C1 , C2]

)

+P

(

sup
y∈IR

|H ′
n,ξ−n

(y) − f ′
d,λ(y − µ(t))| ≥ δ

)

≤ ε1 + ε2. 2

Even at a jump point, consistency may also be achieved with score functions L with fixed

scale parameter, e.g. gn = 1, if f and L are satisfying the properties described at the

end of the foregoing section. But, one more assumption has to be fulfilled: L has to have

bounded support which is included in some interval of length I < a1 + d− a2.

5 Inconsistency of mn(x) under Assumptions B

In Proposition 1 we will show that the asymptotic distribution of H ′
n,x(y) is normal.

Using the property, we can particularly examine the behavior of H ′
n,x(y) at the zeros of

f ′(y −m(x)). This enables us to prove in Theorem 3 that the estimator is inconsistent

under the Assumptions B. For the asymptotic normal distribution of H ′
n,x(y) two more

assumptions on the bandwidths are required in this section:

nhng
5
n → 0 and nh3

ng
3
n → 0 as n→ ∞. (5)
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Notice that these assumptions are weaker than those which Härdle and Gasser (1984)

required for the asymptotic normal distribution of mn(x).

First of all, the asymptotic variance of H ′
n,x(x) has to be specified.

Lemma 5 Let Assumptions A or B hold and let x ∈ (0 , 1) \ {t}. Then is for all y ∈ IR

varH ′
n,x(y) =

1

nhng3
n

(

β +O

(

1

nhn

)

+O(hn) +O(gn)

)

,

with

β :=

∫

K2(u)du

∫

(L′(v))2dv f(y −m(x)).

Proof.

varH ′
n,x(y)

=
1

n2

n
∑

i=1

K2
hn

(x− xi)var
d

dy
Lgn

(y − Yi)

=
1

n2

∑

i∈Jn

K2
hn

(x− xi)

[

∫
(

d

dy
Lgn

(y −m(xi) − u)

)2

f(u)du

−
(
∫

d

dy
Lgn

(y −m(xi) − u)f(u)du

)2
]

=
1

n2

∑

i∈Jn

K2
hn

(x− xi)

[

∫

1

g3
n

(L′(v))
2
f(y −m(xi) − vgn)dv

−
(
∫

1

gn

L′(v)f(y −m(xi) − vgn)dv

)2
]

=
1

n2

∑

i∈Jn

K2
hn

(x− xi)

[

∫

1

g3
n

(L′(v))
2
(f(y −m(x)) +O(|x− xi|) + |v| ·O(gn))dv

−
(
∫

L(v)f ′(y −m(xi) − vgn)dv

)2
]

=
1

n2g3
n

∑

i∈Jn

K2
hn

(x− xi)

[

(
∫

(L′(v))2dv (f(y −m(x)) +O(hn)) +

∫

(L′(v))2|v|dv O(gn)

)

−g3
n

(
∫

L(v)f ′(y −m(xi) − vgn)dv

)2
]

=
1

n2g3
n

∑

i∈Jn

K2
hn

(x− xi)

[
∫

(L′(v))
2
dv f(y −m(x)) +O(hn) +O(gn) +O(g3

n)

]
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=
1

nhng3
n

(
∫

K2(u)du+O

(

1

nhn

))[
∫

(L′(v))2dv f(y −m(x)) +O(hn) +O(gn)

]

.

2

Proposition 1 Let Assumptions (5) and Assumptions A or B hold. Let x ∈ (0 , 1) \ {t}
and y ∈ IR. Then

(

β

nhng3
n

)− 1

2
(

H ′
n,x(y) − f ′(y −m(x))

) L−→ U ∼ N(0, 1)

with

β :=

∫

K2(u)du

∫

(L′(v))2dv f(y −m(x)).

Proof.

For fixed x, y, define

Zi :=
1

n
Khn

(x− xi)
d

dy
Lgn

(y − Yi).

Since Zi are independent and
∑n

i=1 Zi = H ′
n,x(y), we have

n
∑

i=1

EZi = EH ′
n,x(y)

and
n
∑

i=1

varZi = var
n
∑

i=1

Zi = varH ′
n,x(y)

For a sufficiently large n0, the Zi are uniformly bounded by

|Zi| ≤
1

nhng2
n

max
u∈IR

K(u) max
v∈IR

L′(v) ≤ max
u∈IR

K(u) max
v∈IR

L′(v)

for all n ≥ n0. It follows that the Ljapunov condition is fulfilled. Hence

H ′
n,x(y) − EH ′

n,x(y)
√

varH ′
n,x(y)

=

∑n

i=1 Zi −
∑n

i=1EZi

(
∑n

i=1 varZi)
1

2

L−→ N(0 , 1).

Together with Lemma 3, Lemma 5, and (5), the assertion follows. 2

Theorem 3 Let Assumptions B and (5) hold and the support of L(y) be compact (com-

pare Chu et al. 1998). Then mn(x) is inconsistent for all x ∈ (0 , 1).
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Proof.

It suffices to show the assumption for a fixed x ∈ (0 , 1) \ {t}, because then the case x = t

will be obvious. The essential difference in the assumptions is, that under Assumptions

B f(x) + f(x − d) has two local maximizers at x = 0 and x = d which is possible only

because f is assumed to be weakly unimodal. From the symmetry and weak unimodality

of f , we have f ′(0) = 0. Hence, it follows that f ′(d) = f ′(−d) = 0 (see Fig. 9). Since

f is unimodal, f ′(x) ≤ 0 for all x > 0 and in all open intervals (a , b) ⊂ (0 ,∞) exists

r ∈ (a , b) with f ′(r) < 0. Particularly that means that there exists 7/6 d < r0 < 4/3 d

such that f ′(r0) < 0.

y

−d d

f’(y)

y

f(y)

0

0

Figure 9: f(y) and f ′(y)

From Proposition 1, it follows that

(

β

nhng3
n

)− 1

2

H ′
n,x(m(x) + d)

L−→ U ∼ N(0 , 1).

Hence,

lim
n→∞

P (H ′
n,x(m(x) + d) > 0) =

1

2
.
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Also, by Proposition 1 (or Lemma 4),

lim
n→∞

P (H ′
n,x(m(x) + r0) < 0) = 1.

If H ′
n,x(m(x) + d) > 0 and H ′

n,x(m(x) + r0) < 0, then we have a zero w0 ∈ (m(x) +

d ,m(x) + r0) which belongs to a local minimum of −Hn,x.

Hence, with

An := {(Y1, . . . , Yn) : H ′
n,x(m(x) + d) > 0}

and

Bn := {(Y1, . . . , Yn) : H ′
n,x(m(x) + r0) < 0},

we get

lim
n→∞

P (−Hn,x has a local minimum in (m(x) + d ,m(x) + 4/3 d))

≥ lim
n→∞

P (An ∩Bn)

=
1

2
.

That means, if the starting value is larger than m(x) + d (we will call this event C)

and provided that n is large enough, we reach a “wrong minimum” with an approximate

probability ≥ 1
2
.

Hence we only have to show that P (An ∩Bn ∩C) is asymptotically positive. But since C

and An ∩ Bn are not independent, we have to carry out a little more detailed estimation

of P (An ∩Bn ∩ C).

Consider the following abbreviations:

Ãn :=











(Y1, . . . , Yn) :
1

n

n
∑

i=1

i6=i0

Khn
(x− xi)

1

g2
n

L′

(

m(x) + d− Yi

gn

)

> 0











B̃n :=











(Y1, . . . , Yn) :
1

n

n
∑

i=1

i6=i0

Khn
(x− xi)

1

g2
n

L′

(

m(x) + r0 − Yi

gn

)

< 0











C := {(Y1, . . . , Yn) : Yi0 ≥ m(x) + d} ,

CA :=

{

(Y1, . . . , Yn) :
1

g2
n

L′

(

m(x) + d− Yi0

gn

)

6= 0]

}

,
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CB :=

{

(Y1, . . . , Yn) :
1

g2
n

L′

(

m(x) + r0 − Yi0

gn

)

6= 0

}

and

CR := C \ (CA ∪ CB).

Observe that, because of the bounded (and with gn → 0 shrinking) support of Lgn
,

P (CA) = O(gn) and similary P (CB) = O(gn). In addition, it is easy to see that

(An ∩Bn) ∪ (Ãn ∩ B̃n) \ (Ãn ∩ B̃n) ∩ (An ∩Bn)

⊂ CA ∪ CB,

which implies P (Ãn ∩ B̃n) = P (An ∩Bn) +O(gn).

With these preparations, we see that

P (|mn(x) −m(x)| > d)

≥ P
(

H ′
n,x(m(x) + d) > 0 ∧H ′

n,x(m(x) + r0) < 0 ∧ Yi0 ≥ m(x) + d
)

= P (An ∩Bn ∩ C)

≥ P (An ∩Bn ∩ CR)

= P (Ãn ∩ B̃n ∩ CR)

= P (CR)P (Ãn ∩ B̃n)

= (P (C) +O(gn))(P (An ∩Bn) +O(gn))

= P (C)P (An ∩Bn) +O(gn)

n→∞−→
∫ ∞

d

f(u)du · 1

2

> 0.
2
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