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ABSTRACT 

The work covers an adequate analytical dependence of solubility measure of the chemical 

substances on the water/aqueous solution temperature. The solubility was defined and new, more 

readable solubility measure was introduced; the coefficient of solubility has been proposed instead. 

Then the source differential equation was introduced as the basis for the derivation of a final analytical 

form of dependence of the solubility coefficient on temperature. That characteristics has been 

developed by determining the dependence of the solubility coefficient variability intensity on 

temperature. An example of the use of presented theory has been delivered by referring it to the 

phenomenon of dissolution of AgNO3 silver nitrate in the aqueous environment. In the summary, quite 

a developed use of the source differential equation has been underlined with some more examples 

revealed. 
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1. INTRODUCTION 

 

On the ground of science, there is often noted an approach to elaborate the experimental 

results leading to formulate a description of empirical, statistic-experimental model. The main 

flaw of that model is lack of a physical sense.  

There is a necessity to substitute that model by another one, more adequate. It has been 

called the reason model with a physical sense. Such a kind of model possesses constants 

determined by units with clearly assigned content interpretations. Literature [1] discusses such 

models though with a limited exemplification material.  

The monograph [2] develops the subject by presentation of a new approach to the 

description of phenomena or processes coming out of the source differential equation. The 

work [2] is referred to the technological process of smoothing using elastic abrasive wheels 

but this kind of approach may be developed and referred to other cognitive issues. 

That approach may be referred also to the chemistry. One of the examples of using the 

source differential equation is the work [3], covering energetic development of the kinetics 

description of the catalytic reactions occurring in the presence of proteolytic enzymes [4-7]. 

The analytical dependence of the substance solubility measure on temperature was elaborated 

based on this by referring the dependence to different exemplary chemical substances. 
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2.  REMARKS ON SOLUBILITY 

 

The solubility phenomenon has been described in numerous references, e.g. [8-14]. 

However, the literature treats the solubility as a physical magnitude, i.e. measurable one, not 

separating its essence. It is known that the solubility, as the phenomenon, is a sensual 

magnitude, acquiring a determined measure which is the measurable magnitude, or just a 

physical magnitude.  

One may admit that there are also mental and material magnitudes in the chain of all 

magnitudes; all they are ordered as follows: mental, sensual, physical, and material. The 

literature [15-17] discussed these cognitive issues, providing some examples of particular 

magnitudes. It is worth mentioning that the energy is one of many mental magnitudes, with 

the potential as its measure. 

Coming to the notion of solubility, its definition is as follows: the substance solubility is 

the ability to dissolve in a determined solvent. (The water fulfills the role of the solvent in the 

considerations presented in this work). We do not measure the solubility; such a measurement 

is performed in reference to the solubility measure, being a physical magnitude. Such a 

measure is e.g. a maximum number of grams of a substance which, under determined 

conditions (determined by temperature and pressure), dissolves in one hundred grams of a 

solvent (here – water), forming a saturated solution. Thus the measure is the mass of the 

dissolved substance, i.e. sm . 

Discussed herewith the solubility phenomenon of chemical substances is described by 

two variable physical magnitudes, namely the solubility measure and temperature. On the 

ground of chemistry, it is considered the dependence of a substance mass dissolved in one 

hundred grams of water (solvent), so  tfms  . Mass with its titre, in gram, is the measure of 

the solubility. The presented in literature the measure in grams per 100 grams of water 

indicates it is rather a quotient, a dimensionless coefficient, which is not true. 

One may finally solve the problem by introducing a coefficient of solubility of the 

following form: 
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where: rc    the coefficient of solubility; sm   mass of a substance; with the denominator 

informing that the substance mass is referred to one hundred grams of water. Of course, the 

mass of that dissolved substance is expressed also in grams, thus the coefficient appears to be 

the dimensionless magnitude. 

Furthermore, the dependences of type  tfcr  , i.e. the dependences of the substance 

solubility coefficient on temperature will be considered. Based on the data excerpted from 

[13] the plot of that dependences (Fig. 1) for silver nitrate AgNO3, sodium nitrate NaNO3, and 

potassium nitrate KNO3 have been performed. One may clearly notice, the coefficient of 

solubility rises with temperature, with the course being exponential and progressively rising in 

character. 
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Fig. 1. Dependence of solubility coefficient cr on temperature t for the nitrides of: silver (AgNO3), 

sodium (NaNO3), and potassium (KNO3) 

 

 

Many other chemical substances have been considered concerning their solubility, 

presented in Fig. 2, of respectively extended scale of this magnitude to increase the 

transparency of this picture. The courses 2, 8, 9 come from the literature [8], and others result 

form the work [13]. 

One may notice, the curve referred to barium hydroxide Ba(OH)2 is really rising, but 

with the intensities of the coefficient growth rc  being clearly divided into two temperature 

ranges; up to the temperature t = 60 ºC the intensities of growth are moderate, whereas above 

that temperature these intensities rise quite vehemently. 

It is worth noting a non-typical course of the solubility of the sodium sulfate with the 

solubility rising up to the temperature of 32 ºC, and then decreasing. The abnormal course of 

the solubility curve is caused by the transition of the aqueous sodium sulfate into an 

anhydrous salt:  
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At the sodium sulfite solubility plot (Fig. 2) the curve on left of the point A presents the 

equilibrium of saturated and aqueous sodium sulfate whereas the curve on the right of the 

point A presents the solubility of anhydrous sodium sulfate. The remaining curves (1, 2, 3, 4, 

5, 6) possess exponential and progressively rising courses in the entire interval of the 

temperature changes. These curves have been done for the following substances: 1 – 

potassium sulfate K2SO4; 2 – sodium chloride NaCl; 3 – potassium chloride KCl; 4 – barium 

chloride BaCl2; copper sulfate CuSO4; and 6 – ammonium chloride NH4Cl. All of these 

curves may be described analytically, however in this work the attention has been focused on 

the description of more frequently occurring curves, that is the exponential progressively 

rising ones. Now the adequate dependence, resulting from the source differential equation, 

will be derived. That function will be further approximated with the determined sets of 

experimental points. 

 

 

3. SOURCE DIFFERENTIAL EQUATION AND ITS REFERENCE TO THE 

SOLUBILITY PHENOMENON OF CHEMICAL SUBSTANCES 

 

At the very beginning of these considerations it is worth presenting the general form of 

the source differential equation; the form referred to all phenomena and processes having a 

quantum course, that is changing by a jump. The considerations are referred to a macro-scale. 

Fig. 2. Dependence of solubility coefficient cr on temperature t  for different chemical substances 

                     Na2SO4·10H2O ↔ Na2SO4 + 10H2O                                        (2) 

  

at the temperature of 32.384 ºC. 

 

 

 

cr 
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Of course, that kind of changes refers to the states, and not the transient between the states 

with continuous changes of the determined magnitude taking place between them.  

The mentioned differential equation, excerpted from [2], has the following form: 

 

                                                     dN
N

Z
dZ




                                                            (3) 

 

where: dZ   total differential of the dependent variable; dN   total differential of the 

independent variable; 
N

Z




  partial derivative of the dependent variable, referred to the 

independent variable. The signs    are the algebraic operators fulfilling a determined role. 

The sign (+) has a formal meaning, confirming just the physical sense of a determined 

dependence. The sign    ascribes such a sense to the determined record. 

The considered here the phenomenon of solubility of chemical substances is described 

by two magnitudes, namely the determined solubility coefficient and temperature. Therefore 

the place of the dependent variable will be substituted by this coefficient with the temperature 

assuming the role of the independent variable. 

After these explanations, the equation (3) assumes the following form: 
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and because the course of the considered magnitude is exponential and progressively rising, 

then  
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t
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                                                             (5) 

 

The scheme of creation of the adequate description of the dependence )(tfcr   has 

been presented in Fig. 3 covering all elements of the reasoning process. The curve illustrating 

that dependence comes out of the initial point „0” of the coordinates 0t , 0

rr cc  , and 

further having the exponential rising course. Its non-linear course is ended in the point „1”, 

where the phenomenon of the substance dissolution is terminated. Now the dependence (5) 

should be integrated on both sides; one should remember here the total differential is the state 

function. Further on, the states, or the integration limits, should be determined. The mentioned 

limits, relating to the studied phenomenon, are the potential fields. These fields are situated on 

two directions; one of them is the direction of changes of the solubility coefficient rc , 

whereas the second one is the direction of temperature t. On the first direction one may 

differentiate: solubility bottom stable potential field  
rcBSPF , solubility top stable potential 

field  
rcTSPF , solubility unstable potential field  

rcAPF . On the second direction, there 

are the following fields: temperature stable potential field  tSPF , temperature unstable 

potential field  tAPF . The fields  
rcTSPF ,  

rcAPF , and  tSPF  and  tAPF  limit the 

temperature-solubility space (dotted area), where the phenomenon of the substance solubility 

growth occurs. 
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Fig. 3. Indicatrisse of the adequate course of the dependence of solubility coefficient on temperature 

 

 

Now the dependence (5) should be integrated on both sides; one should remember here 

the total differential is the state function. Further on, the states, or the integration limits, 

should be determined. The mentioned limits, relating to the studied phenomenon, are the 

potential fields. These fields are situated on two directions; one of them is the direction of 

changes of the solubility coefficient rc , whereas the second one is the direction of 

temperature t. On the first direction one may differentiate: solubility bottom stable potential 

field  
rcBSPF , solubility top stable potential field  

rcTSPF , solubility unstable potential 

field  
rcAPF . On the second direction, there are the following fields: temperature stable 

potential field  tSPF , temperature unstable potential field  tAPF . The fields  
rcTSPF , 

 
rcAPF , and  tSPF  and  tAPF  limit the temperature-solubility space (dotted area), 

where the phenomenon of the substance solubility growth occurs. 
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Between the fields  
rcBSPF  and  

rcTSPF  there is an energetic band (the area 

dashed horizontally), which is the solubility inertia zone, or the lack of solubility activity. One 

may assume the proper solubility, referred to zero temperature, without any external stimulus, 

meaning no heat delivered. (An analogy to the proper rigidity of a material; the material does 

not deform at all at the beginning, apart from its loading by a mechanical external stimulus.)  

The solubility curve, comprised between the points 0-1, is the envelope of the right-

angled triangles, moving in both directions; with the horizontal leg being invariable and equal 

to a constant temperature T, whereas the vertical leg is changing respectively, rising while 

moving the triangle in the temperature direction. 

Now one may come to integrate the equation (5). By integrating the equation, one 

should mark the limits of integrals of the total differentials. That means 
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and further 

                                            T
dt

dc
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                                                     (7) 

 

or 

                                            
dt
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dc
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r 1
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One may notice, the partial derivative has been substituted by the quotient of the total 

differentials. It could be done that way because the total differentials have been clearly 

determined by introducing the limits of the integrals. 

Furthermore, by integrating both sides of the equation (8), one obtains the following 

result 

                                       *01 1
ln Ct

T
ccc rrr                                                  (9) 

 

that is 
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After taking into account that for 0t , the magnitude 0 rc , one obtains 

  

                                                       
01

rr ccC                                                               (11) 

 

and after substituting (11) to (10), and then after regarding that 0

rrr ccc   
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After substituting 1

rr cc   to the equation (12) one may determine the second coordinate 

of the final point of the curve, i.e. of the point „1”. That coordinate is then expressed by the 

following dependence: 

                                                          2ln1 Tt                                                                (13) 

 

The equation (12) is that model, or the function approximation, of which the parameters 

will be determined on the basis of experimental material. 

Naturally, the tempo/rate, intensity, rate of changes of that solubility coefficient, should 

be also characterized. That intensity, denoted by a symbol k, is the first derivative (the 

derivative of the first order) of the solubility coefficient against temperature. Thus 
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For 0t  the intensity 0kk  , and for 2ln1 Ttt   that intensity 01 2kkk  . Such a 

dependence has been illustrated in Fig. 4. 

 

 

Fig. 4. Indicatrisse of dependence of the increment/growth intensity of the substance solubility 

coefficient on temperature of the aqueous solution 
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4.  ADVANTAGE OF THE PRESENTED THEORY: AN EXAMPLE  

 

The presented theory has been used for adequate description of an exemplary chemical 

characteristics. This characteristics is the dependence of the solubility coefficient of a 

determined substance on the solution temperature; with the  substance being the silver nitrate 

AgNO3, and water H2O as the solution. Table 1 presents the results: of temperature 

measurement and determination of the relating solubility coefficient of this nitrate in the 

environment of aqueous solution. Those experimental points form one of the three curves of 

solubility, as presented above in Fig. 1. 

 
Table 1. Results of temperature measure and determination the corresponding solubility coefficient of 

silver nitride AgNO3 in the aqueous environment 

 

 

It is worth turning attention onto differentiation between these two metrology notions: 

measurement, and determination. The „measurement” does not require explanations as it is 

quite obvious. The „determination” needs a relevant development of the contents. That 

general notion, covers both the measurement, and calculations. Thus the temperature t was 

measured, whereas the coefficient of solubility, just determined. That physical magnitude was 

determined because first the mass MS of the dissolved substance, used to saturate MW of water 

is measured in a determined temperature, which also undergoes a measurement. Afterwards, 

according to the essence of determination, the solubility coefficient of this substance is 

calculated. It has been closer explained by the amplification (development) of the formula (1) 

on the substance solubility coefficient, so   
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That terminology quest, on the background of many other problems of this type, has 

been explained in literature [18]. Some links of the developed terminology chain are analysed 

also in the works [19-21]. 

Taking advantage of the presented herewith the theory, first of all the values of 

coordinates *

it  should be determined; these coordinates determine the position of the 

straight/line, tangent to this searched analytic course of the solubility coefficient. These 

coefficients result from the formula (13), then 

                                                            
2ln

* i
i

t
t                                                                 (16) 

 

The results of calculations of these coordinates (Table 2) indicate, that they are bigger as to 

the values than the experimental coordinates. 
 

 

Temperature, °C 

0 10 20 30 40 50 60 70 80 90 100 

1.22 1.70 2.22 3.00 3.76 4.55 5.25 --- 6.69 --- 9.52 
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Table 2. Comparison of the magnitudes needed to calculate the coefficient values of linear regression 

 

i 
i

rc  

*

it  

2*)( it  

i

ri ct *

 

1 1.22 0 0 0 

2 1.70 14.43 208.22 24.53 

3 2.22 28.86 832.90 64.07 

4 3.00 43.29 1874.02 129.87 

5 3.76 57.72 3331.60 217.03 

6 4.55 72.15 5205.62 328.28 

7 5.25 86.58 7496.10 454.55 

8 6.69 115.44 13326.39 772.29 

9 9.52 144.30 20832.40 1373.74 

Σ 37.91 562.77 53107.34 3364.36 

 

 

The values of coordinates *

it  should be worked out statistically, by approximation them 

in accordance to the following relationship: 
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For a generally recorded linear dependence of this type 
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the coefficients a and b are determined according to the following formulae: 
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which come from the use of the rule of the least sum of deviation squares of the experimental 

values from the theoretical ones, resulting from the position of the linear regression function. 

That rule has been described in detail in the references, for instance [22-25]. 

For the introduced denotations of the independent and dependent variables, i.e. *

ii tx   

and i

ri cy  , the formulae on the magnitudes 0k  and 0

rc  possess/take the following 

configurations: 
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In Table 2, the comparison of all magnitudes derived to calculate the values of the linear 

regression coefficients has been presented, concerning: initial coefficient of solubility 0

rc  and 

the initial intensity of the growth of the solubility coefficient, i.e. 0k . Therefore 
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Thus 
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The temperature constant T, resulting from the formula (13), takes the form 
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but now it may be determined from the formula 
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meaning that  
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By substituting the values of particular magnitudes  
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                                        15977.052.9055.0 T  ºC                               (29) 

 

Thus, according to the formula (13) 

 

                                             1102ln1591 t ºC                                                        (30). 

 

Now the final quantitative form of the dependence cr = f(t) for the phenomenon of 

solubility of silver nitrate in water may be obtained; it is obtained through the introducing of 

the following values of the constants: ;77.00 rc  ;52.91 rc  T = 159 ºC, to the formula (12). 

Therefore 
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The graphic illustration of the former dependence (Fig. 5) finally allows to note the 

main advantage, resulting from the adequate description of the phenomenon of the chemical 

substance solubility. The advantage comes from the description represented by the reason 

model class, having also a physical sense. One may notice, that all elements of the presented 

description are the physical magnitudes; it concerns both the variables (dependent and 

independent) and constants. 

 
Fig. 5. Dependence of solubility coefficient of silver nitride AgNO3 on the aqueous solution solubility 

 

t 
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The intensity of changes of the solubility coefficient, referred to the relationship (31), 

has the following form: 
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4. CONCLUSION 

 

In the conclusion it is worth stressing the essence of the presented manner of description 

of the phenomenon of the chemical substance solubility in aqueous environment. This 

description is adequate in character, possessing the nature of reason models, i.e. having a 

physical sense. That model is in a contradiction to the description models, commonly used in 

the statistical elaboration of experimental data. 

The significance is getting on the cognitive way from the source, being the source 

differential equation. That made it possible to derive a true final form of the dependence of 

the solubility coefficient of the studied chemical substance on temperature of aqueous 

solution. 

          It is worth noting an enormous application of the source differential equation. In the 

work [2], it was used to the description of elastic grinding wheel characteristics. The work 

[26] presents its use in reference to non-continuous, very complex dependence of the tool life 

Fig. 6. Dependences of intensity of the solubility coefficient variability of silver 

nitride AgNO3 on temperature of aqueous solution 

   t  

so that for 0t  the intensity 
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055.00  , and for 2ln1592ln1  Ttt  that intensity 

C
kkk

o

1
11.02 01  . That relationship has been also illustrated graphically in Fig. 6. 
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under cut on the main velocity of one of the elements of the machining system. In another 

authors’ work [27], a new approach to the description of the tool edge behaviour fixed 

flexibly has been presented. 

That is not the end of usage/application of the source differential equation. The 

exemplary phenomena, with the description having their beginning in the structure of the 

source differential equation (Fig. 7), show the really big significance on the cognitive ground. 

 

 

Fig. 7. Some exemplary phenomena with the beginning in the structure of source differential equation 
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