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Abstract

This work presents some results on a fast prototyp-
ing system used to model, simulate and control a pla-
nar manipulator at the Robotics Laboratory of the Po-
litecnico di Torino. A unique environment allows to
perform the entire range of procedures. A Host-Target
architecture based on a PC-DSP link has been used for
two basic advantages: simplicity of use, thanks to the
well known PC environment hosting Matlab; real-time
constraints fulfillment thanks to an independent hard-
ware and software, devoted exclusively to the control
function.
Using the same Matlab environment, various experi-
mental tests and data analysis have been performed,
to determine a good model for friction phenomena. On
the basis of such a model a simulator has been built,
and nonlinear control laws have been tested.

1 Introduction

Fast prototyping in control systems is usually ad-
dressed as the full process of modelling, simulation, de-
sign and testing, performed on the same architecture
and in a common environment. This procedure speeds
up the learning curve and simplifies the data exchange
between domains.
The OpenDSP system is an open and integrated ar-
chitecture that comprises a real-time software running
on a DSP board, and a hardware that ensures the cor-
rect signals interchanging with the field and a PC host.
This common structure is then composed by a PC host
supervisor and a remote (but not very much, because of
the parallel link characteristics) target board, with ded-
icated components for low level interaction with plant.
The software residing on the host, e.g. Matlab, is used
to develop the whole prototyping process and to in-
teract with the plant from an higher abstraction level;
between host and target a complex but well stratified
structure allows the information to flow in both direc-
tions, respecting the real-time timing constraints.

At the Robotics Laboratory of Politecnico di Torino
a planar robot for teaching activities has been recon-
figured [1] and the original control system, no longer
suitable for fast design and testing, has been substi-
tuted according to the above exposed guidelines. Start-
ing from the general configuration of OpenDSP, a spe-
cific customization has been developed with additional
hardware and software components. New interfaces
have been proposed, by using the Matlab tools to take
advantage from their elaboration features and simplic-
ity of use.
In this paper we show in some details how this HW/SW
architecture has been used to review the model of
the manipulator, and to design new control algorithms
based on the compensation of typical non-linearities
and friction effects.
Section II presents a brief description of the plant and
its control system. Section III illustrates the control
system architecture, with details on the development
environment and the user customizable C code.
In Section IV the model for friction phenomenon is il-
lustrated along with the experimental results necessary
to determine all the model parameters and the simula-
tor based on it. Section V shows how the new model
has been used to improve the control and adds some
note on its C language implementation.

2 The robotic system

The planar manipulator used for the experiments has
two revolute vertical axes joints, as sketched in Figure
1.
Both joints are moved, without using gearboxes, by
brushless NSK Megatorque motors supplied with re-
solvers to measure angular positions. The maximum
extension of the links (L1 + L2) is about 0.7 m, the
angular limits are ±2.15 rad for both joints, and the
tip height is 0.45 m from horizontal plane.
The two brushless motors are managed by a couple of
autonomous drives, which deal with all the complex
characteristics of these actuators and manage the in-
tegrated position sensors. The drives communication
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Figure 1: Diagram of IMI planar manipulator.

system deals, in particular, with some of the main fea-
tures that are basic for control, such as the digital in-
put/output signals interchange, the application of ana-
log command inputs, and decoding of position infor-
mation from sensors.
The drive boxes contain power electronics to manage
the PWM for the motors, and a section, based on a 16
bit microprocessor, devoted to transform analog sig-
nals from resolver into digital signals of shaft encoder
type. Besides, they interpret the analog signals com-
ing from the controller as torque or velocity reference
commands to be applied to the motors. Two control
modes are available, the Torque Mode and the Velocity
Mode: on the basis of the resolver signals, a current
loop is closed to regulate the torque in the first case,
whereas a further velocity loop is added in the second
mode. The basic mode is the Torque mode, and it will
be the only one used in this work to test different types
of control algorithms, starting from the joint position
information.
The inner current loop referred above is fixed, and the
actuators model for control results in a simple propor-
tional gain KV 2τ between the input command voltage,
Vm, and the torque τm supplied by the motor:

τm = KV 2τVm (1)

The optional Velocity Mode is useful in emergency sit-
uations, when the user wants to instantly interrupt the
manipulator motion, pushing the STOP button: a dig-
ital input linked to the button lets the drive activate
the velocity control loop, imposing zero velocity refer-
ence. The stopping phase will be executed as specified
by the internal velocity control algorithm.
Finally, the whole plant and the controller can be mod-
elled as shown in the summary diagram reported in
Figure 2, that shows how the controller, fundamentally,
receives encoders signals and gives back signals in mV
proportional to required command torques.

Figure 2: IMI-ODSP model

3 The system control architecture

The original control system manufactured by the IMI
Corp. has been substituted by a new one (see [1]),
in which the components for real time interaction are
grouped in a modular industrial standard rack. This
control system environment, called OpenDSP, has
been developed by the Mechatronics Laboratory of
the Politecnico di Torino and consists of a DSP board
and a programmable input/output board. A PLD
(Programmable Logic Device) on the latter board
allows to configure via software the digital and analog
inputs and outputs, and to preprocess these signals in
a customized way, before they reach the converters or
the DSP. Field interfacing is obtained by means of user
customizable boards, packaged with the I/O board
and the DSP board in the same rack. The real-time
control requirements are guaranteed by the presence
of a link between the I/O and the DSP boards based
on a proprietary bus (called the OpenDSP bus).
The system is linked via enhanced parallel port (EPP)
protocol to a desktop PC, working as a host, and by
some connections to each axes interface.
A Matlab environment with Simulink runs on the host
PC. The OpenDSP system includes a new toolbox for
Matlab called MatDSP, which allows the Matlab-code
interaction with the DSP. In this way it is possible to
read or change any variable processed by the DSP. For
example, the parameters of a control algorithm can be
changed “on fly” in the same sample time in order to
guarantee a coherent switch to the new configuration
(synchronous mode); or different variables, at user’s
choice, can be monitored without requiring a more
stringent “sample by sample” acquisition (asyn-
chronous mode). It is possible to monitor the real
time variables and the drives status flags, to scope and
acquire signals and make any type of mathematical
operation on them. The control algorithms written in
C can be compiled, downloaded and started/paused
on DSP.
Some graphic user interfaces have been built in the
Matlab environment by means of the GUIDE tool, to
simplify testing and management of signals needed
by the drives. The MatDSP commands have been



hidden by a logic construction, grouping the signals in
high level functions rather than using them to perform
single hardware operations. For example, a lot of
cross-controls are needed to guarantee the correct and
safe sequence of operations to enable and start the
control task; this would oblige the user to read and
change several variables using the primitive statements
provided by the MatDSP toolbox. On the contrary,
hiding the MatDSP commands under these GUIs
allows the user to concentrate on new experiments.
An example of these GUIs is shown in Figure 3.
Three tools are available to the user. The first one,

Figure 3: IMI robot GUIs

the IMIConsole, is a panel to perform the homing
procedure, to prepare and to enable a control algo-
rithm and, more in general, it is the entry point for
the normal interaction with the control system.
The second tool is the IMIExecute, a panel that allows
to select and execute, in single or cyclic mode, a
previously planned trajectory and make a home return
to the zero position. This GUI shares the same data
base of IMIConsole tool to make appropriate and
safety functional logic.
The third tool, the IMIReference, does not interact
with the system because it is not related to the
MatDSP toolbox, differently from the IMIConsole and
the IMIExecute GUIs. It just generates some simple,
basic reference functions, such as joint or cartesian
point to point movements and circular trajectories and
save them in a MAT file.
From the IMIConsole it is possible to open the IMIEx-
ecute or the IMIReference GUIs and to call a Simulink
model of the robot to test the planned trajectories in
simulation before executing them on the real plant.
The designer can compile and download his C code
using the GUIs. At this point, he plans the trajectory,
introducing the relevant parameters in the GUI, and
enables the robot to execute it. Alternatively, he can
start a Simulink model to check the effectiveness of
the designed algorithm.
The OpenDSP real-time software belongs to an archi-
tecture group, known as round-robin with interrupts.
At the beginning a main function, Main.c, calls some

sub-functions which configure the system on the
basis of a group of parameters, some of which fixed
and other ones assigned by the user. Then, in an
infinite loop two other sub-functions are called in turn:
the first, called Monitor, deals with communication
between the Matlab environment and the DSP; the
second one, the UserBackground, allows to execute a
user code at a lower priority level, which interprets
and executes the Matlab commands and interacts with
the drives logic. Both sub-functions have no particular
real-time requirements and can be interrupted when
the periodical axis control function written by the user
has to start.
The whole user code is divided in sections and hosted
in a file on the basis of a C written template. The
initial section, the UserInit, contains the code to ini-
tialize the customizable characteristics of the system
and the starting settings of axis control functions; it
is executed one time, when the code downloaded to
the DSP is launched. The variables, which must be
available in the Matlab workspace, are declared and
initialized within this function.
User writes in the subsequent section, the
UserISR INT2, the algorithm code for control and all
the functions useful to close the loop: sensors reading,
position reference managing and command application
in the correct measure units. The UserISR INT2 is
executed every control sample time according to the
following procedure:
• a timer sends a signal for Start Of Conversions
(SOC) to the input and output converters (ADC and
DAC);
• when the conversions finish, a signal for End Of
Conversions returns, and the DSP stops the current
job, i.e., one of the Monitor or UserBackground
functions; note that a sample time delay is inserted by
the system in the model of the plant, since the DAC
uses the command computed in the previous step;
• the UserISR INT2 is executed, and afterwards the
DSP returns to the suspended job.
The sequence assumes that the control function
execution stops before the next EOC signal, to respect
the Shannon theorem and to execute a portion of
the non real-time jobs, too. The template is ended
by the UserBackground function, that contains the
code executed by the DSP when the Monitor and
UserISR INT2 functions are inactive. As previously
said, this code interprets the commands coming from
Matlab and passed them to the DSP environment by
means of the Monitor function.
To summarize, the openness of this system has allowed
to configure five sections of the whole structure:
• the hardware interface toward the plant, by means of
a custom electronics built on a standard development
field module to be mechanically compliant with the
rack and the stackthrough structure;
• the logical interface between DSP and field mod-



ules, managed by the PLD firmware. Starting from
a general architecture, we filled in the PLD user
part with opportune logic circuits devoted to group
and to convert signals from and to the field module
in registers, or to close faster non-clocked loop (in
microseconds);
• the data base structure of the real-time signals,
built in the form of registers and channel manageable
by opportune macros in a pre-structured C header file;
• the Background routine that manages the communi-
cation between host and DSP, and the ISR routine to
control the axes, starting from a general and strongly
organized C template;
• the asynchronous communication between Matlab
user and plant by means of a graphic user interface
giving a logical and easier interpretation of the plant
functionalities.

4 Dynamic model with friction for simulation

The well known manipulator dynamic equation is given
by:

M(q)q̈ + C(q, q̇)q̇ + τf (q̇) = τm (2)

where:
• q is the joint position vector;
• M is the inertia matrix, including both links and
motors inertia;
• Cq̇ is the term containing Coriolis and centrifugal
effects;
• τf is the friction torque;
• τm is the command torque.
No gravity term is present, since the manipulator is
planar. The electrical dynamics of the motors is not
considered, as the inner current loop, guarantees that
it is much faster than the mechanical dynamics, and
that, consequently, the relationship between the input
voltage and the output torque is simply given by a gain,
as in (1).
The friction term will be characterized taking into ac-
count two aspects of that phenomenon, static friction
and viscous friction. Two different procedures should
be executed to obtain a complete model of this term:
• with joints in open loop and,
• with the controlled manipulator.

4.1 Friction modelling experiments
Static friction is estimated by the following tests: each
joint is set in a definite angular position, setting the
drive in Torque Mode, and then supplying minimal
torque increments in both clockwise (CW) and coun-
terclockwise (CCW) directions. The friction torque
prevents the joint motion until the command torque
reaches the maximum static friction value.
When the joint starts to rotate, the current torque
value is registered, and the procedure is repeated for

various starting angular positions, to test the static
friction dependency on the angular position of the joint.
Trials are executed by means of a DSP code based on
a fixed template, modified just in the section relative
to the control function, the UserISR INT2.
In the first two friction estimation tests the com-
mand torque increments are supplied in open loop,
directly from the user. So, the DSP program re-
ceives each new torque value from PC, verifies if it
is compliant with the imposed torque limits and then
supplies it to the output converters by means of the
macro IOGP_FU1_WRITE_AOUT_ENGU(Channel) directly
in mV. A check on the control-enable signal is executed
every sample time before refreshing the new torque
value, to allow the correct sensing of the user inter-
face inputs.
The test is executed in the Matlab environment using
the IMIConsole GUI to compile and download the real-
time code and to enable the axis drives; then the com-
mands MatDSPvariable(VarName, NewValue) and
MatDSPupdate allow to change the command torque
reference at run-time, whenever the user needs it. The
command MatDSPupdate allows to refresh in the same
sample time all the real-time variables modified by the
user with the command MatDSPvariable.
A unique value for τs to be used in the model is ex-
tracted using the mean data.
The contribution of viscous friction is evaluated letting
the joints rotate freely, and using the Torque Mode
functionality, to observe the phenomenon in a situa-
tion of dynamic equilibrium at constant velocity, i.e.
when:

τm = τf (q̇) (3)

The DSP code necessary for these experiments is the
same used to evaluate the static friction, with the ad-
dition of the position measure by means of the macro
IOGP_FU1_READ_ENC_CURRENT(Channel) and the ac-
quisition data command, Acquire(), at the end of
function UserISR INT2. This functionality offered by
the system is configurable at run-time by the Mat-
lab command MatDSPAcquireConfig(params), decid-
ing which data are to be acquired, if data decimation
is necessary and the duration of acquisition. It is not
an invasive operation for the control function, i.e., it
doesn’t cause the violation of the sampling time, be-
cause it is executed entirely in the DSP environment
to avoid a slow data exchange with the PC. The Moni-
tor function returns data just acquired to Matlab envi-
ronment, without real-time constraints, when the user
invokes the command MatDSPAcquireLoad(). In the
considered case, angular joint position values are ac-
quired for each torque increment. A waiting time in-
terval allows the end of the acceleration fluctuations,
after which a two seconds acquisition is started.
Angular velocity data are extrapolated from the mea-
sured positions, for each joint and for each rotation
direction. For every velocity sample, the correspond-
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Figure 4: Joint 1 data fitting

ing friction torque is assumed equal to the command
torque τm according to (3).
The velocity data obtained have a lower bound value
of about 2 rad/s, due to the sudden transition from
stop to motion and viceversa, when the growing torque
command overcomes the static friction τs and when
the decreasing torque command reaches the minimum
value, respectively.
Joint friction at low velocity is investigated by an ex-
perimental session performed with the manipulator in
the operative controlled configuration. A simple PD
has been used to move each joint from 0 to 1 rad/s
and viceversa, using a triangular velocity profile. More
code has been added at the UserISR INT2 to supply
a micro-interpolation mechanism for the user profile,
and a section devoted to the position data processing
needed by the PD algorithm.
This time the IMIExecute GUI has been used, with
the IMIConsole, to provide the vector of position refer-
ences to the DSP running code which interpolates and
executes the movement. The IMIExecute asks the user
for the reference vector and if the acquisition is needed;
then, after a pre-positioning phase, it execute the jobs
giving back the acquired data in the form of MAT file
containing a matrix whose the columns are the samples
of the signals acquired.
As in the previous experiments, the friction torque is
deduced indirectly measuring joint positions and com-
mand torques, according to the following relation, de-
rived from (2):

τf (q̇) + τerr = τm − M(q)q̈ − C(q, q̇)q̇ (4)

in which a new term, τerr, representing all modelling
errors and measurement disturbances, has been intro-
duced. This term is disregarded, repeating several
times the same motion and filtering the measured data
to extract the mean values.
The points so obtained, along with those from the open
loop experiments, give a diagram like the one presented
in Figure 4, which shows the fitting curves too, for pos-
itive velocity of the first axis. The functions used to
approximate experimental data are second order poly-
nomials for the first part and third order for the second
part of the characteristics.

4.2 Simulation environment
A Simulink model, based on the parameters obtained
in the friction modelling experiments, is used to per-
form design and verification sessions.
A subsystem block collects all the components involved
in the modelling of the manipulator. The inputs of the
subsystem go through the command torque limits to
another subsystem block devoted to evaluate the fric-
tion contribute and to return the residual torque com-
mands for the dynamics of the manipulator. A suitable
S-function calculates the friction torque distinguishing
three different areas in which the model is partitioned:
static friction phase with a spring-like behavior, low-
velocity phase with a third order function behavior and
high-velocity phase with a second order function behav-
ior.
The IMIConsole GUI is the starting point of the de-
sign process which involves simulation and experimen-
tal tests. By means of a push-button on the GUI the
Simulink model opens and the user can test his control
setup; then he/she is requested to modify the C code
of the control algorithm and return on the IMIConsole
where he/she can compile and download that code.

5 Control design

A classical model based inverse dynamics feedback al-
gorithm with a PD outer loop compensation has been
implemented, by coding in C a simplified version of the
friction model. Two different control laws have been
tested, both in the simulation environment and on the
real plant: in the first one only the inertial torques
computed by the robot dynamic model are compen-
sated, whereas in the second one friction compensation
is added. Figures 5 and 6 show the simulated and the
experimental joint angle errors obtained for the same
circular trajectory by using the two control solutions.
Figure 6 is divided in two sub-plot to clearly show Joint
1 and Joint 2 behaviors.
In the case of friction compensation, only the phases
two and three of the model have been considered, i.e.
the viscous friction modelled by two polynomials of
third and second order, whereas the static friction has
been neglected.
In both cases circular cartesian trajectories are used,
each one lasting about 4.5 seconds, and planned by
means of the IMIReference GUI.
A further test with a slower trajectory has evidenced
a lower-bound limit of error compensation for these al-
gorithms and a refinement of the friction model is re-
quired to reach extreme precision in positioning at low
speed.
It can be noted some facts:
• the simulation data are in good agreement with ex-
perimental data, considering that the order of magni-
tude of the position error is 1 · 10−3 for the first joint
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Figure 5: Error comparison when no friction model com-
pensation is applied

and 1 · 10−2 for the second one;
• the improvement obtained with friction compensa-
tion based on viscous friction model only is about 75%,
and this fact confirms the good approximation of the
phenomenon by means of a simple analytical model;
• a better control strategy should take into account
the pre-sliding phase to improve the arms behavior for
very low velocity case.
The DSP code for the two cases is very similar to that

one used to determine the friction parameters at low
speed and using a PD control (see Section IV). This
time the UserISR INT2 contains a sub-section includ-
ing the algorithm representing the inverse dynamics of
the manipulator and the PD outer loop; in case of fric-
tion compensation, a simplified version of the friction
model, taking into account just the viscous friction,
takes place in a further sub-section. In this manner
the arrangement of the UserISR INT2 allows an easy
insertion, if desired, of the friction compensation term.

6 Conclusions

A fast prototyping control system has been used to
show all implementation steps involved in a procedure
aimed to redefine the model and the control law of a
manipulator. Starting from a basic C template for the
real-time code, simple customizations allow to perform
experiments aimed at determining the parameters for
a simplified classical friction model. These parameters
are used to design two types of model based control
laws, that are first simulated and then downloaded on
the DSP board for experimental validation. All these
steps take place in a Matlab environment, which, by
means of GUIs interacting with a dedicated toolbox,
manages the control system, and allows other common
operations like data analysis, trajectory planing, sim-
ulation, design and application of control laws directly
on the plant.
Future works will be devoted to a strong integration
between the Simulink model and the C code for con-
trol, a sort of (but not properly) code generation, to
reflect in the DSP code in a parameterized mode each
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Figure 6: Error comparison when friction model compen-
sation is applied

change the user would apply to the model. A visual-
ization tool can be added to show in a structured way
the data acquired by the IMIExecute GUI.
From the modelling point of view it will be necessary
to investigate friction torques in pre-sliding conditions
to improve the positioning of the manipulator at low
speed.
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