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Summary. Conventional wisdom would dictate that nitric oxide is a local
autocoid with spatially limited effects. Over the last few years, we, and others
have challenged this view and have used inhaled nitric oxide to demonstrate
that despite its administration in lung, it can impact the peripheral vascula-
ture. This chapter summarizes some of the evidence to support the conten-
tion that nitric oxide can impact peripheral vasculatures presumably via a
stabilizing moiety in the circulation. One possibility is the formation of S-
nitrosothiols, which extend the half-life of nitric oxide many-fold. In this
chapter I provide evidence that S-nitrosothiols exist in the vasculature,
particularly during nitric oxide inhalation. Finally, I highlight the limited 
evidence for the role that these potent vasodilating molecules may play as
physiologically and therapeutically important regulators of the vascular
system.
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Introduction

For many years the diatomic free radical nitric oxide was considered exclu-
sively as an atmospheric pollutant produced during the combustion of fossil
fuels [1,2]. It is now well appreciated that nitric oxide is produced by a large
variety of organisms including all mammals [3–5]. Nitric oxide has many
essential important functions including blood pressure regulation, host
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defense, and neurotransmission [4,6]. However, conventional wisdom dictates
that these effects are mediated locally, by NO-producing cells. In fact, NO is
rapidly inactivated by oxyhemoglobin (HbO2, i.e., Hb[FeII]O2) to form methe-
moglobin (MetHb, i.e., Hb[FeIII]) and nitrate (NO3

-) within the bloodstream,
thereby restricting its actions to the site of production. Herein, I describe the
possibility that in fact nitric oxide may be stabilized in the circulation and
may have much further-reaching effects than was previously proposed.

RSNOs, Vasodilators Formed in Blood

Loscalzo, Stamler, and other colleagues challenged the view that nitric oxide
was restricted to local effects when they proposed that nitric oxide can 
potentially bind carrier molecules to form nitric oxide adducts called S-
nitrosothiols (RSNOs). These molecules were shown to function as nitric
oxide-carrying systems, prolonging the half-life and spatial impact of nitric
oxide [7,8]. First, plasma RSNOs have been detected in vivo by many investi-
gators [7–13]. Examples of RSNOs include low molecular weight S-nitroso-
cysteine (CysNO), S-nitrosoglutathione (GSNO), and high molecular weight
S-nitroso-albumin (SNO-Alb). Among these RSNOs, SNO-Alb tends to be
more stable than low molecular weight molecules [7] and is the principal mol-
ecule formed [7]. Injection of any of these RSNOs into animals results in pro-
longed vasodilation [7,8,14,15]. Therefore, RSNOs can be formed in vivo and
when synthesized ex vivo and injected into animals, they have vasodilating
properties. The question that remained was whether RSNO can be produced
in sufficient quantities in vivo to function as circulating vasodilators.

Inhaled Nitric Oxide Affects Peripheral Vascular Beds

Nitric oxide is administered directly by inhalation for the treatment of pul-
monary hypertension in newborn infants [16,17] and acute respiratory dis-
tress syndrome in adults [4,16]. Although this form of nitric oxide delivery is
used for regional impact exclusively on the pulmonary vasculature, we made
use of this system to ask whether the nitric oxide administered in the lung
could exert its biology beyond the lung. This would indeed support the pro-
duction of NO carriers in vivo. However, our initial attempts failed miserably.
Inhalation of 80 ppm nitric oxide did not in any way affect blood pressure or,
for example, intestinal blood flow. This was consistent with similar reports by
others that inhalation of nitric oxide does not affect basal physiology.
However, when nitric oxide was systemically inhibited and systemic blood
pressure was increased, inhaled nitric oxide reduced but did not prevent the
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rise in blood pressure. However, the problem with this experiment was that
the systemic changes in blood pressure could simply reflect changes within
the pulmonary microvasculature. Therefore, Fox-Robichaud and colleagues
next decided to inhibit nitric oxide production locally within a small distal
microvasculature [18]. This was accomplished by superfusing the mesenteric
microvasculature and using intravital microscopy to visualize changes within
the microvessels of the mesentery. When nitric oxide was inhibited, profound
increase in vasoconstriction and leukocyte adhesion was noted in the mesen-
teric microvessels. When animals were made to breath inhaled nitric oxide,
the vasoconstriction was no longer detectable and leukocyte adhesion was
greatly reduced. Clearly, delivery of nitric oxide at the lung, somehow affected
the mesenteric microvessels.

One potential criticism of this work was that at least the leukocyte effects
could potentially have occurred within the lung making the leukocytes no
longer adhere in the periphery. To address whether the leukocytes were being
affected within the lung, the animals were made to breathe nitric oxide, and
their blood was immediately taken and perfused through a flow chamber con-
taining adhesion molecules (surrogate blood vessel). The data from this series
of experiments clearly revealed that leukocytes adhered as effectively when
taken from animals breathing room air or nitric oxide [18]. Clearly the nitric
oxide was not affecting the leukocytes, but rather was reaching the distal
microvasculature and modulating the microvessels. Indeed, this conclusion
was also consistent with the inhibition of vasoconstriction in the peripheral
blood vessels with inhaled nitric oxide wherein leukocytes were presumably
not involved. Moreover, the vasoconstriction data were reproduced in
humans. Responses to inhibition of local NO synthesis was reversed follow-
ing administration of inhaled NO [18,19].

Inhaled Nitric Oxide Affects Pathophysiology in
Peripheral Organs

Although the reversal of nitric oxide inhibition by inhaled nitric oxide was
important support that nitric oxide could reach peripheral vasculatures, from
a therapeutic standpoint, it remained unclear whether this approach could
improve pathology. Fox-Robichaud and colleagues tested this hypothesis and
demonstrated that inhaled NO was also beneficial in pathological conditions
wherein NO has been documented to be reduced. Inhaled NO reduced 
leukocyte recruitment and prevented reductions in blood flow caused by
ischemia/reperfusion [18,20]. Interestingly, when the mesentery was exposed
to lipopolysaccharide which induced profound leukocyte recruitment,
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inhaled nitric oxide was not able to reduce this adhesion [18]. The difference
between the two models was that in ischemia/reperfusion nitric oxide is low
or completely inhibited whereas in the endotoxemia model increased NO pro-
duction is a key feature. Clearly, inhaled nitric oxide will not be beneficial in
all vascular diseases.

The next important question was whether there was an increase in RSNOs
during NO inhalation. Although both Cannon and colleagues and Kubes and
colleagues observed an increase in NO-carrying molecules, the specific mo-
lecules detected were quite different. Cannon and colleagues [19] demon-
strated that HbNO in blood rose significantly during NO breathing, they were
not able to detect a change in SNO-Alb in plasma with NO inhalation. This is
in contrast to our own data wherein we did observe an increase in SNO-Alb
(Ng and Kubes (2004) Circ Res 94(4):559–565). A very likely explanation 
for this difference, which in fact was raised by Cannon and colleagues, is that
SNO-Alb decomposes rapidly due to the interaction of this species with low 
molecular weight thiol groups [19]. Addition of sulfanilamide, diethylenetri-
aminepentaacetic acid (DTPA), and N-ethylmaleimide during sampling can
reduce SNO-Alb degradation and transnitrosation reactions.

Other investigators have delivered nitric oxide directly into the blood-
stream (not through inhalation) and also observed RSNO formation. Marley
and colleagues [21] studied the formation of RSNOs from low fluxes of NO
in plasma. They showed that significant amounts of RSNOs and more spe-
cifically, SNO-Alb were formed. Rassaf and colleagues [22] also demonstrated
the formation of plasma RSNOs in vivo following infusion of NO into the
bloodstream. Again more than 90% of the high molecular weight RSNOs were
SNO-Alb. Rassaf et al. [22] observed both a rapid vasodilation consistent with
administration of exogenous NO and a delayed vasodilation temporally
similar to effects observed with the administration of RSNOs.

Another important question was whether inhaled NO was restricted to the
microvasculature or whether it was also able to impact on sites outside the
vasculature. Inhibition of nitric oxide in the intestine caused an increase in
epithelial or mucosal permeability [20]. However, inhaled nitric oxide was
unable to reduce the increased mucosal permeability whereas NO donors did
have biological activity at these extravascular sites. These data suggest that
the NO delivery system was restricted to the vasculature. When lymphatics
were cannulated and the RSNOs measured, there was absolutely no notable
increase in these molecules. Clearly, these observations suggest that RSNOs
can form in the vasculature but they are unable to reach the extravascular
space. One possibility is that the nitric oxide is removed from the RSNO by
endothelium or that the main RSNO is too large to reach the extravascular
space. One example of this would be SNO-hemoglobin inside red blood cells,
which do not enter the extravascular space.
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How Might RSNOs Be Formed In Vivo?

As a free radical, NO is highly reactive and short-lived with a half-life of only
0.05–1 s in blood [7,23,24]. Although NO is thought not to react directly with
thiols, a number of indirect reactions for RSNO formation have been pro-
posed. In the aqueous phase of plasma, NO may react with O2 to form higher
oxides of nitrogen (N2O3), which subsequently leads to the formation of nitrite
(NO2

-). On the other hand, the intermediate, N2O3 (a carrier of NO+), formed
from the autoxidation of NO, may undergo S-nitrosylation with molecules
containing thiol groups to form RSNOs [8,25,26]. Although a number of these
reactions have been demonstrated in vitro, the exact mechanisms by which
RSNOs are formed in vivo remain uncertain due to the complexity of blood
leading to numerous other competitive reactions in biological systems
[21,25,27].

Nitric oxide interacts with superoxide (O2
-) to form peroxynitrite 

(ONOO-) in plasma. ONOO- decomposes rapidly once protonated to gen-
erate either nitrate (NO3

-) [23,24,28] or strong oxidants such as hydroxyl 
and nitrogen dioxide radicals. Reactions between ONOO- and thiols have
been reported leading to the formation of RSNOs [29–33]. The observation
that administration of exogenous ONOO- into animals induced responses
reminiscent of RSNOs including vasodilation [29,33] and inhibition of
leukocyte–endothelial cell interactions [34] potentially supports the view 
that ONOO- rapidly reacts with thiols to form RSNOs.

Finally, metabolic pathways of NO in erythrocytes other than to form
nitrate via oxyhemoglobin may function as important NO delivery systems.
For example, a small proportion of NO may bind to deoxyhemoglobin (Hb,
i.e., Hb[FeII]) to form nitrosylhemoglobin (HbNO, i.e., Hb[FeII]NO), or with
the 93-cysteine residue of the b-subunit to form S-nitrosohemoglobin (SNO-
Hb) [24,35–37]. The fraction of each is dependent on the ratio of oxygenated
and deoxygenated Hb within the erythrocytes [23,24]. These molecules have
been detected in vivo and can induce vasodilation when formed exogenously
in red blood cells and reinjected into animals. The question that remains is
whether sufficient amounts of these hemoglobin molecules are produced in
vivo to affect peripheral vasculatures.

Concluding Remarks

There is a growing body of evidence that nitric oxide is not a local autocoid
that influences only its immediate environment. It is now becoming apparent
that nitric oxide may combine with thiols and be transported around the 
circulatory system, perhaps delivering nitric oxide where it is needed most.
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Inhaled nitric oxide is a simple and effective tool to begin to demonstrate that
nitric oxide can indeed bind molecules within the blood to impact extrapul-
monary vasculatures. Since inhaled nitric oxide is a reasonably safe method
for nitric oxide delivery, it could potentially be important as a therapeutic
modality in various cardiovascular diseases.
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