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Abstract

We consider a dynamic set of soft real-time applications using a set of shared resources. Each application

can execute in different modes, each one associated with a level of Quality of Service (QoS). Resources,

in their turn, have different modes, each one with a speed anda power consumption, and are managed

by a Reservation Based scheduler enabling a dynamic allocation of the fraction of resources (bandwidth)

assigned to each application.

To cope with dynamic changes of the application, we advocatean adaptive resource allocation

policy organised in two nested feedback loops. The internalloop operates on the scheduling parameter

to obtain a resource allocation that meets the temporal constraints of the applications. The external loop

operates on the QoS level of the applications and on the powerlevel of the resources to strike a good

trade-off between the global QoS and the energy consumption. This loop comes into play whenever

the workload of the application exceeds the bounds that permit the internal loop to operate correctly,

or whenever it decreases below a level that permit more aggressive choices for the QoS or substantial

energy saving.

I. INTRODUCTION

In soft real-time applications timing constraints can occasionally be violated without causing

a system failure. However, the performance of the system depends on the number of violated
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constraints and on the severity of such violations. Therefore, one of the prominent goals for a

soft real-time system is to keep under control the violationof timing constraints.

There are many examples of soft real-time applications bothin the consumer electronics market

and in the industrial application domain. Many of such applications involve video processing:

for example, distributed video monitoring for video-surveillance and collection of sensible data

(e.g., people counting, monitoring of parking lots, etc.).In industrial control, image recognition

is increasingly used to identify objects on conveyor belts,or to find defects in products. Also,

even control applications are known to be effectively implementable by soft real-time tasks [1],

[2].

For all these applications, a static allocation of the computation resources to the various tasks

is rarely appropriate for many reasons: it requires an expensive off-line analysis of the application

requirements (e.g., execution times); it reduces the flexibility of the applications design and their

robustness to unexpected changes of external conditions.

In this context, we advocate the use of adaptive techniques for the Quality of Service (QoS)

management of soft real-time applications. The QoS can be evaluated considering three different

dimensions. The first one is the macroscopic QoS perceived bythe user. For instance, in a

streaming application the QoS can be related to such parameters as the resolution, the frame

rate etc. The second dimension is the compliance with the timing constraints. Finally, a third

perspective on the system QoS is given by energy consumption. As an example, if the application

is run on a portable device, the duration of the battery is directly perceived as a quality

indicator. Correspondingly, we can classify adaptive techniques in three groups:application level

adaptation, in which the application operating modes are adapted to the availability of resources;

resource allocation leveladaptation, in which the resource shares granted to the applications are

adapted to the dynamic workload requirements; andresource power leveladaptation, in which

the resource speed (and the corresponding power consumption) is adapted to the requirements

of the system.

Adaptation at the resource allocation level can be an effective solution in case of short overload

situations. In this case, the detrimental effects on the QoSwhen the system is overloaded can

be controlled by the adaptive scheduler, exploiting the inherent robustness of soft real-time

applications to timing faults. However, if the overload persists (due to a structural change),

then the problem cannot be solved at the scheduling level andit may be necessary to change the



application mode in order to reduce the workload. On the other hand, if changes in the application

level are too frequent, the perceived QoS can be very low. Therefore, application level adaptation

cannot be used to control the timing behaviour of an application at each activation of its tasks.

These simple arguments suggest the potential improvement that we can achieve by the com-

bined application of resource level and application level QoS control. However, this combination

is far from trivial: the adaptation on the application side has to be appropriatelycoordinated

with the adaptation on the resource side, in order to maximise their effectiveness.

Therefore, in this paper we present a coherent software architecture that 1) is soundly rooted in

control theory; 2) implements resource-level and application-level adaptation by using a coherent

two-level control loop strategy; 3) allows the user to customise the desired QoS metric, and tune

the application parameters to maximise the desired metric;4) is available on a widely used

operating system platform.

The advantages of our software architecture are demonstrated on a real application, consisting

of an adaptive video encoder, which is capable of dynamically scaling the quality of the video

and the corresponding computing requirements.

The paper is organised as follows. In Section II, we quickly report on the state of the art in

the field. In Section III, we describe our approach putting the stress on the idea of a double

feedback loop. In Section IV, we describe the Linux based software architecture that we have

designed to implement the idea and in Section V we report the obtained experimental results.

Finally, in Section VI, we offer our conclusions and announce future work directions.

II. RELATED WORK

The application of feedback control techniques to control the evolution of real-time applications

has become popular in the research community. The basic ideais to compensate for the fluctuation

in the workload generated by the different applications by operating on appropriateactuators.

The proposed approaches take a different direction according to the type of actuators used and

to the way the behaviour of the application is observed. Veryroughly, we can classify them in

three different areas: 1) application level adaptation, 2)scheduling level adaptation, 3) power

level adaptation.

The idea underlying application level adaptation is to operate on a set of parameters exposed

by the application in order to increase or decrease its generated workload. This viewpoint is



championed by several researchers. A recent and important example is in the work of Wust et

al. [3], a QoS optimisation framework based on a Markov Decision Problem (MDP) approach,

with similar goals to the ones considered in this paper. Our work differs in two respects. The

first difference is that we aim at supporting QoS in open systems where a MDP is hard to set up

because of the limited prior knowledge on the applications.The second one, is that we consider

applications for which frequent changes in the operating mode produce annoying effects and

should be avoided solving the problem at the scheduling level whenever possible.

The viewpoint taken by scheduling level adaptation is somewhat dual: the QoS is controlled

by operating on the scheduling parameters, leaving the application unaware of the adaptation.

An approach of this kind is the so called real-rate scheduling developed by Steere and others [4].

The progress of the application is compared with the ideal rate and corrective actions are taken as

required. In the real-time community a very significant workhas been carried out by Stankovic

and others [5], who measure for each task the deadline miss ratio and operate on the deadlines

used by an EDF scheduler. In the absence of a precise dynamic model of the scheduler, this

approach is to be classified as a heuristic solution. In contrast, Abeni and others [6] propose

the use of an adaptive scheme based on the resource reservations schedulers [7], which is one

of the cornerstones of the work presented in this paper. The use of a resource reservation

scheduler enables a precise description of the evolution ofthe system and hence a well founded

design [8]. A major limitation of adaptive scheduling is itsinability to operate when the system

is in persistent overload conditions, an issue we address inthis paper by mixing application level

adaptation with adaptive scheduling.

As far as power adaptation is concerned, most of the work donein the area is based on the

well-known dependency of the power consumption of a CPU (using CMOS technology) from the

voltage level used for power supply and the operating frequency. When the workload on a CPU

is low, we can lower the voltage and hence the frequency. Because there is a quadratic relation

between power and voltage, this can lead to remarkable energy savings. Pillai and Shin [9] in a

seminal work propose a power aware real-time scheduling technique. A similar research direction

is taken by Aydin et al. [10]. However, in our case, we cannot rely on a prior characterisation

of the workload and we are interested in adaptively strikinga good compromise between QoS

and power rather than respecting every single deadline. As aconsequence, we perform power

adaptation on longer time scales rather than aggressively changing it upon each job execution.



Closer to our approach is the idea of Simunic and others [11].The authors estimate on-line the

arrival and the service rate of frames in a MPEG streaming application (modelled as a M/M/1

queue) and adjust the CPU voltage and frequency accordingly. Adaptive schemes in which power

consumption is explicitly considered along with temporal guarantees have been proposed by Qu

et al. [12] and in the GRACE-OS [13] architecture, proposed by Yuan and Nahrstedt. Our work

differs in many respects. First, power consumption is only one of our optimisation criteria, and

it can be traded off with the macroscopic QoS level of the applications. Second, our power

adaptation mechanism does not take place at the scheduling level, but it is carried out along

with adjustment in the application modes when the system is reconfigured.

A very general framework for QoS optimisation is QRAM [14]. With QRAM the dimensions

along which the QoS is evaluated can be multiple and include power consumption. The frame-

work was initially applied offline but recently it has been extended in order to be applicable

on-line [15]. Differently from QRAM, we are not proposing a general framework for QoS

definition and optimisation. Our main focus is rather on adaptive and combined control of QoS

and temporal behaviour. The two aspects are taken care of by two control loops: the external one

operating on the QoS level and the internal one operating a fine grained control of the temporal

behaviour of the applications. In principle, QRAM could be used to specify the optimisation

problem operated by the external loop, along the line suggested by Lee et al. [16].

An approach similar to the one presented in this paper has been proposed by Abeni et al. [17],

where an inner controller performs on-line adaptation of the requested bandwidth, and an outer

controller performs a slower on-line adaptation of the application QoS level by modulating the

task activation rate. However, the approach presented hereis more general, in that we can operate

on multiple dimensions to change the QoS of the applicationsand hence the generated workload

(and not simply on the rate), and we seek optimum QoS/power-consumption trade-offs in the

global system reconfiguration. Another interesting approach recently proposed by Romero et al.

[18] uses global ILP optimization for setting application modes and allocating tasks on multiple

processors, and adaptive reservations for controlling thedeadline-miss ratio of individual tasks.

However, power management is not considered in the model.

In order to solve the optimisation problem associated with the external loop with an acceptable

cost we use a heuristic. Similar solutions can be found in thework of several researchers. For

instance, Rusu et al. [19], propose a heuristic to solve an Integer Linear Program (ILP) that



identifies the optimal configuration of a system with multi-mode periodic real-time applications

under deadline and energy constraints. Chen and Kuo also propose [20] various formulations,

comprising ILP, and propose heuristic solvers, focusing onthe theoretical complexity of the

solution strategy. In both cases, the problem addressed by the authors bears some resemblance

with the one associated with our external loop. There are, however, significant differences, the

most important being that the authors mainly concentrate ona time-slotted setting where tasks

share the same period (an extension to multiple periods is hinted to considering the hyper-period).

In our case, the use of a Reservation Based (RB) scheduler induces important differences in the

way the problem is formulated. Other differences are in the cost function (which in our case has

a term penalising power consumption) and in the fact that in the cited paper the authors assume

the possibility of choosing a different frequency for each task (whereas we periodically set the

frequency of the CPU to be used for all tasks in the next period). These differences in the model

prevent the direct application of the heuristics proposed in the cited papers in our framework,

although some of the ideas have been adapted and experimented on (as detailed below).

Other authors propose architectural support for multi-level feedback. This is the case of the

HOLA-QOS architecture [21] proposed by Valls et al. and of the work done by Kalogeraki

and others [22]. Generally speaking, devising middle-waresolutions for QoS management has

been an active research area in the last few years. One significant sample in this wide body of

literature is the work by Brandt and co-workers [23], in which a middle-ware is used to support

application level adaptation. Other relevant middle-wareproposals are the ones by Schmidt et

al. [24], and by Zhang et al. [25]. In these cases, there is a real-time scheduling support for

the QoS management, which is part of our approach. More importantly, in these proposals,

the authors offer a generic support for QoS adaptation but they do not commit to any specific

algorithmic solution. In this work, although we propose a middle-ware architecture ourselves

and we place a major emphasis on the “internals” of the algorithms for QoS management.

Finally, this work extends and subsumes preliminary results we presented in [26].

III. PROPOSEDAPPROACH

A. Dual-Loop Control Scheme Overview

The two-level feedback-based QoS control scheme proposed in this paper is sketched out in

Figure 1. The internal control loop is operated by aResource Allocation Controller. At the end



Figure 1. Two-level control loop.

of each job, the controller receives a measurement of thescheduling error, a QoS metrics which

will be introduced later in III-B2, and of the computation time of the previous job. The controller

then decides the fraction of resources (bandwidth) to be used for the next job and actuates this

decision by properly changing thescheduling parameters. The objective of this control is to have

an evolution of the QoS metric complying with the stochasticreal-time specification set by the

external loop. This goal can be achieved only if some assumptions on the workload generated

by the tasks are respected. TheWorkload Monitorrecords the computation time of the jobs and

evaluates the workload generated by the task over a time interval.

An external control loop, operated by aGlobal QoS Controller, provides the application-

level and power-level adaptation. It periodically promptsthe Workload Monitor to evaluate if

the working assumptions for the resource controller are violated. If this is the case, it switches

the mode of the applications and the power mode of the resources to change the resource

requirements of the tasks. Similarly, if a reduction in the resource requirements is detected,

the QoS controller can make more aggressive choices in the application modes increasing the

“macroscopic” QoS perceived by the users. The Global QoS Controller chooses at all times a



configuration that maximises a system-wideQoS index, achieving the desired trade-offs between

QoS of applications and power consumption. When some of the application modes or of the

power modes are changed, the QoS controller resets the real-time specifications for the resource

controllers adapting them to the new mode and resets the controller.

More details about the two control loops follow in Sections III-C and III-D, after a brief

introduction of the necessary concepts and notational elements.

B. Background and Notation

Our system consists of a set ofn applicationsA(1), . . . ,A(n), sharing a pool ofm resources

R(1), . . . ,R(m). Although in the remainder of the paper we will concentrate onprocessors, the

presented approach may be equally effective in managing other types of resources. In fact,

the approach is applicable whenever the resource can be allocated preemptively or with a fine

granularity for non-preemptive sections. A network link for which the packet size used for

transmission is much smaller than the one used by the application is a good example. Applications

can dynamically enter and leave the system.

1) Real-Time Task Model:Each applicationA(i) is composed of one or more tasks, each one

deployed on a processor. For the sake of simplicity, we assume that in all applications there is

at most one task using each CPU: letτ (i, r) denote the task belonging toA(i) that usesR(r), and

Ar the set of applications with tasks onR(r).

A taskτ (i, r) consists of a sequence of jobs, or instances,J
(i, r)
k . Each jobJ (i, r)

k arrives (becomes

executable) at timer(i, r)
k , and finishes at timef (i, r)

k after usingR(r) for a timec
(i, r)
k . JobJ

(i, r)
k

is associated with a deadlined(i, r)
k , which is met if f

(i, r)
k ≤ d

(i, r)
k and ismissedotherwise. In

this paper, we focus onperiodically activated tasks with periodT (i) and relative deadlineequal

to the period:r(i, r)
k+1 = r

(i, r)
k + T (i) and d

(i, r)
k = r

(i, r)
k + T (i) = r

(i, r)
k+1 . However, our software

architecture supports also aperiodic tasks (see Section IV).

2) Scheduling:Each processor is shared between multiple tasks by using a Reservation Based

(RB) scheduling policy. In a multiprocessor setting, we assume tasks are statically partitioned

on the processors. In a RB framework, a taskτ (i, r) deployed on a CPUR(r) is associated a

pair (Q(i, r), P (i, r)), said reservation, meaning that the scheduling algorithm guarantees toτ (i, r)

a budgetof Q(i, r) execution time units of the CPU in everyreservation periodP (i, r), whenever

in need. The ratioB(i, r) = Q(i, r)/P (i, r) is referred to asreserved bandwidthand quantifies



the fraction of the CPU reserved to the task. In our framework, the reserved bandwidth can

be dynamically changed by changing the reserved budgetQ(i, r) for each job. The reservation

periodP (i, r) is strictly tied to the task periodT (i) (generally equal to the period of the task, or

to one of its sub-multiples). This choice maximises the efficiency in resource allocation [27] and

allows us to construct a dynamic model for the evolution of the task. As a result, the reservation

period only changes when the application period is changed (e.g., for a change in the application

mode). The symbolB(i, r)
k will denote the bandwidth allocated toJ (i, r)

k .

To analyse the timing behaviour of the tasks, it is convenient to introduce, for each jobJ (i, r)
k ,

the latest possible finishing time(LPFT), defined as the end of last reservation period in whichthe

job can finish. As an example, if a task is scheduled through a reservation(Q(i, r), P (i, r)) = (1, 3)

and the job starts at0 with c
(i, r)
k = 3, the LPFT is9. Indeed, it takes three reservation periods

for the task to complete. This quantity is an upper bound for the finishing time of the job, which

is attained if: 1) the job does not receive computation time other than the reserved one, 2) in

the last reservation the budget is received right before thedeadline. Based on this quantity it

is possible to introduce thescheduling errorǫ(i, r)
k , defined as the difference between the LPFT

and the job deadline (see [6] for details). This quantity canbe used to quantify the precision in

resource allocation. Indeed, if the scheduling error is negative, then the job received more CPU

time than strictly required. Conversely, if the schedulingerror is positive, then the job received

too little. The scheduling error as just defined has been usedin various papers about adaptive

real-time scheduling, in which feedback-based control loops control its evolution in a range as

close as possible to zero, ranging from linear controllers [6] to non-linear [28] and stochastic

based ones [8], [29]. The controller proposed in this paper (see Section III-C) falls in this latter

class.

In order for a RB scheduler to work properly, the following relation has to be respected at all

times:

∀r ∈ 1, . . . , m
∑

i∈Ar

B(i, r) ≤ U
(r)
lub , (1)

whereU
(r)
lub ≤ 1 depends on the scheduling algorithm.

3) System Configuration:Each applicationA(i) can execute in a mode chosen in a finite set

V (i) , {1, . . . , n
(i)
am} of cardinality n

(i)
am. Every modej ∈ V (i) is associated with aQoS rate

q(i,j) ∈ R, which is a measure of the instantaneous user satisfaction whenA(i) executes in the



j-th mode.

Each resourceR(r) may vary its power mode within a finite setP (r) , {1, . . . , n
(r)
rm} of

cardinality n
(r)
rm (e.g., by varying the clock frequency and voltage for a CPU).In each mode

k, the resourceR(r) has a power consumptionp(r,k). Modes associated with a higher power

consumption reduce the execution time of the tasks. The optimisation framework presented in

this paper is very general and supports arbitrary specification of resource requirements for each

available power-mode, as it will be clarified in Section III-D.

In the following, for the purpose of clarity, whenever the discussion refers to a single task

and/or resource, the corresponding superscript(i) and/or(r) is omitted.

C. The Resource Allocation Controller

The goal of the resource-level control loop attached to eachtask is specified in terms of the

probabilityπ(i, r) that the scheduling errorǫ(i, r) of the task respects an upper boundδ(i, r). More

formally:

Pr
{

ǫ
(i, r)
k ≤ δ(i, r)

}

≥ π(i, r). (2)

This goal is achieved by a control scheme (presented in a preliminary version in [29]) consisting

of two basic elements: 1) a set of local controllers associated with each task (task controllers),

and 2) a set of resource supervisors associated with each processor. The purpose of the task

controller is to formulate a minimum bandwidth requestB
(i, r)

k that allows the task to respect its

timing constraints with probabilityπ(i, r). Because the controllers have only a local visibility, they

could formulate bandwidth requests exceedingU
(r)
lub in Condition (1). The resource supervisor

in this case can change the valueB
(i, r)
k of the bandwidth granted to the application so that

the condition is respected. The conceptual link between thetwo components is a minimum

bandwidthB
(i, r)
G that has to be granted to jobJ (i, r)

k , whenever the task controller formulates

a requestB
(i, r)

k ≥ B
(i, r)
G . Clearly, to respect the schedulability constraint in Equation (1), the

minimum guaranteed bandwidths have to respect it in turn:

∀r ∈ {1, . . . , m},
∑

i∈Ar

B
(i, r)
G ≤ U

(r)
lub . (3)

Indeed, in the worst case each taskτ (i, r) is granted only its minimum guaranteed bandwidth

B
(i, r)
G .



1) Task controllers:Considering a single task, we can approximate the evolutionof the

scheduling error as follows:

ǫ
(i, r)
k+1 = S(ǫ

(i, r)
k ) +

c
(i, r)
k+1

B
(i, r)
k+1

− T (i) (4)

whereS(x) = x if x > 0, and S(x) = 0 if x ≤ 0. Intuitively, if in the previous job the task

received an amount of bandwidth greater than or equal to its need (negative scheduling error),

there is not any execution backlog on the new job. In this case, the LPFT can be computed

starting from the job activation instant. Otherwise, it hasto be computed starting from the LPFT

of the previous job (hence the functionS(.)), and the ratio
c
(i, r)
k+1

B
(i, r)
k+1

approximates the number of

required reservations.

In order to find a feedback control law that achieves Condition (2), the sequence of computation

timesc
(i, r)
k and of observed scheduling errorsǫ

(i, r)
k are considered as discrete-time, continuous-

valued, stochastic processes, related by Equation (4). Theproblem is to find a function relating

B
(i, r)
k+1 to ǫ

(i, r)
k such that Equation 2 is respected.

A reasonable approximation of this ideal design goal is as follows. If the scheduling error is in

an attractivity regionR(i, r) = [−T (i), R(i, r)] enclosing the target regionR(i, r)
T = [−T (i), δ(i, r)],

then it is steered back toR(i, r)
T with at least the probabilityπ(i, r):

Pr
{

ǫ
(i, r)
k+1 ∈ R

(i, r)
T | ǫ

(i, r)
k ∈ R(i, r)

}

≥ π(i, r). (5)

Informally speaking, the quantityR(i, r) ≥ δ(i, r) represents the maximum value that the schedul-

ing error can take for which the controller is able to controlit in the desired set at the next step

with a high probability.

As discussed in [29, Proposition 1], assuming that an additional component –the predictor

– provides the controller with a quantityH(i, r)
k+1 such thatPr

{

c
(i, r)
k+1 ≤ H

(i, r)
k+1

}

≥ π(i, r), and that

the minimum bandwidthB(i, r)
G guaranteed to the task satisfies

B
(i, r)
G ≥ sup

k∈N

H
(i, r)
k

T (i) + δ(i, r) − R(i, r)
, (6)

then Condition (5) is fulfilled by the following control law:

B
(i, r)

k+1 =
H

(i, r)
k+1

T (i) + δ(i, r) − S(ǫ
(i, r)
k )

. (7)

The quantityH
(i, r)
k+1 represents a guess of an “upper bound” for the computation time c

(i, r)
k+1 .

Clearly, choosing a tight bound generally decreases the probability π(i, r) of making a correct



guess. Thesup in Equation (6) has to be evaluated over all the (possibly infinite) sequence of

jobs. For all practical purposes, this quantity can be retrieved from previous executions of the

application or estimated on a trial execution of a sufficientnumber of jobs.

This result, given a desired value for theR(i, r) = inf R
(i, r)
k and given the maximum resource

requirement estimated by the predictor, allows us to identify a minimum bandwidth requirement

B
(i, r)
G that attains the goal. We can extend the control law proposedabove by saturating it to

B
(i, r)
G for values of the scheduling error greater thanR(i, r):

B
(i, r)

(ǫ
(i, r)
k ) =











H
(i, r)
k+1

T (i)+δ(i, r)−S(ǫ
(i, r)
k

)
, for ǫ

(i, r)
k ≤ R(i, r)

B
(i, r)
G otherwise.

(8)

As discussed in [29, Proposition 2], ifB(i, r)
G dominates the moving average of the computation

times over a given time horizon, then this control law also ensures that, if the scheduling error

leaves the attractivity region, it returns to it in a finite number of steps and its maximum value

can be bounded.

2) Predictor: Many algorithms are available for time series predictions [30]. Generally, they

rely on an analysis of the past observedc
(i, r)
k samples, where both simple solutions like moving

averages, or complex ones based on optimal filtering theory,are possible. A better performance

can be obtained by leveraging off the knowledge on the domainof the application (as suggested

by Pohlack et al. [31] for MPEG decoding). Any predictor thatcan be characterised in terms of

a probabilityπ(i, r) satisfying Equation (2) can fit in our framework.

3) Resource Supervisor:Each resourceR(r) is attached asupervisorthat comes into play

whenever the set of requested reservations violate Equation (1). In such a case, the supervisor

must guarantee to each task its minimum bandwidthB
(i, r)
G . We cope with this problem by using

a compression function [32]. Let
{

B
(i, r)

}

denote the bandwidths required by the task controllers

at some timet. If
∑

i∈Tr
B

(i, r)
≤ U

(r)
lub , then the granted bandwidthsB(i, r) are simply set equal

to the required values:∀i ∈ Tr, B(i, r) = B
(i, r)

. Otherwise, the granted bandwidths
{

B(i, r)
}

are

set as follows:∀i ∈ Tr,

B
(i, r)

= B
(i, r)
m +

 

U
(r)
lub −

X

j∈Tr

B
(j, r)
m

!

B
(i, r)

− B
(i, r)
m

P

j∈Tr

“

B
(j, r)

− B
(j, r)
m

”

whereB
(i, r)
m , min

{

B
(i, r)
G , B

(i, r)
}

.



D. The Global QoS Controller

1) Macroscopic QoS:The QoS, in our setting, can be evaluated using different metrics.

Namely, for every applicationA(i) and for every possible modej, we define an instantaneous

QoS rateq(i,j). If this rate is maintained for a time interval∆t (the “sampling” period of the

external loop, from here on referred to asoptimisation period), then the accumulated QoS in the

interval is given byq(i,j)∆t. For certain types of applications, changing the application mode

too often may diminish the QoS experienced by the user. For example, while playing a video

stream, changing too frequently the bit-rate can be very annoying. To model this detrimental

effect, when going from mode(j) to mode(k), we introduce a negative QoS metric given by

−k
(i)
a |q(i,k) − q(i,j)|, with k

(i)
a > 0, which penalises switches in the application mode. This term

is not multiplied by the time interval duration, thus its impact is lower at higher values of the

optimisation period∆t.

Another dimension for evaluating the QoS isenergy consumption. The energy spent over the

sampling interval∆t by resourceR(r) operating in modek is given byp(r,k)∆t. This metric

has to be accounted for with a negative sign. If appropriate for the specific architecture, it is

possible to introduce a metric quantifying the energy spentin a transition between two different

power modes(j) and(k): −k
(r)(j, k)
p . In addition to associating energy consumption with a QoS

metric, we support also constraints on the maximum consumedpower, e.g., dictated by a desired

lifetime for battery operated devices.

These different metrics are clearly in trade-off. For instance, reducing the power mode of a

resource is an advantage for the energy consumption but it also increases the computation times

of the different tasks generating potential overload conditions that have to be solved reducing

quality of the applications. The problem is a multi-objective optimisation, and we solve it by a

simple technique known as “scalarisation” [33]. The utility function is built as a weighted linear

combination of scalar terms, each one representing a different possible optimisation dimension

(see Equation (9) below).

2) Optimisation Problem Set-up:The global QoS controller performs an optimisation whose

decision variables are the modes of the applications and of the processors. Because these levels

are discrete, we can conveniently set up the problem as a Boolean linear program (BLP). To

this end, we introduce a vector of Boolean variablesx(i) = [x(i,1), . . . , x(i,n
(i)
am)], wherex(i,j) is 1



if the modej is selected for applicationA(i), 0 otherwise. The vector̃x(i) denotes the current

configuration ofA(i) (as computed by the controller at the previous optimisation). Similarly,

we introduce for each resourceR(r) the vector of Boolean variablesy(r) = [y(r,1), . . . , y(r,n
(r)
rm)],

wherey(r,j) is 1 if the modej is selected forR(r), and the vector̃y(r) to denote the current

configuration ofR(r).

We introduce a vector notation also for the QoS levelsq(i) = [q(i,1), . . . , q(i,n
(i)
am)] and the power

consumptionsp(r) = [p(r,1), . . . , p(r,n
(r)
rm)]. Also, we introduce the matrixK(r)

p = [k
(r)(j, k)
p ] of the

power-switching penalties. Finally, for each applicationA(i) and resourceR(r), we introduce the

matrixB
(i, r)
G , [B

(i,r)(j,k)
G ]j,k containing on each rowj the requirements of the application modej

for the various resource modes, and on each columnk the requirements of the resource modek for

the various application modes. More precisely, the components ofB(i, r)
G represent the minimum

guaranteed bandwidths required by task controllers to sustain the performance specification in

Equation (5). This quantity can be computed, given an an estimate ofsupk

{

H
(i, r)
k

}

, by using

Equation (6). Such estimates may be based on information acquired upon each optimisation

period from the Resource Controller (see Figure 1), thus they may be time-varying. Concerning

the resource requirements related to configurations of the system that are not currently in use, we

assume that they can be estimated, based on the values measured on the current configuration,

by application-dependent interpolators (the so calledmulti-mode predictors). In the next section,

we will provide details for a specific application domain.

3) Formal Problem Statement:Now, we are in condition to formalise the problem as:

max
x(i),y(r)

n
∑

i=1

w(i)
a

(

∆Tq(i) · x(i) − k(i)
a

∣

∣

∣
q(i) · x(i) − q(i) · x̃(i)

∣

∣

∣

)

−

m
∑

r=1

w(r)
p

(

∆Tp(r) · y(r)
+ ỹ(r)TK(r)(j, k)

p y(r)
)

(9)

where “·” denotes the scalar product, “·T ” denotes the matrix/vector transposition, and the weights

{w
(i)
a } and{w(r)

p } are positive real numbers that configure the relative emphasis of applications

QoS and power consumption in the search on the Pareto front. The maximisation is subject to

the constraints:



m
∑

r=1

p(r) · y(r) ≤ P

n
∑

i=1

x(r)TB
(i, r)
G y(i) ≤ U

(r)
lub , r = 1, . . . , m

∑

j

x(i,j)
= 1, i = 1, . . . , n x(i,j) ∈ {0, 1}, ∀i, j

∑

j

y(r,j)
= 1, r = 1, . . . , m y(r,j) ∈ {0, 1}, ∀r, j

where the first constraint limits the maximum instantaneouspower consumptionP sustainable

by the system, while the next constraints represent the consistency conditions in Equation (1),

for the various possible configurations. The quantityP could in principle be time-varying to

accommodate the possible changes in the current level of thebattery or be chosen to obtain a

desired lifetime for the system. The problem has bilinear constraints and absolute values in the

objective function. However, it can be transformed in a standard BLP problem through simple

transformations.

In our framework, each application is associated an additional fictitious switching mode

corresponding to a null resource requirement (for each resource power mode) and to a null

QoS rate. This way, the presented BLP program has always a feasible solution. If the optimiser

selects the fictitious mode for an applicationA(i), then: if A(i) is requiring admission into the

system, then the request is turned down; ifA(i) was admitted previously, then it is dynamically

dismissed.

4) Solving the optimisation problem:The exact solution of a BLP has generally an expo-

nential complexity in the number of decision variables. Because our approach requires that the

optimisation problem be solved online (to close the external loop), it is mandatory to use some

kind of heuristic simplifying its solution. The proposed framework does not specify any particular

heuristic, and is open to the adoption of any heuristic, as long as it produces feasible solutions. As

an example we implemented some simple heuristics, featuring different performance/overhead

tradeoffs depending on the class of problem they are appliedto.

The simplest heuristic that we have developed was inspired by the work of Abdelzaher et.

al. [34]. It is a greedy heuristic, quadratic in the number oftasks and resources and linear in the

number of levels. The algorithm is readily described:



1) set the current configuration with application modes to minimum QoS and resource modes

to maximum power;

2) if the current configuration is feasible, then proceed to step 3, otherwise if the power

constraint is violated, then:

a) compute the changes of the objective function due to changing each resource mode to

the next available one; only changes keeping feasibility ofthe non-power constraints

are considered; if no such changes exist, then exit with error;

b) update the current configuration with the change that minimises the overall power

consumption;

c) repeat from step2;

3) compute the changes of the objective function due to changing each application or resource

mode to the next one; only changes that do not violate constraints are considered; if no

such changes exist, then exit and return the current configuration;

4) update the current configuration with the change in eitherthe QoS mode of an application,

or the power mode of a resource that maximises the objective function increment;

5) repeat from step3.

From the3-rd step, the execution can be interrupted at any iteration with a feasible solution.

Therefore, it is possible to consider different trade-offsbetween solution time and accuracy.

This heuristic is defined Greedy Cost (GC). Being a greedy heuristic, the algorithm is clearly

subject to the issue oflocal optima. To overcome the problem we have investigated two different

approaches. The first one is inspired from the work of Rusu et al. [19]. The idea is that if at

each step we simply make the choice that maximises the cost function, we could saturate the

resource constraints preventing subsequent improvements. Therefore, we can amend step 2a by

maximising the ratio between the QoS improvement achieved by a choice and the norm of the

vector of increased resource utilisation incurred by the choice. This algorithm is referred to as

Greedy Cost/Utilisation (GCU) heuristic.

An alternative idea entails a more substantial change. In steps2 and3 of the above algorithm,

instead of considering merely the solution change leading to the maximum power consumption

decrement or objective function increment, we considered the K changes leading to theK best

moves, producing aset of current configurations. Then, we proceeded by carrying on the heuristic



“in parallel” from step2 on all the current configurations. At each repetition, the size of the

set of the currently considered solutions increases byK (however a lower number is generally

kept, due to unfeasible and duplicate solutions), then at most K out of them are selected for

proceeding to the next step. This heuristic is called multi-path search (MPS) heuristic.

The two ideas can be combined, producing the Multi-path Search with Cost/Utilisation (MP-

SCU), in which the search is carried out on multiple paths andthe increments of the cost function

are weighted against the introduced utilisation.

a) Examples:To the simple purpose of illustrating the practical applicability of the heuris-

tics implemented in the framework, we propose here some examples of the overhead/performance

tradeoffs that we obtained on several test cases.

A test case corresponds to a different choice of values for the following parameters: number of

applications, number of resources, number of resource modes and number of application modes.

For each test case, we selected100 different optimisation problems. This selection was made

randomly, ensuring the correctness of the problem (a higherQoS has to be associated with a

higher execution time, and a smaller power consumption has to be associated with a higher

computation time). For each problem instance, we applied the different heuristics and found the

exact solution by using the GNU Linear Programming Toolkit (GLPK) API1. For each test case

and for each solution algorithm, we recorded the average of optimal value and execution time

for the different problems, obtained on an Intel Core 2 Duo P9600 CPU at 2.66 GHz (only 1

CPU was actually used by the solver).

The results are depicted in Figure 2. Each curve represents the performance of the different

heuristics for one of the test cases on a QoS value/computation overhead plane. For all the

test cases we considered2 resources,3 application modes and3 power modes. The difference

between the three test cases lies in the number of applications: 4 for the test case associated

with the curve at the bottom,8 for the one associated with the intermediate curve and12 for

the curve on the top of the plot. The vertical offset between the curves is clearly due to the

increased number of applications, which corresponds to a larger accumulated value for the QoS.

A first comment on the results is that an exact solution with GLPK is not affordable in our

setting (it requires a computation time in the order of a fraction of seconds even for small sized

1 More information is available at the URL:http://www.gnu.org/software/glpk.
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Figure 2. QoS index versus computation time for different test cases and different heuristics.

problems). A second comment is that the use of Greedy Heuristics requires a computation time

an order of magnitude below the multi-path heuristics (which in our case scanned four paths in

parallel). We conjecture that this gap can be reduced by appropriate optimisations in the code,

but is very likely to remain significant. An execution overhead of10µs is probably affordable in

many applications, but the payoff in terms of cost function is often moderate. For the test case

on the top of the plot, the use of the utilisation to weigh the increment of the cost function is

not apparently convenient.

The simple conclusion that we draw from our experiments is that none of our proposals

displayed a striking convenience over the other ones for allpossible scenarios, and the selection

of the heuristic should be made based on the characteristicsof the considered system and

applications, the performance cost/tradeoffs specifically identified for the different classes of

applications, and similar considerations. A more completeevaluation of these heuristics is beyond

the scope of this paper and is reserved for future work.



Figure 3. Main components of the software architecture implementing the proposed power-aware QoS management

infrastructure. Greyed blocks correspond to the implementation of the dual-loop architecture proposed in this paper.

IV. SOFTWARE ARCHITECTURE

The control architecture described in Section III has been implemented in the software architec-

ture shown in Figure 3. The main components of the architecture are the following.

The ALC Library is the interface between the application and theALC Server im-

plementing the Global QoS controller. The application has access to this library through the

ALC API allowing it to specify its resource requirements and its operation modes, in terms of

associated QoS values and timing requirements. The librarynegotiates with theALC Server

an appropriate operating mode for the application, depending on the system workload.

The FQDB Library allows applications to specify the workload requirements associated

with each operation mode and power mode. This information can be stored from previous



runs in aSQLite2 database. When queried about a configuration that has not been stored

yet, the library performs an on-line interpolation of the information collected on-line by using

application-specific and resource-specific plugins. This query is only made when the application

is activated, therefore, assuming that activations are spaced out by a reasonable amount (say

in the order of100ms or more) the introduced overhead is negligible. Anapplication plugin

implements a particular mathematical model that describeshow the workload reshapes when

changing application-level parameters, such as video resolution or colour depth. Aresource

plugin implements a model that describes how computation times scale with respect to resource

mode parameters, such as the CPU frequency. These plugins implement themulti-mode predictor

functionality introduced in Section III-D.

The ALC Server implements the global power/QoS aware optimisation strategy, and per-

forms admission control and periodic re-configuration of applications and resources. After the

optimisation problem is solved, each application is notified (via theALC Library) the mode

it has to use for the subsequent activations. Likewise, theALC Server reconfigures the power-

mode of the system resources via a specificEnergy Management Library. This provides

a unified view on the available power-modes of the underlyingphysical resources, along with

the associated power consumption figures, and allows theALC Server to reconfigure the

power-mode of each resource. Currently, power management for processors is supported via the

cpufreq3 infrastructure.

The FB Library implements the inner control-loop at the resource allocation level. It

performs the actual allocation of the CPU via theResource Reservations Library.

It gets from the real-time application notification of the begin and end of each job, and performs

on-line adaptation of the reserved budget, so as to meet the declared timing constraints of the

application (in terms of periodicity and deadline-miss ratio). The library does not necessarily

require a periodic task model, but it supports the optional possibility for the task to specify the

deadline at every job start. This way, the bandwidth may be easily adapted also for aperiodic jobs,

where it needs to be computed depending on the actual start-time of the job and the available

time till the deadline.

2More information is available athttp://www.sqlite.org.

3More information is available at:http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq.html.



The Resource Reservations component, enclosed in a dashed box, is responsible for

performing the real-time scheduling of tasks, according tothe parameters supplied by theFB

Library. This is currently accomplished by using theFRSH API [35] developed in the context

of theFRESCOR project4. This is a cross-platform API designed for meeting the needsof both

hard and soft real-time applications, and it has been implemented on theLinux OS (when

enriched with theAQuoSA5 scheduler [32]), onMaRTE6, PaRTiKle7 and EneaOSE8 operating

systems. Furthermore, the use of theFRSH API allows real-time applications to take advantage

of real-time scheduling services for the disk and network resources.

The Supervisor is a kernel-level component of theAQuoSA real-time scheduler which

receives the independent budget adaptation requests of various clients (coming from theFB

Library), and scales them down in order to not violate the scheduler consistency relationship,

if needed.

The ALC Server is realised as a stand-alone server process, which communicates with

instances of theALC Library residing within the application process by using aTCP/IP

connection at the initial registration of the application within the framework, and by means of

a shared memory segment, which allows for a very fast communication between the server and

the clients. However, the TCP/IP channel is planned to be leveraged in future extensions of the

framework for the management of distributed real-time applications.

V. EXPERIMENTAL RESULTS

In order to produce an experimental validation of the approach, we installed the architecture

described in Section IV on an ASUS EEE PC endowed with an Intel(R) Atom(TM) N270 CPU

at 1.60GHz, with Dynamic Voltage Scaling capabilities, operated by a Linux Kernel (2.6.29

series) extended with our AQuoSA real-time scheduler [32].Among the solvers for the global

optimization problem introduced in Section III-D4, given the limited computing capabilities of

the platform, we decided to used Greedy Cost, the least computing intensive solver, in all the

4More information is available athttp://www.frescor.org.

5More information is available athttp://aquosa.sf.net.

6More information is available athttp://marte.unican.es.

7More information is available athttp://www.e-rtl.org/partikle.

8More information is available athttp://www.enea.com.



experiments that follow. Also, the maximum power constraint, corresponding to a minimum

life-time of the system, was not used, as our platform was nota battery-operated one.

The type of applications that we have considered represent alarge class of multimedia

applications that one can encounter in modern industrial contexts such as video-surveillance and

visual based control. An important feature of the considered scenario is the extremely dynamic

behaviour of the system: new streams can be activated and deactivated based on environmental

conditions and on the requests of human operators.

To simulate this challenging situation, we considered two types of real-time applications,

developed on purpose. The first one is areal-time streamingapplication (henceforthstreamer),

which periodically grabs video frames from av4l2 device9 at 25fps, encodes them in MPEG-

4 video, and sends the resulting video stream over the network via the Real-Time Transport

Protocol (RTP, see RFC 3550 and RFC 3016 for more details). Toreduce the latency, each

video frame is encoded before the next one is grabbed (so we have an implicit relative deadline

equal to the periodT = 40ms), and only frames of typeI and P are used. The application

uses the MPEG-4 video encoder provided by thelibavcodec library10, and it uses a dynamic

reconfiguration of the video resolution at the encoder inputin order to achieve variable QoS

levels.

The second application that we considered, calledsample-app, is essentially a synthetic

periodic task generating a random-walk around a controlledutilisation value, specified via

command-line parameters. The application can switch between 2 different operating modes,

corresponding to decreasing workload requirements and declared QoS rates.

We show the results from three separate experiments. The first one displays the advantages of

the QoS optimisation, the second one focuses on power-management and the third one presents

overhead measurements.

A. QoS Optimisation

In this section, we show how our dual-feedback loop reacts tochanges in workload deciding a

new configuration for the system. We considered6 instances of thesample-app application,

9More information about the Video4Linux 2 (v4l2) API is available at:http://linuxtv.org/downloads/v4l-dvb-apis/.

10More information is available at:http://www.ffmpeg.org



started at equally spaced out times. The relevant parameters of the applications are summarised

in the first group of rows of Table I. Each column refers to one instance of the application.

The first row reports the time when the application is started. The second row reports the QoS

rate for each mode, introduced in Section III-B3 and used in the problem formalisation in

Equation (9). The third row reports the “target” probability of deadline miss (DM) required to

the inner control loop (as specified in Equation (2)). For thepredictor, we adopted a simple

scheme based on a percentile estimator. In essence the algorithm keeps track of the past12

samples of the computation time and selects a value greater than a percentile of the collected

sample given by the desired probability of deadline miss. Clearly, in this way, the condition

in Equation (2) isapproximativelysatisfied. The multi-mode prediction was easy in this case,

because the application was designed in such a way as to increase the required workload by a

factor of 4 when the required QoS is stepped up. The workload associatedwith each mode has

been stored in the database from previous executions and this information can be retrieved when

the application requires admission.

In this experiment, we disabled the power-aware logic by setting thewP weight equal to0 in

the cost function. The weights{w(i)
a } for the different applications were all set to1, meaning that

all applications are equally important. The global optimisation was carried out with a sampling

period of1s.

First, we disabled the dynamic rejection capability of the framework, so applications were

accepted on the basis of aFIFO policy. In this case, if a new application saturates the system,

it is simply rejected without any consideration on its QoS. However, we retained both the inner

resource allocation control loop and the periodic optimisation loop. The result of the experiments

in this case is shown in the dashed curve of Figure 4, where we plot the value of the achieved

overall QoS index over time. After an initial time needed to refine the workload estimate from

the inner feedback loops (the values used at admission-control time, measured during previous

runs of the applications, were clearly optimistic, in this case), the system finds its optimal

configuration.

In the second run, we turned on the dynamic rejection capability, whereby the system evaluates

the QoS before deciding which application should be dismissed. After the same time for fine-

tuning the workload estimates, the system stabilises on a configuration with a far higher overall

QoS index. This is an obvious consequence of the fact that theadoption of a FIFO policy in



Instance 1
st

2
nd

3
rd

4
th

5
th

6
th

Approx. start-time 2.0s 3.1s 4.3s 5.5s 6.7s 7.9s

q(i, 1) (QoS in mode1) 353 411 321 514 445 577

q(i, 2) (QoS in mode2) 712 691 680 739 797 789

π(i, 1) (DM in mode1) 8.3% 8.3% 8.3% 8.3% 8.3% 8.3%

π(i, 1) (DM in mode2) 25% 25% 25% 25% 25% 25%

Total Jobs (QoS) 500 500 32 500 500 500

DM Ratio (QoS) 12.4% 6.6% 75% 16.6% 17% 16%

Avg QoS (QoS) 418 428 680 526 548 605

Total Jobs (FIFO) 500 500 500 500 Rej Rej

DM Ratio (FIFO) 9.6% 6.8% 10.8% 6.8% - -

Avg QoS (FIFO) 418 428 380 542 - -

Table I

TOP HALF: APPLICATION PARAMETERS FOR THE EXPERIMENTS ON THEQOS. BOTTOM HALF: DEADLINE MISS RATIO AND

AVERAGE QOS LEVEL EXPERIENCED BY INDIVIDUAL APPLICATIONS.
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Figure 4. Time evolution of the overall QoS index while starting and dropping the6 sample-app applications.

deciding the applications to discard was not optimal. It is very interesting to take a closer look

at how the two feedback loops interact. To this end, Figure 5 shows the computation times

experienced by the different jobs of the first application. In the interval between the50th and the

80th job, the application workload increases, and the inner feedback control loop increases the

allocated bandwidth grow in response, up to a point where thebudget allocation (not shown) is
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Figure 5. Computation times of thesample-app application jobs.

saturated by the Supervisor. At a certain time (close to job80), the global QoS controller detects

the problem and automatically scales down the mode of the application, reducing its workload

requirements in order to gain back the schedulability of thesystem.

The deadline-miss values and average QoS values experienced by the individual applications

are shown in Table I. It can be seen that, while the FIFO strategy (middle rows) decided to reject

the last two applications, the optimum QoS-aware strategy decided instead to admit them, at the

cost of dynamically dismissing the3rd application after32 jobs. This way it achieves a QoS

index (averaged over time)32% higher than the FIFO policy (approximately1850 vs 1400).

As far as the temporal properties of the tasks are concerned,we can see that the deadline

miss ratio that we achieved isgenerally intermediate between the value required in mode 1

and the value required in mode 2. This is suggestive of a behaviour of the resource controller

within the specification (since the applications dynamically switch between the two modes).

This result is due to the fact that: 1) the percentile predictor predicts a valueH(i, r)
k+1 such that

Pr
{

c
(i, r)
k+1 ≤ H

(i, r)
k+1

}

≥ π(i, r), with π(i, r) greater than or equal to the probability specified in

the first part of Table I, 2) the assumption in Equation (6) is respected. An exception to the

latter condition is offered by the3rd application for the QoS-aware strategy case. At some point

the workload generated by the application prevents the resource controller to accommodate its

requests and the probability of deadline miss grows to75%. The application is later dismissed

by the outer loop.

As a variant of this experiment, we started our applicationswith only the high QoS mode
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Figure 6. Achieved average QoS index versus average deadline-miss ratio under various configurations.

available. This way the only action available for the external loop is to reject the applications.

Figure 6 plots on thex axis the average deadline-miss ratio among the applications, and on

the y axis the QoS index, averaged over the entire experiment run.As some instances were

rejected dynamically during their execution, the average values refer to the respective time-life

of the various instances. Each point on the plot correspondsto an experiment run, and arrows

connect points corresponding to runs with the same configuration. We can see that with only

high-QoS applications (points with theH labels), the QoS aware admission-control achieves a

worse QoS index than the FIFO policy, but this is merely the price it has to pay for keeping the

DM ratio within the target specification values. In fact, in such a case, after admission of the

applications on the basis of historical workload data, the actual workloads grow unexpectedly

and persistently, and the inner QoS control-loop cannot operate at its set-point anymore, due to

the impossibility to grant the necessary{B(i, r)
G } minimum bandwidths. Clearly, this is a case

where a dynamic reconfiguration is needed, achieved by the QoS aware policy by dismissing

one of the applications (hence, the loss in the QoS index).

By enabling mode-switching for the applications, we obtained the two points labelled asO,

corresponding to the same runs shown in Figure 4. The self-tuning capability of the framework

produces a good performance even in the FIFO case. However, the possibility to admit new

applications based on a QoS optimisation logic improves theQoS index by+32% (as discussed

above), at the cost of a slight worse DM ratio (which remains within the required bounds).



Mode Frequency Power (W) QoS Penalty

Mode 1 1.60 GHz 2.5 750

Mode 3 1.07 GHz 1.0 500

Mode 4 0.80 GHz 0.7 300

Table II

POWER MODES OF THEINTEL ATOM WE USED, AND ASSOCIATED PENALTIES ON THEQOS INDEX .

B. Power/QoS Optimisation

For the experiment shown in this section, we enabled the power management capability. In

Table II, we describe the technical data of the power modes, along with the QoS penalty term

we introduced for each mode in the QoS Index. The power consumption figures are the maximum

values as from the CPU specification [36].

In this experiment, we used multiple instances of thestreamer application, one acquiring

from a real video source, the others acquiring from fictitious video sources provided by means

of the vivi.ko kernel module, started at intervals of1s. Figure 7 (a) shows the overall QoS

of the system over time, while in (b) we report the power-modeof the CPU. Between time4

and7 we can see that, while the system admits new applications, the CPU power mode is driven

from the lowest frequency to the highest frequency mode. Theplot in Figure (a) also shows a

transient during which the system lowers the QoS mode of the admitted applications in order to

account for the actually sensed application workload, clearly higher than the value estimated at

admission-control time.

The measured deadline-miss ratios for the two admittedstreamer instances have been of

0.073 and0.003, against configured values of0.

C. Overhead Measurements

We performed an evaluation of the overheads associated to our framework by focusing on the

most critical elements, which are triggered at run-time andmay possibly impact on the appli-

cations performance. Basically, the overhead of our dual-loop control architecture is evaluated

separately for the inner loop, where we measured the time needed to run the feedback-based

QoS control logic, and the outer loop, where we measured the time needed to solve on-line the
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Figure 7. Overall QoS index (a), comprising both QoS of applications and penalties due to power consumption of the CPU,

and corresponding CPU power mode (b), while starting two instances of thestreamer application.

optimisation problem. All measurements have been done at the maximum CPU frequency of

1.60 GHz.

D. Inner Loop Overheads

In order to measure the overheads associated to the bandwidth control logic of the inner loop,

we ran 10 instances of thestreamer application with500 jobs per-run, and we measured

the time needed to recompute the bandwidth values at each jobend. Results are summarised in

Table III. As we can see, the average overhead (first row) is ofabout46µs, which is a perfectly

sustainable figure as compared to the average job execution time of nearly17ms in the lowest

QoS mode. Also, we measured the time needed to update the loadfigures for all application and

power modes into the server optimisation problem, obtaining an average value (second row) of

35.62µs. This value is particularly low thanks to the use of the sharedmemory communications



Description Avg (µs) Dev (µs) Min (µs) Max (µs)

Bandwidth Adaptation 45.96 8.14 40.00 204.0

Update of Loads 35.62 31.21 25.00 168.0

Admission Control 19863 6716 14978 44485

Table III

OVERHEAD FOR DIFFERENT OPERATIONS.

between the server and the clients. Also, note that, while the bandwidth adaptation is performed

every job period, the loads update is only performed every optimisation period.

E. Admission Control Overhead

In the same experiment just described, we also measured the time needed to perform the

admission control of the new application, involving both the time for setting-up the client-server

communications and allocating the necessary resources, the time for uploading the load figures

into the optimisation problem, and the time for finding the new solution. This time has been

measured as (third row of Table III) close to20ms (with the GC solver). Such value is surely

of importance, however it does not impact the application performance, because this operation

is needed before the application enters its main functionalloop.

VI. CONCLUSIONS

In this paper, we presented a novel QoS management frameworkfor soft real-time applications

based on the application of two QoS control loops. A proper design of these two controllers

allows for the optimisation of the performance of multi-mode real-time applications running

on hardware with power-switching capabilities. We also presented a software architecture that

implements the idea. We provided extensive experimental evidence of the effectiveness of the

framework in optimising the overall QoS index keeping in check the real-time behaviour of

the applications. The validation was carried out both on synthetic applications and on a real

multimedia encoder (featuring dynamic QoS modes). The measurement collected on our imple-

mentation in the Linux Kernel revealed that the overhead is acceptable for the considered class

of applications.



In the future, we plan to investigate on the integration of a more general power consumption

model, which also accounts for the dependency of the power onthe expected load (which we

assumed to be kept as practically constant and close to saturation, in the current framework),

in addition to the frequency. For example, most modern CPUs designed for laptops may switch

very quickly to and fromidle states, even without reconfiguring the CPU frequency and voltage.

Also, we plan to extend our framework to the networking resource, so as to properly model

networking elements in distributed real-time applications. Correspondingly, we plan to study

distributed solutions for power-aware QoS management. Another generalisation we plan is in

the direction of allowing each application to have more thanone task per CPU. This way we could

consider multi-threaded applications, which are certainly very important in modern applications.

Finally, we plan to investigate on possible application-specific improvements on the heuristics

proposed in this paper.
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