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Abstract— We study task-allocation problems where cooper-
ative robots need to perform tasks simultaneously. We develop
a distributed negotiation procedure that allows robots to find
all task exchanges that reduce the team cost of a given task
allocation, without robots having to know how other robots
compute their robot costs. Finally, we demonstrate empirically
that our negotiation procedure can substantially reduce the
team costs of task allocations resulting from existing task-
allocation procedures, including sequential single-item auctions.

I. INTRODUCTION

Task allocation is one of the most important coordination
problems for robot teams [4]. We study task allocation where
robots collaborate to minimize the team cost rather thain the
own robot costs. Most research on task allocation considers
only simple tasks, which can be performed by single robots
[3] [5] [9]. However, one of the main advantages of robot
teams is that they can perform tasks that single robots
cannot. We therefore consider also complex tasks, which
need to be performed by several robots simultaneously [10]

[12]. For instance, several robots need to move heavy rockfocation with a small team cost [11]. We, on the other
together, and several fire engines need to extinguish larg@nd, use reaction functions to allow robots to reduce the
fires together. Our motivating problem is multi-robot rogti  team cost of a given task allocation by exchanging tasks.
where the tasks are to visit targets in the plane, as shown @\ initial investigation concentrates on disjoint cdais,
Figure 1. The terrain, the locations of all robots and thghere every robot can perform at most one complex task [6]
locations of all targets are known. One needs to determing]. we proceed as follows: We first review the concepts and
which targets each robot should visit and when it shoul@roperties of reaction functions proposed in the litertuve
visit them so that the team cost (such as the amount g{en develop a distributed negotiation procedure (witreut
energy or the task-completion time) is as small as possiblgentral planner) that allows robots to find all task exchange
Multi-robot routing is a standard task for robot teams, fofhat reduce the team cost of a given task allocation. Our
example, as part of de-mining, search-and-rescue andgtakipegotiation procedure has the advantage that each robot
rock probes on the moon. Multi-robot routing with simpleneeds to know the reaction functions of the other robots
tasks is a standard test domain for robot coordination withnly for the complex targets assigned to them and that
auctions [2] [9]. Multi-robot routing with complex tasks is ng robot needs to know how the reaction functions of the
more difficult. First, it is difficult to determine which rol® gther robots are computed, including how their robot costs
should perform a complex task because each complex tagke computed. Finally, we demonstrate empirically that our
has to be assigned to more than one robot. Second, it j&gotiation procedure can substantially reduce the teas co
difficult to determine when a group of robots should perfornyf task allocations resulting from existing task-allooati

a complex task because this requires the robots to solggocedures, including sequential single-item auctiofs [9
complex scheduling problems.

We use reaction functions to characterize the robot costs |- FORMALIZATION OF MULTI-ROBOT ROUTING
of a given robot for performing a given complex task We now formalize multi-robot routing: The finite set of
at any possible time. Reaction functions have been useobots isA. The finite set of targets iX. The number of
previously to allow a central planner to determine a taskobots that need to visit a targetc X simultaneously is
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Fig. 1. Multi-Robot Routing Problem



d(z). A targetaz € X is simpleif d(x) = 1 andcomplex of line segments, where each line segment is either linear
otherwise. We distinguish these two kinds of targets bexauwith slope one (modeling that the robot waits at a complex
a robot can freely determine when to visit simple targettarget for other robots to visit the target simultaneously)
but needs to agree with other robots when to visit complesonstant at infinity (modeling that the robot cannot vis# th
targets. Each robot in the group dfx) robots that need complex target at the given visit time), as follows:

to visit complex targetr at some visit time) < ¢ < oo « Determine a time intervals, ] during which robotr
has acommitment, written asx « ¢. An allocation of can visit complex targei: and divide it evenly intok
robot » consists of a pair(X,,C,), where X, is the set time intervals(s;, e;] for a given parametet.

of simple targets assigned to it ar@. is a set that is , Determine the minimal robot cost of robofor visiting
either empty or contains the commitment for one complex  complex target: in time interval(s;, e;] without waiting
target. A robotr is eligible iff C', is empty. Therobot cost as well as all simple targets assigned to it at the optimal
;" (X,, C,) of robotr is the minimal sum of travel and visit times' for each0 < i < k. Assume that robot
wait time that it needs to visit all of the targets assigned to  visits complex target: at visit time ¢; € (s;,e;] for

it, where it can freely determine when to visit each simple  a minimal robot cost of;. Then define the following
target in X, subject to the restriction that it has to visit its  function that calculates the robot cost if all targets are
complex target (if any) at the agreed-on visit time recorded  vyisjted in the given order and the robot waits ¢; time

in C.. (The robot cost is infinity in case the robot cannot  ynits at the complex target for other robots to visit the
satisfy this restriction.) Our objective is to find a solutio target simultaneously:

with a small team cost, where solution requires each
targetz € X to be assigned to exactly(z) robots, each

complex target to be assigned a visit time, and each robot Frit) = { ?+ ¢t :I git; b

to be assigned at most one complex target. In this paper, ! ! e

we consider two ways of defining the team cost. Téam o Determine the approximate reaction function as the
costis >, 4 crebot( X, C,) (roughly proportional to the minimum of the functions?y?, for all 0 <i < k since
energy needed by the robots for waiting and moving) for ~ €ach function expresses the robot cost if robafsits

the MiniSum team objective and max,c 4 ¢.°**(X,., C,.) its targets in a particular order:

(the task-completion time) for thdiniMax team objective.

We useci®®™ as a sp(_ecial operator for eiFher. the sum or FE(t) = min FZ.(1).

max operator, depending on the team objective, and write " 0<i<k "

the team cost agl2y'crt°!(X,., C,) to make our notation

) T Let T(P,,x) be the set of times that correspond to the
independent of the team objective.

beginnings of all linear segments with slope one of the
1. REACTION FUNCTIONS approximate reaction functiorg? (¢) for all robotsr € P,,

. . N where P, is the group of robots that are assigned complex
To determine the optimal visit time for complex targettargeta: Then. it holds that

x (that minimizes the team cost), each eligible robot
computes itgeaction function

. team Tx _ . team Tx
oin Crep Fri(t) = te%%f,m) Crep Fr(t)
2 (p\ ._ robot . . . o
Fr(t) = (X {z —t}) [11], which makes it easy to calculate the optimal visit time

to characterize its robot costs for visiting complex target °f cCOmplex target for a given group; of eligible robots. In
at any possible visit time in addition to all simple targets the following, all reaction functions are approximatedass

in X, at the optimal visit times. The optimal visit time of Mentioned otherwise.
complex target: for a given groupP, of eligible robots with g Target Allocation with Reaction Functions

given assigned simple targets then is The simple targets need to be allocated before the complex
ones because robots can manipulate the order in which

arg min clB FE(L). they visit their assigned simple targets to accommodate the
0<t<o0 ’ complex ones. We use two ways of assigning the simple
A. Approximation targets to robots.
The computation and communication of reaction functions « Random Allocation: Random allocation assigns each
is time-intensive. For example, each robohas to solve a simple target randomly to some robot.
difficult scheduling problem for each visit timeof complex ~ » SSI Auctions Sequential single-item auctions [9] as-
targetz to determine its reaction functia*(t) because it sign simple targets to robots in rounds. During each
needs to determine the optimal order in which to visit all ~ round, one additional simple target is assigned to some

targets assigned to it. The computation and communication, _ . ) . )

f fi f fi be made less time-intensive by an- This problem is a special case of the NP-hard traveling patesn
0 re.ac |qn unctions can ] " I I ve by Broblem with time windows [1] and can be solved approximateithva
proximating them. We discretize them into a constant numbeérsion of the Or-opt heuristic [7].



robot so that the team cost after assigning that simple assigned complex target and its reaction function for
target increases the least (hill-climbing). its complex target (if any), its robot cost and its index
Afterwards, we assign the complex targets to robots in  number. The purpose of the index numbers is to order
rounds until all complex targets are assigned to robots. all robots completely.
During each round, one additional complex target is assigne « Computation Step In the first substep, each robot
to some robot. LetX,. be the set of simple targets assigned  acts as aproposer. It considers each possible target

to robotr. Each eligible robot then computes its reaction exchange that it can be involved in and, iff the target
function F7(t) for each complex target and submits exchange is potentially profitable, proposes it to the
other robot involved in it. In the second substep, each
FE(t) — cobt(X,. () for MiniSum robot acts as aanager. It calc_:ulates the gain fgr _ea_ch_
Vi(t) == { ]_-Z(t) " ’ for MiniMax target exchange that it receives and stores it iff it is
" profitable. After the computation step, each profitable
to a central planner. LeP(n) be the set of all groups of target exchange has been stored by at least one robot.
eligible robots andX.. the set'of unassigned complex targets. , pecision Step Each robot broadcasts its target ex-
The central planner determines change with the highest gain. The robots then perform

the broadcast target exchange with the highest gain.

(P, x,t) := arg min Cﬁeeagl = (1) Ties are broken in.favor of the tqrget exchange that
PepeP(d(x)),2€Xc,05t<00 ’ involves the robot with the smallest index number. After
and assigns the commitment« ¢ to each robotr ¢ P,, the decision step, the robots have performed a target
which terminates the current round [11]. exchange with the overall highest gain.

In the following, letindex(r) be the index number of each
. . . i robotr, (X,,C,) its current allocation and,. the complex
Given a solution of a multi-robot routing problem, wWearget assigned to it. The complex target can be empty. Let
exchange targets between two robots so that the team c98tpe the group of robots that are assigned complex target
of the solution is reduced. We consider two types of targqiina”y' let¢, be the robot cost of robot andc := C;fzeeaéncf
exchanges. the team cost of the current solution.
« Complex target exchangesA complex target exchange
(r,7’,z,2’) describes that robot gives its complex B. Complex Target Exchanges
targetz to robotr’ and robot’ gives its complex target ~ We first consider complex target exchanges and describe
x' to robotr. One of the complex targets can be empt}the procedures executed by each robot in the computation
but not both. The number of possible complex targe$tep as proposer and manager.
exchanges is bounded Iy|* — |A| since each robotis 1 Proposer Procedure
assigned at most one complex target.
. Simple target exchangesA simple target exchange !f proposer robot- is assigned no complex target, then it
(r,r', X, X') describes that robot gives its simple does nothing. Otherwise, it executes the following procedu
targetsX C X, to robotr’ and robot” gives its simple for each robot’.

targetsX’ C X, to robotr. One of the sets of simple case 1:If robot + is assigned a complex targe} that is
targets can be empty but not both. The number of simplgst assigned to robot, then robotr considers the complex
target exchanges can be exponential in the number gfrget exchange := (ry 7 2y, ). Let A” := A\ (P, U
simple targets. We therefore impose the restriction thap ) Let P’ .= P, , \ {r'} U {r} be the group of robots
max(|X[,|X'|) < K for a given constanf’ > 0, the  that are assigned complex target after the complex target
exchange parameter exchange. Robot calculates itsnet loss netloss(S,r) of
The gain gain(S) of a target exchangs is the decrease the complex target exchange as
in team cost that results from performing the target exchang

A target exchange iprofitable iff its gain is positive. min Z Fo(t) - Z e for Minisum
EP,

IV. NEGOTIATION WITH REACTION FUNCTIONS

A. Negotiation Procedure 0st<oo

We now develop a distributed negotiation procedure tha} max(maxcz, min max F;"'(¢)) —c¢ for MiniMax.
. . reA’ 0<t<ooTEP]
allows robots to find all profitable target exchanges. Ou r’
e e o o g vt s 21 0 i assgne 0 complex e, h rbo
. 7 considers the complex target exchange= (r,r’, z,, ().
for the complex targets assigned to them and that no robpt ., , .
: . ﬁet A= A\ (P, U{r'}). Robotr calculates itmet loss
needs to know how the reaction functions of the other robots ’
) . . etloss(S,r) of the complex target exchange as
are computed, including how their robot costs are computeg.
The negotiation procedure consists of three steps.

« Initialization Step: Each robot broadcasts the necessary
information, including its assigned simple targets, its

rep; |
”

r

oot (X, 0) — ¢, for MiniSum
max(gnz}élx cr, (X, 0)) — ¢ for MiniMax.
reA’



If its net loss of the complex target exchange is negativan th This recomputation is necessary since the reaction fumgtio
robotr proposes it to robot’ by sending it the information of a robot depend on the simple targets assigned to it and can
(S, netloss(S,r)). thus change after simple target exchanges. Defitfe(t) :=
Fzr(t) for all robotsr € P, \{r}. LetA’ := A\(P, UP, )

if robot ' is assigned a complex target, and A’ := A\

If manager robot’ receives a proposal for a complex (P, U{r'}) if robot r’ is assigned no complex target. Robot
target exchanges' := (r,r’,z,,z,/), then letA’ := A\ r calculates itsnet lossnetloss(S,r) of the simple target
(P:,UP, ) if robotr’ is assigned a complex target: and exchange as
A= A\ (P, U{r'}) if robot r’ is assigned no complex
target. LetP, := P, \ {r} U {r'} be the group of robots . Vo -
that are assigned com\psl{ei tajgeiaﬁer the complex target 021250 Z Fr) - Z e for MiniSum
exchange. Robot’ calculates itset lossnetloss(S, ') of N refer )

max(maxcz, min max F';"(t)) —c for MiniMax.
the complex target exchange as FEA’  0<t<oo FEP,,

2. Manager Procedure

If the net loss of the simple target exchange is negativey the

Ogtligéo Z Fir(t) — Z Ci for MiniSum robotr proposes it to robot’ by sending it the information
= FEP! FEP, (S, netloss(S,r)).
max(maxcz, min max F:"(t)) —c for MiniMax. Case 3:If robot r is assigned the same complex target as
reAr  Osi<oorely, robot ' but has a smaller index number than robgtthen
It is easy to show that robot » recomputes its reaction function for complex target

x, with Formula (2) and proposes the simple target exchange

) . , to robots’ by sending it the informationS, 7/, (t)).
gain(S) = —c"“*™(netloss(S, 1), netloss(S,r")).
2. Manager Procedure
Proposition 1: Each profitable complex target exchange is |f manager robot”’ receives a proposal for a simple target
stored by at least one robot. exchangeS := (r,7/, X, X'), then letX/, = X,» \ X' U X
be the set of simple targets of robdtafter the simple target

C. Simple Target Exchanges )
) _ . exchange. Robot then executes the following procedure.
We now consider simple target exchanges and describe the

procedures executed by each robot in the computation ste@se 1:1f robot r' is assigned no complex target, then it
as proposer and manager. calculates itsnet loss netloss(S,r’) of the simple target

exchange with Formula (1). It easy easy to show that
1. Proposer Procedure

Proposer robot- considers the simple target exchange
S = (r,r’, X, X’) for each robot’ with r #£ ¢/, X C X,
X' C X, XNX' =0 and0 < max(|X|,|X’]) < K. Let
X! = X, \ X U X' be the set of simple targets assigne
to robot r after the simple target exchange. Robothen
executes the following procedure.

gain(S) = —c'““™ (netloss(S,r), netloss(S,r")).

fase 2:1If robot ' is assigned a complex target. that is
not assigned to robat, then robot’ recomputes its reaction
function 7’ (t) for complex targetr,. with Formula (2) and
then itsnet lossnetloss(S,r’) of the simple target exchange
Case 1:If robot r is assigned no complex target, then lewwith Formula (3). It is easy to show that

A= A\ ({r} U P, ,) if robot r" is assigned a complex

targetz,, and A’ := A\ ({r,r'}) if robot r" is assigned no

complex target. Robat calculates itset lossnetloss(S, ) gain(S) = —c"“*™ (netloss(S, 1), netloss(S,r")).

of the simple target exchange as
Case 3:If robot ' is assigned the same complex target

as robotr, then robotr’ recomputes its reaction function

robot / _ ini
cr (X,,,®~) o X0 Ior m!n!ﬁlum (1) F'w(t) for complex targetr,, = z, with Formula (2).
max(max cr, ;" (X, 0)) — ¢ for MiniMax. Define F'27 () 1= F2+(t) for all robots# € P, \ {r,r'}.

Let A== A\ P,,. It is easy to show thagain(S) equals

If the net loss of the simple target exchange is negativa th :
P 9 9 gativey the value calculated with Formula (3).

robotr proposes it to robot’ by sending it the information
(S, netloss(S,r)). Proposition 2: Each profitable simple target exchange for

Case 2:1f robot r is assigned a complex target that is exchange parametek is stored by at least one robot.

not assigned to robat, then robot- recomputes its reaction V. EXPERIMENTAL RESULTS

function for its complex target as ) -
We now evaluate the benefits of our negotiation procedure

A for multi-robot routing problems on known four-neighbor
FIIr(t) i= o X!, x, — t). (2) planar grids of sizé1 x 51 with square cells that are either



Robots| Simple | Complex || Initial K=0 K=1 K=2
Targets| Targets Cost Cost  Cost Reductionf Cost Cost Reduction Cost Cost Reduction
MiniSum Team Objective - Initial Solutions Generated witarlRom Allocation
4 8 2 566.1 | 546.0 3.55% 355.7 37.17% 342.2 39.55%
4 18 2 740.6 || 721.9 2.52% 469.3 36.63% 439.9 40.60%
4 28 2 901.6 | 882.7 2.10% 552.2 38.75% 511.2 43.30%
6 7 3 618.9 | 576.3 6.88% 390.8 36.86% 384.5 37.87%
6 17 3 924.5 || 888.5 3.89% 520.6 43.69% 485.6 47.47%
6 27 3 1150.2 || 1116.9 2.90% 618.1 46.26% 570.8 50.37%
8 6 4 634.5 | 585.9 7.66% 428.0 32.55% 423.6 33.24%
8 16 4 1041.2|| 988.8 5.03% 560.2 46.20% 527.1 49.38%
8 26 4 1352.7|| 1305.3 3.50% 663.8 50.93% 607.2 55.11%
10 5 5 624.7 | 579.6 7.22% 443.7 28.97% 439.8 29.60%
10 15 5 1106.8| 1044.4 5.64% 590.8 46.62% 563.5 49.09%
10 25 5 1414.6 || 1345.6 4.88% 695.6 50.83% 654.6 53.73%
MiniSum Team Objective - Initial Solutions Generated wit8l R\uctions

4 8 2 362.4 || 346.3 4.44% 332.0 8.39% 327.6 9.60%
4 18 2 452.7 || 437.9 3.27% 418.3 7.60% 412.6 8.86%
4 28 2 519.0 | 500.3 3.60% 478.2 7.86% N/A N/A

6 7 3 399.7 || 378.9 5.20% 366.8 8.23% 364.8 8.73%
6 17 3 501.5 || 470.7 6.14% 445.8 11.11% 440.4 12.18%
6 27 3 571.3 || 532.5 6.79% 504.7 11.66% 498.5 12.74%
8 6 4 4355 || 4148 4.75% 401.6 7.78% 399.5 8.27%
8 16 4 534.4 || 502.9 5.89% 484.0 9.43% 478.9 10.39%
8 26 4 602.5 | 563.8 6.42% 537.5 10.79% 529.9 12.05%
10 5 5 459.6 || 435.6 5.22% 428.4 6.79% 427.5 6.98%
10 15 5 550.1 | 514.9 6.40% 497.5 9.56% 493.0 10.38%
10 25 5 627.4 || 586.5 6.52% 562.8 10.30% 554.4 11.64%

MiniMax Team Objective - Initial Solutions Generated wittaiRlom Allocation
4 8 2 199.4 || 180.1 9.68% 120.3 39.67% 116.0 41.83%
4 18 2 238.6 | 220.9 7.42% 147.0 38.39% 140.9 40.95%
4 28 2 275.7 || 259.1 6.02% 174.1 36.85% 159.1 42.29%
6 7 3 203.1 || 171.8 15.41% 96.1 52.68% 94.8 53.32%
6 17 3 233.8 | 207.9 11.08% 128.9 44.87% 121.2 48.16%
6 27 3 251.6 | 226.2 10.10% 151.9 39.63% 142.4 43.40%
8 6 4 170.7 || 137.8 19.27% 85.9 49.68% 83.9 50.85%
8 16 4 226.5 | 194.7 14.04% 117.0 48.34% 112.6 50.29%
8 26 4 253.4 || 221.8 12.47% 139.4 44.99% 128.1 49.45%
10 5 5 152.4 | 120.6 20.87% 76.5 49.80% 76.6 49.74%
10 15 5 216.1 | 184.6 14.58% 107.9 50.07% 105.3 51.27%
10 25 5 244.7 210.2 14.10% 132.7 45.77% 126.1 48.47%
MiniMax Team Objective - Initial Solutions Generated witsISAuctions
4 8 2 128.0 || 117.5 8.20% 110.6 13.59% 109.2 14.69%
4 18 2 1559 || 142.0 8.92% 130.8 16.10% 127.6 18.15%
4 28 2 173.0 | 158.7 8.27% 146.0 15.61% 143.4 17.11%
6 7 3 107.8 90.7 15.86% 85.4 20.78% 84.8 21.34%
6 17 3 126.4 | 108.6 14.08% 100.6 20.41% 99.2 21.52%
6 27 3 141.3 120.6 14.65% 111.5 21.09% 110.0 22.15%
8 6 4 100.9 79.2 21.51% 76.3 24.38% 76.2 24.48%
8 16 4 117.7 95.9 18.52% 90.5 23.11% 89.1 24.30%
8 26 4 128.3 | 104.0 18.94% 96.0 25.18% 94.6 26.27%
10 5 5 93.2 69.0 25.97% 67.0 28.11% 67.0 28.11%
10 15 5 110.5 85.0 23.08% 80.2 27.42% 79.3 28.24%
10 25 5 118.3 92.0 22.23% 84.9 28.23% 84.0 28.99%
TABLE |

EXPERIMENTAL RESULTS(N/A MEANS THAT THE RUNTIME THRESHOLD WAS EXCEEDED



blocked or unblocked. The grids resemble office environ{2]
ments with randomly closed doors, as shown in Figure 1.
All complex targets need to be assigned to groups of twqg;
robots. Their number is always half the number of robots,
so that every robot visits exactly one complex target. We
iteratively apply our negotiation procedure until it no dmam 4]
reduces the team cost of the current solution. We vary the
number of robots from 4, 6, 8, to 10, the number of (simplel®]
and complex) targets from 10, 20 to 30, and the exchange
parameter’ from O, 1 to 2. For each scenario, we average
over 100 samples with randomly chosen cells for the robot$®]
and targets. Each robot needs to solve a version of the
NP-hard traveling salesperson problem with time windows
to calculate its robot cost. We use a version of the Orl7]
opt heuristic [7] in our experiments to approximate this
calculation. Table | tabulates the team costs of the initial8]
solutions (“Initial Cost”) generated as described in Smtti
“Target Allocation with Reaction Functions” as well as the o
team costs (“Cost”) and the cost reductions over the initial
solutions in percent (“Cost Reduction”). The data show that
our negotiation procedure can reduce the team costs of thg]
initial solutions significantly. For example, it reduces th
team costs of the initial solutions generated with Randorfl
Allocation by as much as 55 percent for the MiniSum team
objective and 53 percent for the MiniMax team objective. It
reduces the team costs of the initial solutions generatéd wil12]
SSI Auctions by as much as 12 percent for the MiniSum team
objective and 29 percent for the MiniMax team objective.

VI. CONCLUSIONS

We studied task-allocation problems where cooperative
robots need to perform tasks simultaneously. We developed
a distributed negotiation procedure that allows robots to
find all task exchanges that reduce the team cost of a
given task allocation, and demonstrated empirically that o
negotiation procedure can substantially reduce the teais co
of task allocations resulting from existing task-allooati
procedures, including sequential single-item auctionss |
future work to extend our results from disjoint coalitions,
where every robot can perform at most one complex task, to
overlapping coalitions, where some robots can perform more
than one task.

VII. ACKNOWLEDGMENTS

This research was partly supported by an award from ARO
under contract W911NF-08-1-0468 and by awards from
NSF under contract 0413196. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official jedjc
either expressed or implied, of the sponsoring organimatio
agencies, companies or the U.S. government.

REFERENCES

[1] J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Time
constrained routing and scheduling.Neetwork Routing. Handbooks in
Operations Research and Management Sciemckime 8, chapter 2,
pages 35-139. North-Holland, 1995.

M. Dias and A. Stentz. Opportunistic optimization for metdbased
multirobot control. InProceedings of the International Conference on
Intelligent Robots and Systemmages 2714-2720, 2002.

M. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based timabot
coordination: A survey and analysis.Proceedings of the IEEE
94(7):1257-1270, 2006.

B. P. Gerkey.On Multi-Robot Task AllocatiarPhD thesis, Department
of Computer Science, University of Southern California, Lomeles,
CA, 2003.

S. Koenig, C. Tovey, X. Zheng, and I. Sungur. Sequentiaidie-bid
single-sale auction algorithms for decentralized conttolProceed-
ings of the International Joint Conference on Atrtificial éliigence
pages 1359-1365, 2007.

E. Manisterski, E. David, S. Kraus, and N. R. Jennings.rnkog
efficient agent groups for completing complex tasks.Phceedings
of the International Joint Conference on Autonomous Agemd
Multiagent Systemspages 834-841, 2006.

I. Or. Traveling salesman-type combinatorial problems and their
relation to the logistics of regional blood banking PhD thesis,
Northwestern University, Evanston, IL, 1976.

O. Shehory and S. Kraus. Task allocation via coalitionnfation
among autonomous agents. Pnoceedings of the International Joint
Conference on Artificial Intelligencgages 655-661, 1995.

] C. Tovey, M. Lagoudakis, S. Jain, and S. Koenig. The getiem

of bidding rules for auction-based robot coordination. InRarker,
F. Schneider, and A. Schultz, editorsjulti-Robot Systems: From
Swarms to Intelligent Automatpages 3-14. Springer, 2005.

L. Vig and J. A. Adams. Multi-robot coalition formation.|EEE
Transactions on Robotic®2(4):637-649, 2006.

X. Zheng and S. Koenig. Reaction functions for task cdlion
to cooperative agents. IRroceedings of the International Joint
Conference on Autonomous Agents and MultiAgent Systpaues
559-566, 2008.

R. Zlot and A. Stentz. Market-based multirobot coortiima for
complex tasks. The International Journal of Robotics Research
25(1):73-101, 2006.



