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Abstract: This paper presents a new multiple objectives model for the optimal production for an 
inventory control system. The stocked items may be deteriorates and the systems costs will be change 
over the time. In the real situation, some but not all customers will wait for backlogged items during a 
shortage period and therefore, the model incorporates partial backlogging. The demand rate can be a 
function of inflation and time value of money where the inflation and time horizon i.e., period of 
business, both are random in nature. The objectives of the problem are: (1) Minimization of the total 
expected present value of costs over time horizon (consists of the deterioration cost, production cost, 
inventory holding cost, backordering cost, lost sale cost and ordering cost) and (2) Decreasing the total 
quantity of goods in the warehouse over time horizon. We propose the ideal point approach to 
formulate the model. The numerical example has been provided for evaluation and validation of the 
theoretical results. 
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INTRODUCTION 

 
 The practical experiences reveal that the supply chain management (SCM) is under uncertain and variable 
conditions. One of the most important parts of SCM is inventory system management which is inherently in 
non-deterministic situation. The many departments of organization such as warehouse, marketing, sale, 
purchasing, financial, planning, production, maintenance and etc. are relevance to the inventory problem. In the 
past decades, the replenishment scheduling problems were typically attacked by developing proper 
mathematical models that consider practical factors in real world situations, such as uncertain conditions, 
physical characteristics of inventoried goods, effects of inflation and time value of money, partial backlogging 
of unsatisfied demand, etc. Inventoried goods can be broadly classified into four meta-categories based on 
I. Obsolescence refers to items that lose their value through time because of rapid changes of technology or 
the introduction of a new product by a competitor. For example, spare parts for military aircraft are style goods, 
and they become obsolete when a replacement model is introduced. 
II. Deterioration refers to the damage, spoilage, dryness, vaporization, etc. of the products. For example, the 
commonly used goods like fruits, vegetables, meat, foodstuffs, perfumes, alcohol, gasoline, radioactive 
substances, photographic films, electronic components, etc. where deterioration is usually observed during their 
normal storage period. 
III. Amelioration refers to items whose value or utility or quantity increase with time. It is a practical 
experience the value of Persian carpet increases by age. Other examples can be wine manufacturing industry and 
fast growing animals like broiler, sheep, pig, etc. in farming yard. 
IV. The last one refers no obsolescence, deterioration and amelioration.  The shelf-life of some products can 
be indefinite and hence they would fall under the no obsolescence/deterioration/amelioration category. 
 Since 1975, a series of related papers appeared that considered the effects of time value of money and 
inflation on the inventory system. There are a few problems in the inflationary inventory systems on 
obsolescence and amelioration items which have been addressed by the researchers, because, we will not use 
obsolesced items in the future and the amelioration products are limited in the real world. For example, Moon et 
al. (2005) considered ameliorating/deteriorating items with a time-varying demand pattern. Another research for 
ameliorating items has been done by Sana (2010). 
 The no obsolescing, deteriorating and ameliorating items have been considered in some researches on the 
inflationary inventory system. Misra (1979) developed a discounted cost model and included internal (company) 
and external (general economy) inflation rates for various costs associated with an inventory system. Sarker and 
Pan (1994) surveyed the effects of inflation and the time value of money on order quantity with finite 
replenishment rate. Some efforts were extended the previous works to consider more complex and realistic 
assumption, such as Uthayakumar and Geetha (2009), Maity (2008), Vrat and Padmanabhan (1990), Datta and 
Pal (1991), Hariga (1995), Hariga and Ben-Daya (1996), Chung (2003) and Chia H.H., (2011). 



Aust. J. Basic & Appl. Sci., 6(10): 323-335, 2012 

324 
 

 The deteriorating inventory systems have been studied considerably in the recent years. For example, 
Chung and Tsai (2001) presented an inventory model for deteriorating items with the demand of linear trend 
considering the time-value of money. Wee and Law (2001) derived a deteriorating inventory model under 
inflationary conditions when the demand rate is a linear decreasing function of the selling price. Chen and Lin 
(2002) discussed an inventory model for deteriorating items with a normally distributed shelf life, continuous 
time-varying demand, and shortages under an inflationary and time discounting environment. Yang (2004) 
discussed the two-warehouse inventory problem for deteriorating items with a constant demand rate and 
shortages. Chang (2004) established a deteriorating EOQ model when the supplier offers a permissible delay to 
the purchaser if the order quantity is greater than or equal to a predetermined quantity. 
 Maiti et al. (2010) proposed an inventory model with stock-dependent demand rate and two storage 
facilities under inflation and time value of money. Lo et al. (2007) developed an integrated production-inventory 
model with assumptions of varying rate of deterioration, partial backordering, inflation, imperfect production 
processes and multiple deliveries. A Two storage inventory problem with dynamic demand and interval valued 
lead-time over a finite time horizon under inflation and time-value of money considered by Dey et al. (2008). 
Other efforts on inflationary inventory systems for deteriorating items have been made by Hsieh and Dye 
(2010), Su et al. (1996), Chen (1998), Wee and Law (1999), Sarker et al. (2000), Yang et al. (2001, 2010), Liao 
and chen (2003), Balkhi (2004a, 2004b), Hou and Lin (2004), Hou (2006), Jaggi et al. (2006), Chern et al. 
(2008) and Sarkar and Moon (2011). S.K. Ghosh , S. Khanra, K.S. Chaudhuri., (2011), Hern, M.S., Yang, H.L., 
Teng, J.T., Papachristos, S., (2008) 
 It can be see that in the mentioned researches, rate of inflation has been assumed completely known and 
certain. Yet, inflation enters the inventory picture only because it may have an impact on the future inventory 
costs, and the future rate of inflation is inherently uncertain and unstable. But, there are a few works in the 
inflationary inventory researches under stochastic conditions, especially with multiple stochastic parameters. 
Mirzazadeh and Sarfaraz (1997) presented multiple-items inventory system with a budget constraint and the 
uniform distribution function for the external inflation rate for no obsolescence, deterioration and amelioration 
items and Horowitz (2000) discussed an EOQ model with a normal distribution for the inflation rate. 
Mirzazadeh (2007) compared the average annual cost and the discounted cost methods in the inventory system's 
modeling with considering stochastic inflation. The results show that there is a negligible difference between 
two procedures for wide range values of the parameters. Furthermore, Mirzazadeh (2008) in another work, 
proposed an inventory model under time-varying inflationary conditions for deteriorating items. Mirzazadeh 
(2009) developed A Partial Backlogging Mathematical Model under Variable Inflation and Demand. 
 The objectives of the problem are: (1) Minimization of the total expected present value of costs and (2) 
Decreasing the total quantity of goods in the warehouse over the random time horizon. The second objective has 
seldom considered in the previous research of the inventory systems. But, decreasing in the inventory level is 
important for company, because: (1) decreasing in inventory level causes increasing company flexibility against 
changes in the market conditions, customer needs and so on, (2) the quantity of the deteriorated goods is related 
to inventory level so that decreasing in inventory causes decreasing destroyed good, (3) low inventory system 
causes faster company adaptation with technology changes, (4) decreasing in inventory causes better cash flow 
and rate of return. 
 Furthermore, the demand is a function of the inflation rate, in this paper. In the existing literature, 
inflationary inventory models are usually developed under the assumption of constant and well known time 
horizon. However, there are many real life situations where these assumptions are not valid, e.g., for a seasonal 
product, though time horizon is normally assumed as finite and crisp in nature, but, in every year it fluctuates 
depending upon the environmental effects and it is better to estimate this horizon as a stochastic parameter, 
which has been considered in this paper. 
 Additionally, the replenishment rate is finite and deteriorating items are surveyed with considering 
deterioration cost. In many real situations, during a shortage period, the longer the waiting time is, the smaller 
the backlogging rate would be. For instance, for fashionable commodities and high-tech products with the short 
product life cycle, the willingness for a customer to wait for backlogging is diminishing with the length of the 
waiting time. Therefore, the partial backlogging has been considered in this paper.  
 Under the mentioned situations, a new mathematical model for the optimal production for an inventory 
control system is formulated under stochastic environment, and the paper has been organized as follow. First, 
the assumptions and notations and then, the multi-objective model formulation are derived. Then, the solution 
procedure has been prepared with using the ideal point approach. The numerical example has been provided to 
clarify how the proposed model is applied. The final section has devoted to the discussion. 
 
2. Assumptions, Notations and Description of the Model: 
 The developed model has been made based on the following assumptions: 
1. The system brings about for a random time-horizon; 
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2. A constant fraction of the on-hand inventory deteriorates per unit time, as soon as the item is received into 
inventory; 
3. Shortages are allowed and partial backlogged, except for the final cycle; 
4. All of the system costs will be increase over time horizon via stochastic inflation rate; 
5. The demand rate here is a linear function of the inflation rate; 
6. The constant annual production (Replenishment) rate is finite. The Replenishment rate is higher than the 
sum of consumption and deterioration rates; 
7. Lead time is negligible. Also, the initial and final inventory level is zero. 
 
The following notations are used: 
I The stochastic inflation rate 
f(i) The pdf of inflation rate 
R The interest rate 
R The discounted rate net of inflation: R = r-i
D(i) The demand rate per unit time is a function of inflation rate 

  0,0  babiaiR                                                                         (1) 

a and b are the constant real number. 
 The constant deterioration rate per unit time  1 0  . 

c1 The ordering cost per order at time zero 
c2 The purchase cost at time zero
c3 The inventory carrying cost per unit per unit time at time zero 
c4 The backlogging cost per unit per unit time, if the shortage is backlogged 
c5 The unit opportunity cost due to lost sale, if the shortage is lost
c6 The deterioration cost per unit of the deteriorated item at time zero 
H The stochastic finite time horizon 
f(h) The pdf of H 
P The constant annual production (Replenishment) rate 
(t) The fraction of shortages backordered that is a differentiable and decreasing function of 

time t, where t is the waiting time up to the next replenishment, 0≤(t)≤1 with  (0)=1 and 
 (∞)=0. Note that if  (t)=1 (or 0) for all t, then shortages are completely backlogged (or 
lost). We assume  (t)=e-αt  where α≥0.

T The interval of time between replenishment 
k The proportion of time in any given inventory cycle which orders can be filled from the 

existing stock 
n The number of replenishments during time horizon 
ETVC(n,k) The total present value of costs over the time horizon 
TI(n,k) The total quantity of goods in warehouse over time horizon 
 
 Additional notations will be introduced later. The graphical representation of the inventory system is shown 
in Figure 1. The real time horizon (H) has been divided into n equal parts each of length T so that T=H/n. Initial 
and final inventory levels are both zero. Each inventory cycle except the last cycle can be divided into four 
parts. The production starts at time zero and the inventory level is gradually increasing due to production, 
demand and deterioration rates. This fact continues till the production stops at time α. Then the inventory level 
gradually decreasing mainly due to consumption and partly due to deterioration and reaches zero at time kT and 
shortages occur and are accumulated until time λ2. During the time interval [kT,T], we do not have any 
deterioration and therefore, shortages level linearly change. At time λ2 the production starts again and shortages 
level linearly decreases until the moment of T. The partially backordered quantity is supplied to customers 
during the time interval [λ2,T]. At time T, the second cycle starts and this behavior continue till the end of the 
(n-1)-th cycle. 
 In the last cycle shortages are not allowed and the inventory cycle can be divided into two parts. The 
production stops at time (n-1)T+λ3 and then the inventory level decreases to lead zero at the end of the time 
horizon.   
 
3. The Mathematical Modeling and Analysis: 
 The objectives of the problem can be explained as follows: 
1. Minimization of the expected present value of costs over time horizon 

),(1 knETVCZMin                                                                                                         (2) 

2. Decreasing of the total quantity of goods in warehouse over time horizon 
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),(2 knTIZMin                                                                                                              (3) 

 

 
Fig. 1: Graphical representation of the inventory system. 
 
 Inventory decreasing is important, because: (1) decreasing in the inventory level causes increasing company 
flexibility against changes in the market conditions, customer needs and so on, (2) the quantity of the 
deteriorated goods is related to the inventory level so that decreasing in the inventory decreases the destroyed 
good, (3) the low inventory system causes faster company adaptation with the technology changes, and (4) 
decreasing in the inventory causes better cash flow and rate of return. The multiple objective function of the 
inventory system can be considered as follows 

 ),(),,( knMinTIknMinETVCZMin                                                                             (4) 

 The inventory cycles is divided to four different parts. Let Ii(ti) denote the inventory level at any time ti in 
the ith part of the first to (n-1)-th cycles  (i=1,2,3,4). The differential equations describing the inventory level at 
any time in the cycle are given as 

1111
1

11 0),()(
)(   tiRPtI

dt

tdI
                                                                   (5) 

1222
2

22 0),()(
)(   kTtiRtI

dt

tdI
                                                             (6) 

  kTtiRtkT
dt

tdI
 2332

3

33 0),(
)(                                                           (7) 

24
4

44 0),(
)(  TtiRP

dt

tdI
                                                                              (8) 

 In the last cycle shortages are not allowed and the inventory level is governed by the following differential 
equations (Ii(ti) denote the inventory level at any time ti in the (i-4)th part of the last cycle that i=5,6) 

3555
5

55 0),()(
)(

  tiRPtI
dt

tdI
                                                                       (9) 

3666
6

66 0),()(
)(   TtiRtI

dt

tdI
                                                                 (10) 

 The solution of the above differential equations along with the boundary conditions  I1(0)=0, I2(kT-λ1)=0, 
I3(0)=0, I4(T-λ2)=0, I5(0)=0 and I6(T-λ3)=0, are 
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242444 0),))((()(   TtTtiRPtI                                                     (14) 
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iRP
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 The values of λ1, λ2 and λ3 can be calculated with respect to k and T, using the above equations. Solving 
I1(λ1)= I2(0) for λ1 we have 
 

P

iRP
Ln e

kT
)1)((1

1







                                                                                            (17) 

λ2 can be calculated by solving I3(λ2-kT)=I4(0)  
 

P

TkiRP )]1)(([
2


                                                                                                     (18) 

Finally, solving I5(λ3)= I6(0) for λ3 we have 
 

P

iRP
Ln e

T
)1)((1

3







                                                                                               (19) 

 
4.1. The Expected Present Value of Costs: 
 Let ECR as the expected present value (EPV) of replenishment costs, ECP as the (EPV) of purchasing costs, 
ECH as the EPV of carrying costs, ECS as the EPV of shortages costs (backordering and lost sale) and ECD as 
the EPV of deterioration costs, respectively. The detailed analysis is given as follows.  
 
4.1.1. The Expected Present Value of Ordering Cost (ECR): 
Assume CR as the ordering cost 
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By replacing equation (15) in equation (17) and taking the expected value we have 
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4.1.2. The Expected Present Value of Purchasing Cost (ECP): 
 Let ECP1 and ECP2 as the EPV of the purchase cost in the first to (n-1)-th cycles and in the last cycle, 
respectively. The first purchase cost that is ordered at time zero equals to: c2Pλ1. Then, the next purchase will 
occur at time λ2 and therefore, the first cycle purchase cost is 

 e
R

TPc 2)( 212

                                                                                                      (22) 

 The purchase cost for j-th cycle, (j=2, 3, …, n-1) is similar to the above equation with considering the 
discount factor, therefore, the EPV of the purchase cost in the first (n-1)-th cycles is 
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 The production quantity in the last cycle will occur at time (n-1)T and equals to λ3P. Therefore, the EPV of 
the purchase cost in the last cycle will be 
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The total expected purchase cost over the time horizon would be 

21 ECPECPECP                                                                                                          (25) 

 
4.1.3. Expected Present Value of Holding Cost (ECH): 
 Consider ECH1 as the EPV of the holding cost during the first to (n-1)-th cycles. The EPV of the holding 
cost during the last cycle can be defined with ECH2. In the first period, the holding costs for j-th cycle is 
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After some complex calculations and taking the expected value we have 
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For the last cycle, holding cost will be 
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After some complex calculations and taking the expected value we have 
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So, the total EPV of the holding costs over the time horizon is 
 

21 ECHECHECH                                                                                                      (30) 

 
4.1.4. The Expected Present Value of Shortages Cost (ECS): 
 ECS shows the EPV of the shortages cost, including backorder and lost sales, during the first to (n-1)-th 
cycles. Shortages are not allowed in the last cycle. Therefore 
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4.1.5. The Expected Present Value of Deteriorating Cost (ECD): 
 Denote DI1 the quantity of inventory items which have been deteriorated per cycle in the first to the (n-1)-th 
cycles 

         








 

11

1 1

11

0 0 2221111

11

)()(












   

kT

kT

ekTbiaebiaP

dttIdttIDI

                           (33) 

 Now, assume ECD1 as the EPV of the deterioration cost during the first to the (n-1)-th cycles. Also, ECD2 is 
defined the EPV of the deterioration cost during the last cycle. ECD1 after taking the expected value will be 
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For the last cycle, deterioration cost will be 
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Therefore, the total EPV of the deterioration cost over the time horizon is 

21 ECDECDECD                                                                                                       (36) 

 
 Considering the above mentioned analysis, the EPV of the total system costs over the time horizon for a 
given value of H, is as follow 

ECDECSECHECPECRknETC ),(                                                             (37) 

 
 Note that the time horizon H has a p.d.f. f(h). So, the present value of expected total cost from n complete 
cycles, ETVC(n,k),  is given by 
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Therefore 
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             (39) 
 
Which MH(-R) is the moment generating function of H. 
 
4.2. The Total Quantity of Inventory (TI (n, k)): 
 Let TI1 and TIn as the total quantity of the goods held as inventory in the warehouse during the first (n-1) 
cycles and the last cycle respectively. TI1 equals to quantity of the goods held as inventory during each cycle 
multiplied by n-1. 
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TI1 is calculated as follow with considering equations (11) and (12) 
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Note TI1 is a decreasing function with respect to k. Referring Figure 1, it can be observed that 
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Similarly, TIn is equal to 
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So, the total inventory over time horizon is 

nTITIknTI  1),(                                                                                                           (44) 

 The above mentioned equation includes stochastic parameters i, the inflation rate, and n=H.T, the number 
of replenishments during random time horizon. Therefore, the expected value approach can be used. Let 
ETI(n,k) as the expected total inventory over time horizon. ETI(n,k) will be as follow 
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5. The Solution Procedure: 
 The problem is to determine the optimal values of n, the number of replenishments to be made during 
period H, and k, the proportion of time in any given inventory cycle which orders can be filled from the existing 

stock  10  k . The ideal point approach will be use to solve the model. Consider the following multi-

objective programming problem 
 
Min           for j=1, 2, ..., k 
s.t.: gi(x)<0        for i=1, 2, …, m                                                                                     (46) 
 

 Where x is a n-dimensional decision vector. For any , define the ideal point as  which x*j 

minimizes .  is called the ideal point. The measure is ‘’closeness” and LP-metric is used. LP-

metric defines the distance between two points  in k-dimensional space as 
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 Where  for j=1... k is relative importance (weights) of the objective function  The compromise 
solution for a given value of d will be minimizes the dd-metric in (47). The measurement unit of the model 
objectives is not equal to each other and therefore, we need to normalize the distance family of (47) by using the 
reference point as follow 
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Therefore 
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 If k=0, the total inventory over time horizon, ETI(n,k), will be minimized for a given value of n. In this 
condition, the inventory level is zero over time horizon, except the last cycle, because, the shortages are not 
allowable. When n increases, the time interval between replenishments, especially the last cycle, will be 
decreases. So 
 

    0,0,  knETIkn                                                                                     (50) 

 
 The absolute zero inventory level is impossible for any company and therefore, the inventory system 
manager has to consider a minimum value none zero inventory up to internal (company) and external (market) 
situations. Let ETI(n*,k*) as the determined minimum inventory. 
 Since ETVC(n,k) is a function of a discrete variable n and a continuous variable k (0 < k < 1), therefore, for 
any given n, the necessary condition for the minimum of ETVC(n,k) is  

0
),(


dk

kndETVC
                                                                                                             (51)  

 For a given value of n, derive k* from Equation (51). ETVC(n,k*) derives by substituting (n,k*) into 
equation (39). Then, n increase by the increment of one continually and ETVC(n,k*) calculate again. The above 
stages repeat until the minimum ETVC(n,k*) be found. The (n*,k*) and ETVC(n*,k*) values constitute the 
optimal solution and satisfy the following conditions 

     knETVCknETVC ,0,1                                                                               (52) 

Where 

       knETVCknETVCknETVC ,,1,                                                         (53) 

 
6. Numerical Example: 
 The following numerical example is provided to clarify how the proposed model is applied. Let the 
ordering, production, holding, backordering, lost sales and deterioration costs at the beginning of the time 
horizon as follow 
c1=$100/order; c2=$8/unit; c3=$2/unit/year; c4=$3/unit/year; c5=$10/unit and c6=$13/unit. 
The inflation rates and the time horizon are stochastic with the following p.d.f.s: 

 /$/year15.0$,/$/year08.0$~ Ui  

 25.1,10~ NH  

 
 The company interest rate is 20 percent and the deterioration rate of the on–hand inventory per unit time is 
five percent. The constant annual production rate is 5000 units.  
r=$0.2/$/year, τ=0.05/unit/year, P=5000units/year 
 The backlogging rate is δ(t)=e-0.5t, and the demand parametric values are a=3000units/year and b=-2000. 
 The problem is the optimum ordering policy for minimizing (1) the expected present value of the total 
inventory system costs, ETVC(n,k), and (2) the expected total quantity of the goods in warehouse over time 
horizon, ETI(n,k). As stated in the ideal point method, we have to first optimize objectives, separately. The ideal 
point of the first objective with considering the above mentioned parameters values and using the numerical 
methods, is calculated and the results are illustrated in Table 1.  It can be seen that the minimum expected cost is 
172364.82$ for n*=17 and k*=0.6168 (the shortages occur after elapsing 61.68% of the cycle time). 
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Table 1: The optimal solution of ETVC(n,k) for the numerical example. 
n k ETVC (n,k) n k ETVC (n,k) 
5 0.6234 183584.36 19 0.6158 173843.25 
10 0.6207 178613.92 20 0.6152 174712.57 
15 0.6179 174009.75 25 0.6123 179392.74 
16 0.6173 173144.43 30 0.6091 184377.16 
17* 0.6168* 172364.82* 50 0.5986 205279.43 
18 0.6163 173059.56 100 0.5765 261427.92 

 
 Let ETI(n*,k*)=10000.00 as the determined minimum inventory up to the internal (company) and the 

external (market) situations. According to d=1 and the different combinations of 1  and 2  with considering 
ETVC(n*,k*)=172364.82 and ETI(n*,k*)=10000.00, the problem is evaluated and the results are shown in Table 
2. The manager can determine the optimum value of n and k with considering company policy about the 
importance of the goals. 
 
Table 2: Solution of the problem. 

1  2  
n* k* TI* ETVC* 

0 1 31 0.0989 10000.00 204377.16 
0.25 0.75 29 0.2376 11213.85 19921.74 
0.5 0.5 25 0.3693 14065.35 188910.16 

0.75 0.25 19 0.4929 16541.23 178852.37 
1 0 17 0.6168 18157.29 172364.82

 
7. Discussion: 
 The inventory systems usually have been surveyed to minimize the total cost. In the recent decades, the 
companies try to maintain survival and increase their contributions in the market with considering additional 
objectives. Decreasing in the inventory level is one of the most important objective for the company, because: 
(1) decreasing in the inventory level causes increasing company flexibility against changes in the market 
conditions, customer needs and so on, (2) the quantity of the deteriorated goods is related to the inventory level 
so that decreasing in the inventory decreases the destroyed good, (3) low inventory system causes faster 
company adaptation with the technology changes, and (4) decreasing in the inventory causes better cash flow 
and rate of return. Therefore, a bi-objective inventory model has been developed in this paper. 
 In reality, the value or utility of goods decreases over time for deteriorating items, which in turn suggests 
smaller cycle length, whereas presence of inflation in cost and its impact on demand suggests larger cycle 
length. In this article, inventory model has been developed considering both the opposite characteristics 
(deterioration and inflation) of the items, with shortages over a stochastic time horizon. Shortages are partially 
backlogged and demand is a function of the inflation rate. The numerical example has been given to illustrate 
the theoretical results. The study has been conducted under the Discounted Cash Flow (DCF) approach. 
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