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HIV protease inhibitors inhibit FACE1/ZMPSTE24: a
mechanism for acquired lipodystrophy in patients
on highly active antiretroviral therapy?
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Abstract
HIV-PIs (HIV protease inhibitors) have proved to be of great benefit for the millions of people suffering
from AIDS. However, one of the side effects of this component of combined highly active antiretroviral
therapy is lipodystrophy, which affects a large number of the patients taking this class of drug. It has been
shown that many of these protease inhibitors inhibit the ZMPSTE24 enzyme responsible for removing the
farnesylated tail of prelamin A, which is a nuclear lamina component that has been implicated in some
of the nuclear laminopathies. Build up of this protein somehow leads to acquired lipodystrophy, possibly
through its interaction with a transcription factor called SREBP-1 (sterol-regulatory-element-binding protein-
1). The downstream effect of this is altered fatty acid metabolism and sterol synthesis, which may cause
lipodystrophy in patients. The build-up of this protein also appears to have morphological consequences on
the nucleus and we reveal, by dual-axis electron tomography, a complex nucleoplasmic reticulum that forms
after HIV-PI treatment as a result of acute farnesylated prelamin A accumulation. A greater understanding of
the molecular mechanisms leading to lipodystrophy will hopefully facilitate the design of improved HIV-PIs
that do not cause this debilitating side effect.

Introduction
Nuclear laminopathies are a group of diseases that result
from mutations in genes that encode components of
the nuclear lamina and associated proteins [1–18]. These
rare diseases can be separated into four major classes,
namely diseases of striated muscle, peripheral neuropathy,
lipodystrophy syndromes and accelerated aging disorders.
The LMNA gene generates lamins A and C by differential
splicing [19]. Lamin A is initially generated as farnesylated
prelamin A, which undergoes a series of post-translational
modifications and endoproteolytic cleavages that ultimately
result in the removal of the C-terminal farnesylated tail
[20–22]. Mutations in the LMNA gene can cause various
laminopathies with different degrees of severity based on
the position of the mutation in the gene. The most frequent
de novo mutation in LMNA that has been associated with
the rare accelerated aging disorder, HGPS (Hutchinson–
Gilford progeria syndrome), activates a cryptic splice site
leading to the generation of a truncated farnesylated prelamin
A called progerin [14]. The reason for the retention of
the farnesylated C-terminus is that the mutation causes the
removal of the second cleavage site for the enzyme FACE1
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(ZMPSTE24 in mice) [23]. FACE1 is an integral membrane
zinc metalloproteinase found in both the nuclear and ER
(endoplasmic reticulum) membranes [24,25]. Mouse models
of HGPS, in which the ZMPSTE24 enzyme is knocked
out (Zmpste24−/−), show a phenotype that is similar to the
clinical symptoms displayed in progeria such as osteoporosis,
alopecia and lipodystrophy [26].

FACE 1 is clearly an important enzyme for the correct
maturation of lamin A and normal functioning of the nucleus
[24]. Zmpste24−/− mouse models generate farnesylated
prelamin A and some of the consequences of this have been
to cause nuclei to adopt a highly dysmorphic shape [27],
an alteration of expression in genes that regulate cell cycle
progression [28] and a systemic metabolic response involving
autophagy induction [29].

Acquired lipodystrophy is a side effect of
HAART (highly active antiretroviral
therapy)
Within the last 10 years it has been reported that certain
drugs seem to inhibit the maturation of lamin A, resulting
in the accumulation of farnesylated prelamin A. A well-
reported example of this is the use of HIV-PIs (HIV protease
inhibitors) that are used to treat some of the 33.2 million
people in the world living with AIDS as part of HAART [30–
35]. HIV-PIs are designed to inhibit the HIV aspartyl protease
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from generating structural proteins for the virus. However,
another target of some of the HIV-PIs appears to be the active
site of FACE1/ZMPSTE24. This was shown by using an
orthologue of ZMPSTE24 (Ste24p from yeast) and treating it
with various HIV-PIs, which decreased the enzyme’s specific
activity [34]. At physiologically relevant concentrations, the
HIV-PIs indinavir, nelfinavir, tipranavir, lopinavir and
atazanavir cause the accumulation of farnesylated prelamin A
around the nuclear envelope [30–35]. Nuclear abnormalities
are further confirmed by immunofluorescence microscopy,
which shows nuclei with a dysmorphic appearance that are
similar to nuclei from HGPS fibroblasts [30]. The abundance
of mitochondrial reactive oxygen species also seems to
increase in HIV-PI treatment, which may contribute to cells
reaching an earlier senescent state and a greater degree of
DNA damage, which is an important mechanism leading to
premature aging in HGPS [30].

Acquired lipodystrophy, as a result of HAART, was first
reported over 10 years ago. It is characterized by the abnormal
redistribution of fat tissue around the body, which may lead
to both lipohypertrophy and lipoatrophy within 10 months
of beginning drug therapy [36] and has 25–75% prevalence
among HAART patients [37]. Lipohypertrophy is caused by
the accumulation of fat in some parts of the body, such as
the belly, upper torso and the back of the neck, leading
to the characteristic ‘buffalo hump’ [38]. Lipoatrophy is
due to fat loss in other regions of the body such as the face,
buttocks and arms [39]. Psychologically the symptoms can
lead to anxiety and depression due to decreased self-esteem,
sexual relation problems and general dissatisfaction with
body image [40–42]. The iatrogenic consequence of HAART
leads many individuals to end up abandoning treatment
altogether [43]. The question is how does the accumulation
of farnesylated prelamin A, due to inhibition of ZMPSTE24
by certain HIV-PIs, lead to this acquired lipodystrophy
syndrome?

SREBP (sterol-regulatory-element-binding
protein) and lipodystrophy
SREBP is a transcription factor that exists in three isoforms
(SREBP-1a, SREBP-1c and SREBP-2). SREBP-1a is held
in the ER and nuclear membranes, before being activated
by periods of low sterol levels in the cell and the mature
N-terminus eventually translocates to the nucleus, where
it activates genes involved in fatty acid metabolism and
adipocyte differentiation [44,45]. Co-immunoprecipitation
has shown that the C-terminal fragment, which remains on
prelamin A, after inhibiting its cleavage by ZMPSTE24 by
using mevinolin, interacts with SREBP-1a [46]. Generation
of mature lamin A resulted in no interaction with the SREBP-
1a transcription factor [46]. The presence of a farnesylated
tail does not seem to make a difference to the interaction
between prelamin A and SREBP-1a as immunofluorescence
microscopy has shown a nuclear rim staining of the active
SREBP-1a in HEK-293 cells (human embryonic kidney cells)

Figure 1 Interaction between active SREBP and prelamin A

(a) Schematic of the normal situation within a cell in which during low

sterol concentrations the active form of SREBP-1a can move through

the NPC and activate target genes. (b) When farnesylated prelamin A

build up occurs, as a result of acute ZMPSTE24 inhibition, the retained

farnesylated tail (pink line) is believed to interact with the membrane

resulting in the production of a highly dysmorphic nucleus and the

development of a complex NR. Additionally SREBP-1a has been shown

to be retained at the nuclear envelope (NE), after farnesylated prelamin

A accumulation, preventing activation of target genes involved in

adipocyte differentiation and fatty acid metabolism, which may be a

possible mechanism for the acquired lipodystrophy in patients on HAART.

transfected with a mutated C661M prelamin A construct
(generates unfarnesylated prelamin A) or a mutated L647R
prelamin A construct (produces farnesylated prelamin A),
rather than in the control situation where it had a more
diffuse intranuclear distribution [46]. As HIV-PI treatment
also results in the retention of a farnesylated tail on prelamin
A, it may offer a possible mechanism for the acquired
lipodystrophy experienced in approx. 40% of AIDS sufferers
on HAART (Figure 1).

There is currently no treatment for the side effect, although
some pharmaceutical companies are developing compounds
to tackle this disease; for example, Tesamorelin is a growth
hormone, produced by Theratechnologies, which reduced fat
levels by 20% [47]. Despite the production of farnesylated
prelamin A by certain HIV-PIs, some of the newer generation
of HIV-PIs have been found not to cause this unprocessed
protein to accumulate. Darunavir has been shown not to
inhibit Ste24p and biochemical data revealed no farnesylated
prelamin A accumulation of concentrations up to 80 μM
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Figure 2 Dual-axis electron microscopy tomogram of a nucleoplasmic reticulum

(a) Dual-axis electron tomography revealed what appear to be invaginations inside the nucleus that appear to contain NPCs

with a nucleoplasmic to nucleoplasmic orientation. (b) By using modelling software a greater appreciation could be achieved

of the structures within the tomogram and this indicates that the NPCs in the NR had similar dimensions to those in the

nuclear membrane.

[33]. This obviously offers hope to AIDS sufferers and
provides a new approach for the development of these thera-
peutics.

Conclusion and future perspectives
The research conducted in our laboratory has offered new
insights into how these drugs are affecting the morphology
of the nucleus by using electron tomography. We have shown
that acute administration of an older generation of HIV-
PI to mouse embryonic fibroblasts generated a complex
NR (nucleoplasmic reticulum) inside the nuclei (Figure 2).
The NR is composed of the nuclear envelope containing
NPCs (nuclear pore complexes) with a nucleoplasmic to

nucleoplasmic orientation. It has been previously reported
that the C-terminus of farnesylated prelamin A has been
found to interact with the nucleoporin nup53 [48]. In HIV-
PI-treated cells it could therefore be envisaged that the
inhibition of ZMPSTE24 causes farnesylated prelamin A to
build up and the unprocessed protein may then interact with
the nuclear membrane as well as other components of the
nuclear architecture. This may lead to a highly convoluted
and disorganized nuclear membrane. If NPCs are ending
up inside the nucleus during interphase, then they cannot
be fulfilling their role of transporting molecules across
the nuclear envelope, which may add to the pathological
symptoms observed inside cells that accumulate farnesylated
prelamin A.
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