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ABSTRACT
We propose a method for the synthesis of the phases of
Head-Related Transfer Functions (HRTFs) using a sparse
representation of anthropometric features. Our approach
treats the HRTF synthesis problem as finding a sparse rep-
resentation of the subjects anthropometric features w.r.t. the
anthropometric features in the training set. The fundamental
assumption is that the group delay of a given HRTF set
can be described by the same sparse combination as the
anthropometric data. Thus, we learn a sparse vector that
represents the subjects anthropometric features as a linear su-
perposition of the anthropometric features of a small subset
of subjects from the training data. Then, we apply the same
sparse vector directly on the HRTF group delay data. For
evaluation purpose we use a new dataset, containing both an-
thropometric features and HRTFs. We compare the proposed
sparse representation based approach with ridge regression
and with the data of a manikin (which was designed based
on average anthropometric data), and we simulate the best
and the worst possible classifiers to select one of the HRTFs
from the dataset. For objective evaluation we use the mean
square error of the group delay scaling factor. Experiments
show that our sparse representation outperforms all other
evaluated techniques, and that the synthesized HRTFs are
almost as good as the best possible HRTF classifier.

Index Terms— Head-related Transfer Function, HRTF
Personalization, HRTF Synthesis, Sparse Representation,
Anthropometric Features

I. INTRODUCTION
Head-related transfer functions (HRTFs) represent the

acoustic transfer function from a sound source position to
the entrance of the blocked ear canal of a human subject [1].
HRTFs are typically measured under anechoic conditions at
a sufficient distance and describe the complex frequency
response as a function of the sound source position (i.e.
azimuth and elevation). Imposing HRTFs onto a non-spatial
audio signal and playing back the result over headphones
allows for positioning virtual sound sources at arbitrary
locations. There are many potential applications of HRTFs,
such as 3D audio for games, live streaming of events, music
performances, virtual reality, training, and entertainment.

Since the measurement of HRTFs requires specialized
equipment, the automatic personalization (selection or syn-
thesis) of the listener’s HRTFs based on a limited dataset is
desirable whereby measuring a small set of anthropomet-
ric features of a given subject might be tolerable. Many
techniques have been recently proposed for HRTF person-
alization [2], [3], [4], [5], [6], [7], [8], [9], [10] based on a
selected set of anthropometric features. Their effectiveness
heavily depends on the choice of anthropometric features.
For this purpose, most of the existing techniques try to
find linear relationships between anthropometric features and
HRTFs. Other techniques try to find simple, approximated,
non-linear relationships. Feature selection is still an open
issue as it has been shown to be an NP-hard problem.

In our previous work [11] we proposed a method for
synthesis of HRTF magnitudes using sparse representation.
The main idea of this approach is to treat the synthesis of the
HRTF magnitudes as finding a sparse representation of the
subject’s anthropometric features as a linear superposition
of the anthropometric features of a small subset of subjects
from the training data. We assume that the HRTF data is
in the same relation as these anthropometric features. Then,
we apply the same sparse vector on the HRTF magnitudes
to synthesize the subject’s HRTFs magnitude response. In
this paper we extend the same approach for synthesis of the
HRTF phases, using the averaged group delay as function of
the direction and elevation.

To ensure that we employ an extensive set of features,
we created a new dataset with an extended amount of
anthropometric features compared to the existing literature
[4], [12]. The remainder of the paper is organized as follows.
Section II presents the collected dataset, while in section III
we describe our approach for modeling of the HRTF phases.
In section IV, we describe briefly our sparse representation
based approach. In section V, we present experimental
results. Finally, we conclude in Section VI.

II. DATA COLLECTION

We created a new dataset for the presented study that
consists of measured HRTFs and 47 anthropometric features
of 104 subjects with an age range from 13 to 62 years
(age mean of 34). More details on the dataset can be found
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in [11].

II-A. HRTF Representation
The HRTFs for each subject are represented as a set of

frequency domain filters in pairs, one for the left and one
for the right ear. The sampling rate is 48 kHz and each of
the filters contains 512 taps (from 0 Hz to 24 kHz). The
directions grid contains 512 directions spread on the entire
sphere.

II-B. Anthropometric Features
The anthropometric features can be grouped into four

categories: ear-related features, head-related features, limbs
and full body features, and other features (gender, race,
age, etc.). These four groups were obtained in three ways:
direct measurements, questionnaire, and automatic deduction
from 3D scans of the subject’s head. Most of the ear- and
head-related anthropometric features are obtained through
the latter method.

The collected anthropometric features are superset of the
CIPIC HRTF Database [12], but in this study we use the
listed in Table I subset of the available in the database
anthropometric features.

Table I. List of used anthropometric features.

Head-related features:
Head height, width, and depth;
Neck height, width, depth, and circumference;
Distance between eyes / distance between ears;
Maximum head width (including ears);
Inter-pupillary distance.

Limbs and full body features:
Shoulder width, depth, and circumference;
Torso height, width, depth, and circumference;
Distances: foot– knee; knee– hip; elbow– wrist; wrist– fingertip;
Height.

Other features:
Gender; age range; age; race;
Hair color; eye color; weight; shirt size; shoe size.

III. HRTF PHASE MODELING
A typical HRTF phase response for one direction is

shown in Fig. 1. The phase responses pretty much linearly
depend on the frequency, which also leads to a linear phase
difference, as it is shown in Fig. 2. Note that in this figure
the frequency is in linear scale. There is less reliable phase
estimation in the very low part of the frequency band, and
in the upper frequencies the phase response is affected by
the features of the pinna. Earlier studies also show that the
HRTF phase response is mostly linear [13] and that listeners
are insensitive to the details of the interaural phase spectrum
as long as the interaural time delay (ITD) of the combined
low-frequency part of the waveform is maintained [14]. This
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Fig. 1. HRTF phase response for subject n=5, direction −40◦

and elevation 0◦.
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Fig. 2. HRTF left-right phase difference for subject n=5,
direction −40◦ and elevation 0◦.

is why we model the phase response of the subject HRTFs as
a time delay, dependent on the direction and elevation. Fig. 3
shows the time delay for the same subject and direction and
its interpolation as a constant delay. This represents a linear
phase response, and the time delay can be measured as linear
interpolation of the measured HRTF phases in the medium
frequency range 500−1500 Hz, where it also is most reliably
measured.

We go one step further and make the assumption that the
ITD as function of the direction and elevation has similar
shape across all human subjects [15]. The only differences
is in the scaling factor, which depends on the anthropometric
features, mostly size of the head and the position of the ears.
The average ITD of the properly scaled individual ITDs of
the 104 subjects in the data set is shown in Fig. 4. Then the
only individual feature of the HRTF phase response is the
scaling factor - the number we have to multiply the average
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Fig. 3. Iteraural time delay for subject n=5, direction −40◦

and elevation 0◦.

Fig. 4. Average ITD contour as function of the direction and
elevation.

ITD to fit it into the individual ITD. This converts the
problem of personalization of the HRTF phases to learning
a single scaling factor as function of the anthropometric
features.

IV. PROPOSED APPROACH
IV-A. Training Data Representation

Let assume that we have N subjects in the training set.
ITD scaling factors. The HRTF phases for each subject

are described by a single ITD scaling factor for the average
group delay. The ITD scaling factors for all persons in the
dataset are stacked in a vector H ∈ RN , so the value Hn

corresponds to the scaling factor of the n-th person.

Anthropometric features. In the preparation stage all of
the categorical features (hair color, race, eye color) are
converted to binary indicator variables. For the rest of the
anthropometric features a min-max normalization is applied
to each of the features separately to make the feature values
more uniform. Each person is described by A anthropometric
features and can be viewed as a point in the space [0, 1]A.
All anthropometric features of the training set are arranged
in a matrix X ∈ [0, 1]N×A, where one row of X represents
all the features of one person.

IV-B. Sparse Representation for ITD scaling factors

We propose to estimate the ITD scaling factor for a new
subject given its anthropometric features y ∈ [0, 1]A. The
main idea is to treat the scaling factor estimation problem
as finding a sparse representation of the subject’s anthropo-
metric features, with the assumption that the scaling factors
are in the same relation. We also assume that our training
set is sufficient to span a new person’s anthropometric
features. We learn a sparse vector β = [β1, β2, ..., βN ]T

that represents the subject’s anthropometric features as a
linear superposition of the anthropometric features from the
training data (ŷ = βTX), and then apply the same sparse
vector directly on the scaling vector H. We can write this
task as a minimization problem, for a non-negative shrinking
parameter λ:

β = argmin
β

 A∑
a=1

(
ya −

N∑
n=1

βnXn,a

)2

+ λ
N∑

n=1

|βn|


(1)

The first part of the above equation is minimizing the
differences between values of y and the new representation
of ŷ. Note that the sparse vector β ∈ RN provides one
weight value per person (and not per anthropometric feature).
The second part of the above equation is the ℓ1 norm
regularization term that imposes the sparsity constraints, and
makes the vector β sparse. The shrinking parameter λ in the
regularization term controls the sparsity level of the model
and the amount of the regularization. It will be discussed
further in Section IV-D.

We assume that the ITD scaling factors are represented by
the same relation as the anthropometric features. Therefore,
once we learn the sparse vector β from the anthropometric
features, we directly apply it to the ITD scaling factors vector
and the subject’s ITD scaling factor value Ĥ is estimated as:

Ĥ =
N∑

n=1

βnHn. (2)

IV-C. ITD Scaling Factor Metric

To determine the accuracy of the estimated ITD scaling
factors, we compare them with the true (measured) ITD scal-
ing factor of the subject under consideration. For objective



evaluation we use the root mean square error (RMSE):

ϵ =

√√√√ 1

N

N∑
n=1

(
Ĥn −Hn

)2
(3)

where Ĥn is the estimated scaling factor for the n-th subject
and Hn is the measured scaling factor for the same subject.
Note that the perceptual meaning of this metric is unclear.

IV-D. Regularization Parameter λ

In the preparation stage we tune the nonnegative regular-
ization parameter λ to prevent over-fitting using the leave-
one person-out cross-validation approach [16], [17]. We take
out each person from the dataset and estimate the sparse
weighting vector β using the equation (1) for a series of λ
values. Then we select the value of λ which gives minimal
error according to equation (3). This process is repeated for
all persons and the optimal λ for the dataset is computed as
mean of the optimal values for each person.

IV-E. Computing the scaling factor
Let assume that we have a training dataset, as described

in Sec. IV-A, and an optimal value for the regularization
parameter λ, computed using the procedure in Sec. IV-D.
Then, given vector y of the anthropometric features of a
person with unknown ITD scaling factor, we can compute
the sparse weighting vector β using the equation (1) with
the optimal for this training set value of λ. The computed
sparse vector then is used to estimate the person’s ITD
scaling factor Ĥ according to (2). The computed scaling
factor multiplies the average ITD and we have estimated the
time delay as function of the direction and elevation for this
person. Converting the time delay to phase response for the
left and the right ears is trivial.

V. EXPERIMENTS
V-A. Evaluation Protocol

To evaluate the accuracy of the proposed approach, we
used the same leave-one-person-out cross-validation ap-
proach as in Sec. IV-D. We sequentially used the data for one
person for testing and treated the remaining data of N − 1
people as a training set. Before each use the training set went
trough the procedure described in the same Sec. IV-D for
determining the optimal value of the regularization parameter
λ. Then we computed the ITD scaling factor for the test
person as described in Sec. IV-E. After evaluating in this
way all of the persons in the dataset the error is estimated
according to (3).

V-B. Baselines
To assess how well our technique performs we established

several baselines.
”The Best” and ”The Worst” Classifiers. To create

reference results, we simulate the best and the worst possible
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Fig. 5. ITD scalling factor estimation error as function of λ.

classifiers. We follow the proposed evaluation protocol and
for each subject we find the nearest and farthest ITD scaling
factor from the training set.

Ridge Regression. We also compare our approach with
the ridge regression model [16], [18], [19], where the ℓ1
norm regularization term is replaced with the ℓ2 norm
regularization term. This is a similar minimization problem,
for a non-negative parameter λ:

β = argmin
β

 A∑
a=1

(
ya −

N∑
n=1

βnXn,a

)2

+ λ

N∑
n=1

β2
n


(4)

where the shrinkage parameter λ controls the size of the
coefficients and the amount of the regularization, and it is
optimized as explained in the Section IV-D.

HATS. We also use as reference the ITD scaling factor
measured from the Brüel & Kjær’s Head and Torso Simula-
tor (HATS). The HATS is a manikin that is designed based
on average anthropometric features.

V-C. Results
The experimental results are presented in Table II. The

proposed sparse representation based approach outperforms
all other evaluated techniques. It obtains low RMSE, which
is often close to the RMSE of the best classifier. The ridge
regression model shows worse than the sparse representation
results, which confirms the importance of sparsity in our
approach. The ITD scaling estimation error of the HATS
show RMSEs higher than the sparse representation model
and close to the worst classifier, which justifies the HRTF
personalization.

Fig. 5 shows the ITD scaling factor estimation error as
function of the regularization parameter λ. On the left, where
the values of λ are small, we have less sparse representation
of the test subject. When the λ value increases - the sparsity
also increases and the ITD scaling factor estimation error



Table II. ITD scaling factor estimation error
The Best Classifier Sparse Representation Ridge Regression HATS The Worst Classifier

0.005178 0.08338 0.0942 0.1408 0.277

decreases. We have well a defined minimum. The effect of
the spare representation in this case is 12% relative reduction
of the estimation error. Note the logarithmic vertical scale.

VI. CONCLUSIONS
We proposed a method for HRTF phase frequency re-

sponse synthesis using anthropometric features and sparse
representation. The phase frequency response is modeled as
average ITD, function of the direction and elevation, scaled
accordingly to the subject’s personal ITD, which depends
on the subject’s anthropometric features. The anthropometric
features of a given subject are presented as a sparse linear
combination of the anthropometric features of the subjects in
the dataset, and then the same relation is used to estimate the
ITD scaling factor and thereby synthesize a personalized set
of HRTF phases. The root mean square error confirms the
effectiveness of the sparse representation based approach.
Our method shows lower error than all other evaluated
techniques and obtains results closest to the best classifier
(i.e. the nearest ITD scaling factor in the training set).

Future work includes combining the magnitude and phase
estimation methods, determining a perceptually motivated
distance measure, and validating the synthesized HRTFs in
a perceptual experiment.
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