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Abstract 
 
This paper presents a bi-level multi-objective integer non-linear programming  
(BLMINP) problem with linear or non-linear constraints and an interactive 
algorithm for solving such model. At the first phase of the solution algorithm to 
avoid the complexity of non convexity of this problem, we begin by finding the 
convex hull of its original set of constraints using the cutting-plane algorithm to 
convert the BLMINP problem to an equivalent bi-level multi-objective non-linear 
programming (BLMNP) problem. At the second phase the algorithm simplifies an 
equivalent (BLMNP) problem by transforming it into separate multi-objective 
decision-making problems with hierarchical structure, and solving it by using ε -
constraint method to avoid the difficulty associated with non-convex 
mathematical programming. In addition, the author  put forward the 
satisfactoriness concept as the first-level decision-maker preference. Finally, an 
illustrative numerical example is given to demonstrate the obtained results. 
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(1)   Introduction  
 

Bi-level programming (BLP) is a subset of the multi-level programming problem 
which identified as a mathematical programming problem that solves 
decentralized planning problems with two decision makers (DMs) in a two- level 
or hierarchical organization ([3], [4], [5], [6], [7], [9]). An algorithm for the 
interactive multi-level non-linear multi-objective decision-making problem is 
presented in many searches ( Osman et al. [7] and Shi and Xia [10]). 
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The interactive algorithm uses the concepts of satisfactoriness to multi-objective 
optimization at every level until a preferred solution is reach. Based on (Shi and 
Xia [10]) satisfactory solution concepts, the proposed solution method proceed 
from the first-level decision-maker (FLDM) to the second-level decision-maker 
(SLDM). The FLDM gets the preferred or satisfactory solutions that are 
acceptable in rank order to the SLDM. The SLDM will search for the preferred 
solution of the FLDM until the preferred solution is reached. Integer multi-
objective  programming has attracted the attention of many researchers in the past. 
The main reason for interest in linear or nonlinear  programming stems from the 
fact that programming models could better fit the real problems if we consider 
optimization of economic quantities ([1], [8]). This paper is organized as follows: 
we start in Section 2 by formulating the model of  bi-level multi-objective integer  
non-linear programming problem with the solution concept is introduced. In 
Section 3, Definitions and Theorems is carried out. In Section 4, an interactive 
model for BLMINP problem is presented. In Section 5, an interactive algorithm  
for BLMINP problem is presented. In Section 6,   an example is provided to 
illustrate the developed results. Finally, in Section 7, some open points are stated 
for future research work in the area of interactive multi-level integer programming 
optimization problems.  

 
(2) Problem Formulation and Solution Concept  

 
Let )2,1(, =∈ iRx in

i be a vector variables indicating the first decision level’s 
choice, the second decision level’s choice. Let the FLDM and SLDM have 1N  
and 2N objective functions, respectively. And M is the set of  feasible  choices      
( )}{ 21 , xx . 

So the BLMINP problem may be formulated as follows: 
[1st Level]  ( ) ( ) ( )( )2112111211 ,...,,,,

1
11

xxfxxfMaxxxFMax Nxx
= ,         (1) 

where 2x solves 
[2nd Level]  ( ) ( ) ( )( )2122121212 ,...,,,,

2
22

xxfxxfMaxxxFMax Nxx
= ,         (2) 

Subject to 
 ( ) ( ){ ,...,,2,1,0,, 2121 mixxgxxM i =≤= .  
              }1,2j integer,0 =≥ andx j                                    (3) 
Where M is a non-convex constraint set, 1F  and 2F are non-linear functions.  The 
decision mechanism of BLMINP problem is that the FLDM and SLDM adopt the 
two-planner Stackelberg game. According to the two-planner Stackelberg game 
and mathematical programming, the definitions of solution for the model of 
BLMINP problem are given as follows  . 
 
Definition 1. For any ( ) }{( )MxxxMxx ∈=∈ 211111 ,  given by FLDM, if the 

decision-making variable ( ) }{( )MxxxMxx ∈=∈ 212122 ,  is the non-inferior 
solution of the SLDM, then ( )21, xx  is a feasible solution of BLMINP problem. 
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Definition 2. If ( )*

2
*
1 , xx is a feasible solution of the BLMINP problem; no other 

feasible solution ( ) Mxx ∈21 ,  exists, such that ( ) ( )211
*
2

*
11 ,, xxfxxf jj ≤ , with at 

least one j ( )1...,,2,1 Nj = ; so ( )*
2

*
1 , xx  is the preferred  solution of the BLMINP 

problem.  
 
In what follows, an equivalent bi-level multi-objective   nonlinear programming 
(BLMNP)  problem associated with problem (1)-(3) can be stated with the help of 
cutting-plane technique ([1], [2], [8]) together with Balinski algorithm [2]. This 
equivalent BLMNP problem can be written in the following form: 
 
(FLDM)  ( ) ( ) ( )( )2112111211 ,...,,,,

1
11

xxfxxfMaxxxFMax Nxx
= ,                                 (4) 

 
    where x2 solves 
 
(SLDM)  ( ) ( ) ( )( )2122121212 ,...,,,,

2
22

xxfxxfMaxxxFMax Nxx
= ,                                (5) 

 
                                                   Subject to 
 
                                                        ][Mx∈ ,                                                        (6) 
 
where ][M is the convex hull of the feasible region M  defined by (3) earlier. This 
convex hull is defined by:  
     
  }0,{][ )()()( ≥≤∈== xbxARxMM ssns

R       (7) 
and in addition, 
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are the original constraint matrix A and the right-hand side vector b , respectively, 
with s-additional constraints each corresponding to an efficient cut in the form 

ii cxa ≤ . By an efficient cut, we mean that a cut which is not redundant. 
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(3) Definitions and Theorems  
 
We will obtain the solution of the equivalent BLMNP problem of the BLMINP 
problem by solving FLDM and SLDM problems each one separately. In this way,  
we can quantitatively present satisfactoriness and the preferred solution in view of 
singular-level multi-objective decision-making problem, and introduce several  
theorems with the help of the quality of ε -constraint method to provide a 
theoretical basis for upper-level multi-objective decision-making. 
Consider a multi-objective decision-making problem as follows: 
 ( ) ( )( ),...,,1 xfxfMax nx

                                                                              (9) 

 subject to 
 ( ) qjxh j ...,,2,1,0 =≥ .                                                                                       

Where ( ) 21,, 21
nnRxxxx +∈=  denotes the decision-making variable and 

( ) ( )2,1, =ixfi  denotes the objective function of the multi-objective decision-
making problem.   Let     ( ){ }qjxhx j ...,,2,1,0 =≥=Ω   and  ( )xfMina ixi Ω∈

= ,  

( )xfMaxb ixi Ω∈
= . On [ ]iii bau ,=  define ( )ii ufA ∈ , whose membership function 

( )( )xfiAi
μ  meet ( i) and ( ii ) as below : 
( i )  When the objective value ( )xfi approaches or equals the decision-maker’s 
ideal value, ( )( )xfiAi

μ approaches or equals 1.Otherwise, 0 . 

( ii ) If  ( ) ( )∗> xfxf ii , then ( )( ) ( )( ) ....,,2,1, nixfxf iAiA ii
=≥ ∗μμ  

 
Definition 3. If ∗x  is a non-inferior solution, then ( )( )∗xfiAi

μ  is defined as the 

satisfactoriness of ∗x  to objective ( )xfi . 
Definition 4. ( )( )∗

≤≤

∗ = xfMinx iAni i
μμ

1
)(  is defined as the satisfactoriness of non-

inferior solution ∗x  to all the objectives. 
Definition 5. With a certain value 0s  given in advance by the decision-maker, if 
non-inferior solution ∗x  satisfies ( ) 0sx ≥∗μ , then ∗x  is the preferred solution 
corresponding to the satisfactoriness 0s . 
 
We give membership function ( )( )xfiAi

μ  as below: 

 ( )( ) ( )
ii

ii
iA ab

axf
xf

i −
−

=μ                 (10) 

It is decided according to the decision-maker’s requirements. Obviously, (10) 
meets the two requirements ( i ) and ( ii ) for ( )( )xfiAi

μ . 
 
The ε -constraint method is effective for solving multi-objective decision-making 
problems. The formalization of ( )1−εP  is as follows: 
 ( )xfMax 1 ,             (11) 
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            subject to  
 ( ) nixf ii ...,,2, =≤ ε ,                                                                                                   

             Ω∈x  . 
 Assume  
 ( )nεεε ...,,21 =− , 
 ( ){ }Ω∈=≤=′ − xnixfxX ii ,,...,2,)( 1 εε , 
 and  
 { })()( 111 setemptyx φεε ≠′=Ε −− . 
 
Theorem 1. If ( ) 1321 ...,,, Ε∈=− nεεεε , then the optimal solution to ( )1−εP  
exists and includes the non-inferior solution of (9) (see Shi and Xia [10]). 
 
Corollary 1.  If 1x  is the only optimal solution to ( )1−εP , then 1x  is the non-
inferior solution of (9). 
 
The ε -constraint problem including satisfactoriness is as follows:  
 ( )xfMax 1 ,             (12) 
 subject to   
 ( ) ,ii xf δ≥ ni ,...,2= ,                                                                                
 Ω∈x  . 
Theorem 2.  If ( )( )sP 1−ε  has no solution or has the non-inferior solution x and 
( ) 11 δ≤xf , then no non-inferior solution ∗x  exists, such that ( ) sx ≥∗μ . 

Proof: 
 If ∗x  is a non-inferior solution of (9), such that ( ) sx ≥∗μ , 
namely, ( )( ) ),...,2,1(, nisxfiAi

=≥μ . Then ∗x is a feasible solution of ( )( )sP 1−ε , 

and ( ) 11 δ≥∗xf , therefore, ( )( )sP 1−ε  has a non-inferior solution x , such that 
( ) 111 )( δ≥≥ ∗xfxf , which is in contradiction to the hypothesis. 

 
Theorem 3. Assume 1ss <  if there is no preferred solution to s , then go to 

1s .[10] 
 
Theorem 4. Assume x  is a non-inferior solution of ( )( )sP 1−ε  and 

( ) ( )nixf ii ,...,2,1, =≥ δ . Let ( ) ( )nixf ii ,.......,2,1== ε , and let 
( )nεεεε ,...,, 321 =− . Then x  is still an optimal solution of ( )1−εP . 

If x  is the only optimal solution of ( )1−εP , then x , is a non-inferior solution. 
If other optimal solution x′  of ( )1−εP exists, and { }nL ...,,2,1∈ exists, such that 

( ) LL xf ε≥′ , then x  is inferior solution. 
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Proof 

 
(a) ),,...,2,1(, niii =≥ δε namely ( ) );,...,,(,...,,, 32321 nn δδδεεεε ≥=−

( )( )sxx 11 )( −− ′⊂′ εε , let x to be a non-inferior solution of ( )( )sP 1−ε , and 
)( 1−′∈ εxx , then 

 )()()( 1
)(

1
))((

1
11

xfxfxf MaxMax
xxsxx −− ∈′∈∈′∈

==  

Therefore, x  is  a non-inferior solution of ( )1−εP and (a) is proven by Corollary 
1. 
(b) ( ) )(11 xfxf ≥′ , and ( ) iii xfxf ε=≥′ )( , which  “f ” holds when   Li = , 
therefore, x is inferior solution . 
 

(4) An interactive model for BLMINP problem 
 
To solve the BLMINP problem by adopting the two-planner Stackelberg game, 
first we have to retransfer set of constraints M to its equivalent [M], so we will 
obtain an equivalent BLMNP problem then  the FLDM gives the preferred or 
satisfactory solutions that are acceptable in rank order to the SLDM, and then the 
SLDM  will seek the solutions by ε -constraint method , and to arrive at  the 
solution  that gradually approaches the preferred solution or satisfactory solution 
to the FLDM. Finally, the FLDM decide the preferred solution of the BLMINP 
problem according to the satisfactoriness. 
 
4.1-The First-Level Decision-Maker (FLDM) Problem 
The first-level decision-maker problem of the (BLMINP) problem is as follows: 
 ( ) ( ) ( )( )2112111211 ,...,,,,

1
11

xxfxxfMaxxxFMax Nxx
= ,        (13) 

 subject to  
 ][Mx∈ . 
To obtain the preferred solution of the FLDM problem; we transform (13) into the 
following multi-objective decision-making problem: 
 ( ),11 xfMax

x
                                                        (14) 

 subject to  
 ( ) ( )111 ,...,2, Njxf jj =≥ δ ,                                                                     (15) 
 Ω∈x ,   
   ( ) 21,, 21

nnRxxxx +∈= . 
 So , the algorithm steps for solving (14)-(15) are as follows: 
 
4.1.1-The Algorithm for FLDM Problem 
Step 1: (a) Use Balinski's algorithm to find all the vertices of the feasible 

region M. 
  (b)Select one of the non-integer vertices ( )1 1 1 1

1 2, ,..., nx x x x=                                 
of the solution space. In the tableau of this vertex, choose the row vector  
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where the basic variable has the largest fractional value and construct its 
corresponding Gomory's fractional cut in the form 11 cxa ≤ . 
(c) Add the first cut 11 cxa ≤  to the original set of the constraints M. 
This will yield a new feasible region M1. 
(d) Repeat again the steps (a) → (c) until, at some step, r, the 
obtained vertices of the solution space all are integers. 
(e) Eliminate (drop) all the redundant constraints of the applied cuts. 
(f) Add all the constraints of applied s-efficient cuts to the original 
set of constraints M to get [M].  

Step2:   Formulate the equivalent linear fractional program with the 
constraints [M]. 

Step3: Set the satisfactoriness. Let 0ss =  at the beginning, and let 
...,,, 21 sss =  respectively. 

Step 4: Set the ε -constraint problem ( )( )sP 1−ε , if ( )( )sP 1−ε  has no 
solution or has a non-inferior solution making ( ) 1111 δ<xf , then go 
to step 3, to adjust jj sss <= +1 . Otherwise, go to step 5. 

Step 5: Assuming that x  is a non-inferior solution of ( )( )sP 1−ε , judge by 
theorem 4 whether or not x  is a non-inferior solution of (14)-(15) . 
If x  is a non-inferior solution, turn to step 6. if x  is inferior 
solution, there must be a x ′ , such that ( ) ( )xfxf ii 11 ≥′ , and at least 
one ""> ; Repeat step 5 with x ′ .  

Step 6: If the decision-maker is satisfied with x , then x is a preferred 
solution. Otherwise, go to step  7. 

Step 7: Adjust the satisfactoriness. Let jj sss f1+= , and go to step 4. 
 
4.2-The Second-Level Decision-Maker (SLDM) Problem  

Secondly, according to the interactive mechanism of the BLMINP 
problem, the FLDM  variables Fx1 should be given to the SLDM; hence, 
the SLDM problem can be written as follows: 

( ) ( ) ( )( )2122121212 ,,...,,,
2

22

xxfxxfMaxxxFMax F
N

F

x

F

x
= ,                        (16) 

subject to  
].[),( 21 Mxx F ∈                                                                              

 
The SLDM will convert (16) into the following single objective function 
as follows: 
 

( )2121 , xxfMax F

x
,                        (17) 

subject to 
( ) 22212 ,...,2,, Njxxf j

F
j =≥ δ ,                                                         (18) 

          ( ) Ω∈21 , xx F . 
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 Our basic though on solving (17)-(18) is to find the second-level non-
inferior solution ( )SF xx 21 ,  that is closest to the FLDM preferred solution 
( )FF xx 21 , . 
 Now, we will test whether ( )SF xx 21 ,  is preferred solution to the FLDM or 
it may be changed, by the following test: 
If   

  
( ) ( )

( )
F

SF

SFFF

xxF

xxFxxF
δ<

−

2211

2211211

,

,,
                     (19) 

 So, ( )SF xx 21 ,  is a preferred solution to the FLDM, where  Fδ  is a small 
positive constant given by the FLDM which means ( )SF xx 21 ,  is a preferred 
solution of the BLMINP problem.  
 

(5) Interactive Algorithm for BLMINP problem 
 
Step 1: -Set 0=k ; solve the 1st level decision-making problem to obtain a set of 
preferred solutions that are acceptable to the FLDM. The FLDM puts the 
solutions in order in the format as follows: 
Preferred solution ( ) ( )pkpkkk xxxx ++

2121 ,,...,,  
 Preferred ranking (satisfactory ranking) 
 ( ) ( ).,...),(, 21

1
2

1
121

pkpkkkkk xxxxxx ++++ fff  
Step 2: -Given Fxx 11 =  to the SLDM, solve the SLDM problem to obtain 2x . 

Step 3: -If   
( ) ( )

( )
F

SF

SFFF

xxF

xxFxxF
δ<

−

2211

2211211

,

,,

  
Where Fδ  is a fairly small positive number given by the FLDM, then go to step 4. 
Otherwise, go to step 5. 
Step 4: - ( )SF xx 21 , is the preferred solution to the BLMINP problem. 
Step 5: - Set 1+= kk , then go to step 1. 
 

(6) Numerical Example  
 
To demonstrate the solution for interactive  BLMINP problem, let us consider the 
following example: 
[1st level]           ( ) [ ]2

2121211 ,32,
11

xxxxMaxxxFMax
xx

++=  

    where 2x  solves 

 [2nd level]         ( ) ( )[ ]2
2

2
1

2
21212 21,,

22

xxxxMaxxxFMax
xx

+++=  

 subject to 
         722 21 ≤+ xx , 
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                                          ,1052 21 ≤+ xx               
                                           0, 21 ≥xx  , and integers. 
             First, the given bi-level integer multi-objective  non-linear programming 
problem can be converted into its equivalent bi-level multi-objective  non-linear 
programming problem as follows:  
[1st level]                         ( ) [ ]2

2121211 ,32,
11

xxxxMaxxxFMax
xx

++=  , 

[2nd level]                      ( ) ( )[ ]2
2

2
1

2
21212 21,,

22

xxxxMaxxxFMax
xx

+++=  

                                    Subject to 
                                                722 21 ≤+ xx , 
                                                ,1052 21 ≤+ xx  
                                                 ,42 21 ≤+ xx   
                                                   321 ≤+ xx ,               
                                                  0, 21 ≥xx . 
 
First, the FLDM solves his/her problem as follows: 

1- Find individual optimal solution by solving (13), we get. 
( ) ( )4,7, 1211 =bb , ( ) ( )0,0, 1211 =aa . 

2- Using the solution of FLDM problem, we can formulate (14)-(15) 
as follows: 

21 xxMax +  
 Subject to 
             722 21 ≤+ xx , 
             ,1052 21 ≤+ xx  
             ,42 21 ≤+ xx   
                   321 ≤+ xx ,               

                     2.12
21 ≥+ xx  , 

                    0, 21 ≥xx . 
Where ( ) .2.1121121212 =+−= asabδ  
So the FLDM solution is  ( ) ( )1,2, 21 =FF xx  and ( 12.0,3.01 == Fs δ  are 
given by FLDM). 

 
Secondly, the SLDM solves his/her problem as follows: 
1- Find the individual optimal solutions by solving (16), we get: 

( ) ( )16,4, 2212 =bb , ( ) ( )1,0, 2212 =aa . 
2- Using the results from SLDM problem, we can formulate (17)-(18) 

as follows: 

              

2
21 xxMax +  

              Subject to 
              722 21 ≤+ xx , 
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              ,1052 21 ≤+ xx  
               ,42 21 ≤+ xx  
                  321 ≤+ xx ,  
                   ,21 =x   

             5.82)1( 2
2

2
1 ≥++ xx  

                    02 ≥x . 
 

Where ( ) 5.8222222222 =+−= asabδ . 
So the SLDM solution is  
( ) ( )1,2, 21 =SF xx , and( 5.02 =s  ). 

Finally, by using (19), we will find that ( ) ( )1,2, 21 =SF xx  is a preferred solution to 
the FLDM from the following test:  

( ) ( )
12.00

)1,2(
1,21,2

21

211
p=

−

F
FF

 

 
So ( ) ( )1,2, 21 =SF xx  is the preferred solution to the BLMINP problem. 
 
 
 

(7)  Summary and Concluding Remarks  
 
 This paper has proposed an interactive algorithm for  solving a  bi-level 
multi-objective integer non-linear programming  (BLMINP) problem with linear 
or non-linear constraints . We start  by finding the convex hull of its original set of 
constraints using the cutting-plane algorithm to convert the BLMINP problem to 
an equivalent (BLMNP) problem. Then the algorithm simplifies an equivalent 
(BLMNP) problem by transforming it into separate multi-objective decision-
making problems with hierarchical structure, and solving it by using ε -constraint 
method to avoid the difficulty associated with non-convex mathematical 
programming is introduced. 
 However, there are many other aspects, which should be explored and 
studied in the area of multi-level optimization such as: 
 

1. Interactive bi-level and multi-level integer fractional  multi-objective 
decision-making problems. 

2. Interactive bi-level and multi-level integer stochastic non-linear multi-
objective decision-making problems. 

3. Interactive bi-level and multi-level integer large-scale non-linear multi-
objective decision-making problems. 
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