
Agent Cooperation for Monitoring and

Diagnosing a MAP

Roberto Micalizio and Pietro Torasso

Dipartimento di Informatica, Università di Torino, Torino, Italy
{micalizio,torasso}@di.unito.it

Abstract. The paper addresses the tasks of monitoring and diagnosing
the execution of a Multi-Agent Plan, taking into account a very challeng-
ing scenario where the degree of system observability may be so low that
an agent may not have enough information for univocally determining
the outcome of the actions it executes (i.e., pending outcomes).

The paper discusses how the ambiguous results of the monitoring
step (i.e., trajectory-set) are refined by exploiting the exchange of local
interpretations between agents, whose actions are bounded by causal
dependencies. The refinement of the trajectory-set becomes an essential
step to disambiguate pending outcomes and to explain action failures.

1 Introduction

The problem of supervising the execution of a multi-agent plan (MAP) is re-
ceiving an increasing attention; in fact, the idea of distributing the execution of
a complex plan among a number of cooperating agents, which execute actions
concurrently, has proved to be quite useful for several domains and applications.
The supervision is a complex task as one has to take into account plan threats,
which can cause action failures. In the last few years some approaches have been
proposed to attack the problem ([1,2,3]). Typically these approaches assume that
action failures are not consequences of plan flaws, but failures are due to the oc-
currence of exogenous events (such as unexpected changes in the environment,
occurrence of faults in some agents functionalities, etc.). Moreover, because of
causal dependencies between actions executed by different agents, the failure in
an action assigned to an agent may impact also the execution of the actions
assigned to other agents. For this reason, it is necessary to perform a plan diag-
nosis in order to detect an action failure as soon as possible, and to single out (if
possible) the reason for such a failure. In fact, the ability of an agent to perform
some form of the plan recovery and repair strongly depend on the capabilities
of inferring a precise diagnosis (see for example [4]).

In this paper we advocate a distributed approach to plan supervision, where
each agent is responsible for supervising (monitoring, detecting action failures
and performing plan diagnosis) the actions it executes. In particular, action mod-
els represent not only the nominal action behavior, but also the (usually non
deterministic) anomalous behavior due to the occurrence of exogenous events.
Of course, the adoption of non deterministic action models make the supervision
task even more complex.

L. Braubach et al. (Eds.): MATES 2009, LNAI 5774, pp. 66–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Agent Cooperation for Monitoring and Diagnosing a MAP 67

Moreover, since the system is distributed, each agent has just a limited view
of the progress of the global plan; in fact it receives only partial observations
from the environment. As a consequence an agent cannot, in general, precisely
detect the outcome (success or failure) of its actions on the sole basis of the
observations it receives. The proposed solution involves the exchange of local
interpretations of plan execution (i.e., action outcomes) among agents, in order
to refine the local point of view of each agent, and possibly to detect and explain
action failures.

The paper is organized as follows: first, we introduce the basic notions of global
and local plans, then we formalize the processes of monitoring and diagnosis of a
MAP and discuss the communication and cooperation among agents for inferring
the action outcomes which cannot be immediately determined.

2 Distributed Execution of a Multi-Agent Plan

In this paper we consider a specific class of multi-agent systems which can be
modelled as Multi-Agent Plan (MAP). In a MAP, a team T of agents strictly co-
operate to reach a common, complex goal G by exchanging one another services
and this cooperative behavior introduces causal (and precedence) dependencies
among their activities.

Global plan. The MAP P is modeled as the tuple 〈A, E, CL, CC, NC〉 (see
e.g., [5]) such that: A is the set of the action instances a the agents have to
execute, each action a is assigned to a specific agent in the team; E is a set of
precedence links between action instances, CL is a set of causal links of the form
l : a

q→ a′; the link l states that the action a provides the action a′ with the ser-
vice q, where q is an atom occurring in the preconditions of a′. Finally, CC and
NC are respectively the concurrency and non-concurrency symmetric relations
over the action instances in A: a pair 〈a, a′〉 in CC models a joint action, while
constraints in NC prevent conflicts for accessing the resources.

To keep the discussion simple, in this paper we do not consider joint actions
even though the approach can be extended to deal with them (see e.g. [3]).
Moreover, we translate the non-concurrency constraints into precedence links,
so that during the plan execution agents do not need to negotiate for accessing
resources (this is equivalent to the concurrency requirement introduced in [2]);
in particular, each non concurrency constraint 〈a, a′〉 ∈ NC (ruling the mutual
exclusion access to a resource res), is substituted either with a ≺res a′ or with
a′ ≺res a. The result of this translation procedure is a simple form of scheduling,
where actions assigned to different agents are explicitly related by means of a
(partial) precedence relation; formally, the MAP P to be executed (and super-
vised) is defined as P=〈A, E, CL, RE〉, where RE is the set of precedence links
ruling the access to the resources.

Local Plans. Since the MAP P is executed in a distributed way by the agents
in the team, each single agent is responsible just for a portion of a MAP called
local plan. Intuitively, a local plan P i is the projection of the global plan P over
the action instances assigned to the agent i. Thus, the plan P is decomposed into

68 R. Micalizio and P. Torasso

as many local plans as the agents in T ; however, the decomposition must keep
trace of the causal and precedence relations existing between action instances
assigned to different agents: the local plan P i for agent i is formally defined as
the tuple P i=〈Ai, Ei, CLi, T i

in, T i
out, REi

in, REi
out〉, where Ai, Ei and CLi have

the same meaning of the sets A, E and CL, respectively, restricted to actions
assigned to agent i. The remaining sets are used to keep a trace of the depen-
dencies existing between actions belonging to different local plans; in particular,
the causal links from (to) an action of agent i to (from) an action of another
agent j are collected in the sets T i

out (outgoing links) and T i
in (incoming links),

respectively. Similarly, the precedence links for accessing the resources are sub-
divided into REi

in (incoming links) and REi
out (outgoing links).

In order to simplify the discussion, we assume that each local plan P i is totally
ordered, thereby it can be represented as the sequence of actions 〈ai

0, a
i
1, . . . , a

i
∞〉.

Distributed execution and coordination under nominal conditions. As
an effect of the decomposition of the global plan, the execution of the local plans
is performed by the agents concurrently and asynchronously. In particular, we
assume an agent executes its next action a as soon as the preconditions of a are
satisfied; on the contrary, the agent will wait as long as the preconditions of a
are not satisfied.

Because of the causal and precedence constrains introduced by the planning
step, the agents have to coordinate one another by exchanging messages. All the
knowledge required for inter-agent communication is encoded in P i: every outgo-
ing causal (or precedence) link in T i

out (REi
out) is associated with a send-message

operation toward agent j. Similarly, every incoming causal (or precedence) link
in T i

in (or REi
in), is associated with a receive-message operation1.

Let us suppose that a causal link in T j
in states that the preconditions for

action a (to be executed by agent j) involve a service q provided by agent i: the
agent j will wait a message from i about the service q before executing a.

Plan threats. The nominal execution of the local plan may be affected by
plan threats, which typically cause action failures. In this paper, plan threats are
exogenous events which cause abrupt changes in the agent status; we will denote
as E the set of exogenous events which may occur during the plan execution;
while we will use the symbol ε to represent the absence of exogenous event.

Observe that communication and cooperation among agents are not only
needed under nominal execution of the plan, but are even more important in
presence of some failure. In fact, when agent i realizes that agent j cannot be
provided with service q due to an action failure, it has to exploit the causal link
in T i

out to send agent j a message about the non availability of service q: agent
j becomes aware that the preconditions of action a will never be satisfied.

The cooperation and communication becomes more critical if we want to deal
with cases when the system observability is so partial that an agent i is unable
to conclude that the service q has been provided or not, and therefore it cannot
guarantee the agent j that q has been achieved.

1 We assume that the inter-agent communication is reliable and instantaneous.

Agent Cooperation for Monitoring and Diagnosing a MAP 69

U N L O A D (A 1 , O m , L 2) M O V E (A 1 , L 2 , L 1) L O A D (A 1 , O l , L 1) C A R R Y (A 1 , O l , L 1 , L 2)

M O V E (A 2 , L 3 , L 2) L O A D (A 2 , O m , L 2) C A R R Y (A 2 , O m , L 2 , L 3) U N L O A D (A 2 , O m , L 3) M O V E (A 2 , L 3 , L 2)

A T (O m , L 2)
L 2

. . . .

.

. . . .

.

. . . .

.

. . . .

.

M O V E (A 3 , L 4 , L 3) L O A D (A 3 , O m , L 3) C A R R Y (A 3 , O m , L 3 , L 4) P U T - O N (A 3 , O m , O h , L 4) M O V E (A 3 , L 4 , L 3)

L 3

. . . .

.
. . . .
.

A T (O m , L 3)

a0

a1
1 a1

2 a1
3 a1

4

a2
5 a2

6 a2
7 a2

8 a2
9

a3
10 a3

11 a3
12 a3

13 a3
14

a∞

Fig. 1. The global plan to be monitored

In this way, agent j cannot be sure whether the preconditions of its next
action a (which include q) are satisfied or not. If j adopted a conservative policy,
it would not execute action a, and hence it would stop the execution of its local
plan; however, this kind of policy may result impractical in many domains. We
propose a weak commitment policy where we assume by default that service q
has been provided, so the agent j can execute the action a. Obviously such a
default assumption can be wrong in some cases and therefore the mechanisms
for detecting the action failure and for performing plan diagnosis are much more
complex when respect to the case no default assumption is made.

Running Example. Throughout the paper we will illustrate the proposed
methodology by means a simple example from the blocks world. Let us con-
sider three agents that cooperate to achieve a global goal G where a number of
objects O1,. . ., On must be moved from a source location L1 to a target position
L4, passing through the intermediate positions L2 and L3. All these positions
are critical resources as only one agent can access one of them at a given time
instant; moreover, these positions are the only locations where, under nominal
conditions, an agent can pick up or release a block. Figure 1 shows a portion of a
MAP achieving the goal G; in particular the picture shows the actions involved
in the delivery of the object Om: each agent is responsible for carrying the object
from a position to the next one: A1 from L1 to L2, A2 from L2 to L3, and A3 from
L3 to L4 where Om is put on the top of a stack of objects.

The three rectangles enclose the local plans assigned to the agents. It is easy
to see that the MAP is a DAG where nodes are action instances and edges
represent precedence or causal links. However, for the sake of readability, internal
precedence links (i.e., between actions in the same local plan) are not displayed,
while internal causal links (thin solid edges) are reported without labels. Instead,
the picture highlights causal (solid edges) and precedence (dashed edges) links
between actions in different local plans: these links represent relations between
agents. For example, the causal link between actions a1 and a6 means that the
agent A1 provides agent A2 with the service at(Om, L2) (i.e., the object Om is
located in position L2); whereas the precedence link between actions a2 and a5,
labeled with the resource id L2 means that action a5 can be executed only after

70 R. Micalizio and P. Torasso

the execution of action a2, i.e., only when the resource L2 is no longer used by
agent A1 and it is made available to agent A2.

3 Basic Concepts on Distributed MAP Monitoring

In this section we introduce the model-based methodology we adopt for mon-
itoring the execution of a MAP. In particular, the models we propose for the
agent state and actions take care of the inherent ambiguity of the system.

Agent state. Intuitively, the status of the system can be represented in terms
of the status variables of the agents in the team T and of the status of the global
resources RES available in the environment. However, given the decentralized
setting, the status of the system has to be represented in a distributed way by
considering the set VARi of status variables associated to each agent i. As usual
in approaches based on Discrete Event Systems (DESs), each variable v ∈ VARi

assumes values in a predefined and finite domain Dom(v).
The set of status variables VARi is partitioned into two subsets: END i and

ENV i. END i includes the endogenous variables which characterize the specific
agent i (and therefore there is no direct relation between the endogenous vari-
ables of two agents i and j); ENV i includes all the variables concerning the
environment (e.g., the status of a resource, or the position of an object). Note
that, because of the partitioning, each agent i maintains a private copy of the
variables in ENV i; more precisely, for each resource resk ∈ RES (k : 1..|RES |)
the private variable resk,i is included in the set ENV i. The consistency among
the private copies is guaranteed by the existence of precedence links in RE: the
status of a resource is known only by the agent that holds it, for all the other
agents the status of the resource is not-available.

As noted earlier, the relinquishment/acquisition of a resource happens through
the exchange of messages between the agent who releases the resource and the
agent who gets the resource (this is performed via the send and receive actions
associated to the precedence link).

Action models. The model of an action a takes into account not only the
nominal effects of the action, but also the non deterministic effects of exogenous
events affecting the action execution. Formally, an action model is the tuple
〈pre(a), eff(a), event(a), Δ(a)〉 where pre(a) and eff(a) are subsets of VARi, rep-
resenting the variables over which the preconditions and the effects are defined,
respectively; event(a) is a subset of exogenous events in E∪{ε} that may occur
during the execution of a. Finally, Δ(a) is a transition relation modeling how
the status of agent i changes after the execution of a. In particular, the state
transition 〈sl, ε, st+1〉 ∈ Δ(a) models the case of the nominal behavior: ε denotes
the case where there is no occurrence of any exogenous event, while sl and sl+1

represent two agent states (i.e., two complete assignments of values to the status
variables in VARi) at the steps l and l + 1, respectively. The state transition
〈sl, e, sl+1〉 (with e ∈ E), denotes the occurrence of the exogenous event e; note
that it is easy to model, within the transition relation Δ(a), the non determin-
istic effects of e. Since in some domains it could be impossible (or too costly)

Agent Cooperation for Monitoring and Diagnosing a MAP 71

to provide a complete model of the effects of a exogenous event, we extend the
domain Dom(v) of each variable v ∈ VARi by including the value unknown;
when a variable assume the value unknown in sl+1 the actual value of v is no
more predictable.

Running example. Let us assume that, in our blocks world example, the agent
A2 loses the object Om while A2 is moving from L2 to L3 (action a7 of Fig. 1).
To take into account this possibility, the transition relation of the carry action
includes, among others, a state transition describing the effects of the exoge-
nous event lose-object on the status of agent A2. Intuitively, the lose-object event
changes the value of the variable A2.carrying from Om to empty; at the same time,
the variable Om.position (representing the position of the object) changes from
on-board-A2 to unknown; in this case, in fact, it is unrealistic to have a precise
model for the lose-object, and some of its effects cannot be anticipated.

4 Dealing with Ambiguity in MAP Monitoring

In the distributed framework proposed in this paper, each agent is responsible
for monitoring the actions it executes. Intuitively, the monitoring task has to
keep track of the agent status while the agent is executing the actions in its lo-
cal plan, and todetect as soon as possible anomalous discrepancies between the
expected nominal behavior of the agent and the observed one. To meet the first
objective, each agent i maintains a “history”, namely a trajectory, representing
the sequence of state transitions occurred during the execution of a plan seg-
ment. To meet the second objective, the agent i must be able to determine the
outcome of the actions it has executed; in fact, an anomalous execution mani-
fests itself when the nominal effects of an action have not been achieved.

The monitoring task is made complex not only because of the non determin-
ism of the action model, but also because of the very partial observability of the
system, which impacts the monitoring process in two ways: first, the trajectory
of agent i cannot be precisely estimated, (and therefore a set of alternatives,
called trajectory-set, must be maintained); second, the agent i must be able to
deal with ambiguous action outcomes: i could not be able to determine whether
the nominal effects of an action have been achieved.

Agent Trajectory and Trajectory-set. An agent trajectory, denoted as
tri(0, l), is defined over a segment [ai

0, . . . , a
i
l] of the local plan P i, and con-

sists of an ordered sequence of agent states and exogenous events representing
an evolution of the status of agent i consistent with the observations it has
received so far, more formally:

Definition 1. The agent trajectory tri(0, l) over the plan segment P i[a0, . . . , al]
is tri(0, l)=〈s0, e0, s1, . . . , el, sl+1〉, where:

sk (k : 0..l+1) is the state of agent i at the k-th step such that obsi(k)∪sk �	 ⊥.
eh (h : 0..l) is an event in E ∪ {ε} occurring during execution of action ah,

involved in the agent state transition from sh to sh+1.

72 R. Micalizio and P. Torasso

As mentioned above, we do not assume that the available system observability
guarantees to precisely determine the status of an agent after the execution of
each action. As a consequence of this ambiguity, the structure that the agent
i has to maintain is the trajectory-set Tri[0..l], which includes all the possible
agent trajectories tri(0, l) consistent with the observations received during the
execution of the plan segment P i[a0, . . . , al].

Albeit the trajectory-set Tri[0, l] maintains the history in the interval [0, l+1],
it is sometimes useful to single out the agent belief state at a given step k :

Definition 2. Given the consistent trajectory-set Tri[0..l], the agent belief state
Bi

k (k : 0..l + 1) is the set of all the consistent agent states inferred at the k-th
step. Formally, Bi

k= projectionsk
(Tri[0..l]).

Action Outcomes. Intuitively, the outcome of an action a is a synthetic piece
of information which states whether the nominal effects of a have been achieved
or not; of course, in the positive case the outcome of a is succeeded, the outcome
of a is failed otherwise.

In the Relational framework we propose, the nominal effects of an action a
result from the following expression:

nominalEff (a)=projectioneff (a)(selecte=εΔ(a)).

Namely, nominalEff (a) is the complete assignment of values to the status vari-
ables in eff(a), when no exogenous event occurs (i.e. e = ε).

The main problem in assessing the outcome of an action is the inherent ambi-
guity both in the action model and in the trajectory-set. For instance, in order to
assess the outcome action ai

l, agent i needs to check whether the nominal effects
of ai

l are satisfied in the agent belief state Bi
l+1. Unfortunately, given the partial

system observability, the agent belief state Bi
l+1 is in general ambiguous: it con-

tains states where the nominal effects of ai
l hold, and other states where they

do not hold. The following, conservative definitions allows agent i to univocally
determine the success or the failure of action ai

l.

Definition 3. The outcome of action ai
l is

succeeded iff for each state s ∈ Bi
l+1, s 	 nominalEff (ai

l).
failed iff for each state s ∈ Bi

l+1, s ∪ nominalEff (ai
l) 	 ⊥

However, in all those cases where these two definitions are not applicable we
adopt a weak commitment policy which allows the outcome of an action to be
pending; the assessment of the outcome is postponed till the belief state Bi

l+1

is sufficiently refined to conclude either the success or the failure. To this end,
the agent i maintains a list pOi of actions whose outcome has not been (yet)
determined.

The incremental monitoring process. Let us assume that the action ai
l re-

quires as precondition the service q provided by action aj
m (i.e., by another agent

j). Thus, as soon as action aj
m has been executed, agent j has to notify agent

i about the result of such an action by sending a message msg(aj
m, ai

l) to agent
i. Such a message includes only the tuple 〈ε, q〉 in case agent i can univocally

Agent Cooperation for Monitoring and Diagnosing a MAP 73

detect the success of action aj
m (i.e., no exogenous event occurred and the service

q has been provided). In case the outcome of action aj
m is pending (i.e., agent

j is not sure about the achievement of service q), the message includes not only
the nominal situation 〈ε, q〉, but also the anomalous situation 〈exo(j, aj

m),¬q〉,
where the service q is not achieved because of the occurrence of an exogenous
event denoted as exo(j, aj

m).
Since the action aj

m should provide the service q to action ai
l , the agent i

has to consume the message msg(aj
m, ai

l) during the monitoring of action ai
l; in

particular:

Definition 4. Tri[0, l] = selectobsi(l)[[Tri[0, l−1] × msg(aj
m, ai

l)] join Δ(ai
l))]

Intuitively, the Relational product Tri[0, l−1] × msgi
l is the mechanism through

which the agent i includes within its trajectory-set the info provided by agent j.
The join operation appends each possible transition in Δ(ai

l) at the end of each
trajectory tri(0, l − 1) in Tri[0, l − 1] iff the agent state sl (i.e., the last agent
state in the agent trajectory included the info provided by the message) satisfies
the preconditions of the action ai

l. The selection operation prunes the estima-
tions by removing all the predicted trajectories which are inconsistent with the
observations received as a feedback for the execution of ai

l. It is important to
note that the selection operator has an impact on the whole trajectory-set: the
agent trajectory tri(0, l) is removed from Tri[0, l] when the last agent state sl+1

is inconsistent with the observations. As we will discuss later, through this mech-
anism it is possible to refine the past history of the agent status, and possibly
determine the outcome of some past actions.

However, the above mechanism is not complete: it is possible, in fact, that
for some trajectories tri(0, l− 1) ∈ Tri[0, l− 1], the last state sl does not match
any of the transitions in Δ(ai

l); this happens when some variables in sl mention
the symbol unknown (i.e., that variables are no longer predictable). In order to
be able to incrementally extend also these trajectories for which the model of
the action is not directly applicable, the monitoring step makes use of a weak
prediction model:

Definition 5. Let tri(0, l−1) be an agent trajectory in Tri[0, l−1] such that sl

does not satisfy the preconditions for action ai
l; the agent trajectory tri(0, l−1) is

extended by appending a new state transition 〈sl, ε, sl+1〉, where for each variable
v ∈ VARi:

v assumes the value unknown in sl+1 iff v ∈ eff(ai
l)

v assumes in sl+1 the same value assigned in sl otherwise

The first condition states that the effects of the action ai
l become no longer

predictable; the second condition imposes the persistency for all those variables
which are not included in the definition of the nominal effects of the action ai

l.
Observe that also the predictions inferred by means of the weak model must be

consistent with the observations; when a variable v is unknown in sl, it assumes
in sl+1 the observed value in obs(ai

l), that is, the value unknown matches with
any possible observation.

74 R. Micalizio and P. Torasso

h - b r o k e n

h - b r o k e n
m - b r o k e n

T r A 2

h - b r o k e n
h - b r o k e n

T r A 3
ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

exo(A2, a2
8)

B2
6

B2
7

B2
8 B2

9 B2
10

B3
11

B3
12 B3

13 B3
14

B3,msg
10

s2
1

s2
2

s2
3

s2
4

s2
5

s2
6

s2
7

s2
8

s2
9

s2
10

s2
11

s2
12

s2
13

s2
14

s2
15

s3
1

s3
2

s3
3

s3
4

s3
5

s3
6

s3
7

s3
8

s3
9

s3
10

s3
11

s3
12

s3
13

s3
14

s3
15

lose-object

lose-object

Fig. 2. The trajectory-sets computed by agents A2 and A3

Running example. Figure 2 shows two trajectory-sets, TrA2 and TrA3, built
during the plan execution by agents A2 and A3 respectively; these trajectory-sets
are consistent with the observations received by the agents so far. Note that each
rectangle encloses all the agent states within a given belief state. For instance,
the belief state B2

9 includes the states s2
7, s2

8, s2
9, and s2

10.
The trajectory-sets keep trace of the possible occurrence of exogenous events

during the execution of the actions: for example, the exogenous event lose means
that the agent can lose a block during a carry action; whereas m-broken and
h-broken refer to a fault respectively in the mobility and handling functional-
ity of the agent, the first fault affects the move action, the second affects the
load/unload actions.

More important, since there exists a causal link between actions a2
8 and a113,

the agent A2 sent a message to agent A3 about the service AT(Om,L3) (see
Figure 1). However, action a2

8 has a pending outcome, thereby the message re-
ceived by A3 is ambiguous and maintains a reference to an exogenous event,
which possibly occurred during the execution of a2

8; this ambiguous message has
been consumed by agent A3 and included in the trajectory-set TrA3 through the
two transitions between the belief states B3,msg

10 and B3
11: the transition labeled

with ε models the accomplishment of service AT(Om,L3), the transition labeled
with exo(A2, a2

8) models the occurrence of an exogenous event.

5 Cooperative Plan Monitoring and Diagnosis

In this section we discuss how the trajectory-set inferred by agent i can be re-
fined by exploiting pieces of information provided by other team members. The
refinement of the trajectory-set is an important step, which allows agent i to
determine the outcome of some pending actions in pOi. To reach this objective,
one has to single out which pieces of information should be exchanged among
the agents and when.

Agent Cooperation for Monitoring and Diagnosing a MAP 75

agent i

procedure PropagateSuccess(ai
l) {

for each link cl ∈ T i
in|cl : aj

m

q
→ ai

l

notify agent j:
service q in cl : aj

m

q
→ ai

l accomplished
}

agent j

procedure ExploitSuccess(q, cl) {
assert q in Bj

m+1 and prune Trj

assert outcome(aj
m) = succeeded

revaluate outcome for each action in pOj

}

Fig. 3. The procedures for success propagation

In principle, the agents could exchange one another the observations they re-
ceive from the environment. However, this approach may suffer from two draw-
backs: first, the amount of data the agents need to exchange could be too large;
second, the data concerning the observations received by an agent could not be
necessarily useful for another agent.

As discussed in the previous section, in our approach the agents exchange the
results of a local interpretation process aimed at inferring the action outcome.
In particular, the messages are sent not only when an agent detects the success
or failure of an action, but also in presence of ambiguity (pending outcome). In
the following of the section, we will show how the ambiguous results provided
by agent j to agent i can be refined on the basis of the feedback provided by
agent i, so that agent j can determine the outcome of some previously pending
action.

First of all, let us consider the case when agent i detects the nominal outcome
for action ai

l on the basis of the observations obs(ai
l). In this case, the trajectories

in Tri[0..l] resulting from the monitoring step involve only ε transitions, and the
agent i can conclude that the execution of all previous actions is nominal and all
the services needed for action ai

l have been provided; in this way it is possible to
determine the outcome of some pending action in pOi. Moreover, the nominal
outcome of action ai

l provides a positive feedback to agent j, in fact the following
property assures that at least the nominal outcome of action aj

m is detected.

Property 1. Let ai
l be an action in Ai, and let aj

m an action in Aj such that
there exists a causal link cl ∈ T i

in, cl : aj
m

q→ ai
l , and let us assume the outcome

of action aj
m is pending; if ai

l has outcome succeeded then q has been certainly
accomplished and aj

m has outcome succeeded.

For this reason agent i invokes procedure PropagateSuccess (see Figure 3) to
notify other agents about this outcome. Observe that the propagation is per-
formed by considering only the subset of agents which provide action ai

l with
some service q (see the incoming causal links in T i

in).
The message about the accomplished service q is exploited by agent j, by

invoking procedure ExploitSuccess, whenever the agent j is not sure to have
provided q. To consume this message, the agent j asserts the atom q within its
trajectory-set Trj; more precisely, since the atom q refers to the effects of action
aj

m, q must be asserted in the agent belief state inferred after the execution of
aj

m, namely Bj
m+1. It is worth noting that as a side effect, the trajectory-set Trj

can be refined by pruning off all those agent trajectories which are not consistent
with q. Therefore, after this first step, the agent j reconsiders each pending action

76 R. Micalizio and P. Torasso

agent i

procedure BackPropagateFailure (ai
l){

infer local diagnosis Di

let exist cl ∈ T i
in| cl : aj

m

q
→ ai

l

if the only explanation in Di refers to exo(j, aj
m)

notify agent j service q has not been provided
}

agent j

procedure ExploitBackPropFailure(q, cl){
assert ¬q in Bj

m+1 (pruning of Trj)
assert outcome(aj

m) = failed

revaluate outcome for each action in pOj

infer local diagnosis Dj

}

Fig. 4. The procedures for back propagation of an action failure

in pOj , as it is possible that the trajectory-set Trj has been sufficiently refined
to determine the outcome of some of them.

In case agent i detects the failure of action ai
l , a local diagnosis process is

immediately activated to provide some possible explanations for that failure. A
local diagnosis can be inferred directly from the trajectory-set as follows.

Definition 6. Given the failure of action ai
l, and the trajectory-set Tri[0..l], the

local diagnosis for that failure is Di= projection e0,...,el
Tri[0..l].

In other words, the local diagnosis for the failure of ai
l is a set of sequences of

events, where each sequence seq has the form 〈e0, e1, . . . , el〉 and represents a
possible explanation. Each event ek (k : 0..l) is in E ∪ {ε}, however, since a not
nominal outcome has been detected, in each sequence seq at least one anomalous
event must be occurred.

It is important to note that some of the explanations included in the local
diagnosis could refer to anomalous events concerning services provided by other
agents; that is, it is possible to explain the failure of action ai

l as an indirect
consequence of the failure of some actions performed by other agents.

In particular, when agent i is able to explain its local failure just as a conse-
quence of a failure in the local plan by agent j, it invokes the procedure Back-
PropagateFailure (see Figure 4), to notify agent j that service q has not been
provided. Whenever agent j receives such a message activate procedure Exploit-
BackPropFailure: the local trajectory-set of agent j is refined by asserting ¬q
in Bj

m+1; after this step it is therefore possible for agent j to determine whether
other actions, besides aj

m, are failed, and hence the outcome for each pending
action in pOi is evaluated again. Finally, agent j infers the local diagnosis Dj

according to definition 6.

Running example. Let us consider again the trajectory-sets in figure 2, and
assume that after the execution of action a9, agent A2 receives the message “Po-
sition equals L2”. This piece of information is used to prune the trajectory-set
of A2, which is able to conclude that action a9 has outcome succeeded (the agent
knows that it has reached position L2 as exepected). However, A2 does not know
whether the object Om has been delivered to agent A3 or not, thus its set of
pending outcomes is pOA2={a6, a7, a8}.

Now, let us assume that the set of pending outcomes for agent A3 is pOA3=
{a11, a12, a13}, but after the execution of action a13 the agent A3 receives the
observation “Object Om on top of object Oh”, also in this case the observation

Agent Cooperation for Monitoring and Diagnosing a MAP 77

is used to prune the trajectory-set of A3, in particular the result of the pruning
consists in removing all the anomalous trajectories, and as a consequence A3
determines the nominal outcome for each action in pOA3. Observe that, as soon
as agent A3 determines the nominal completion of action a11, depending on
services provided by A2, it notifies A2 that those services have been provided.
In fact, the nominal outcome of action a11 implies also a nominal outcome for
action a8, which in turn implies the successful completion also for action a6

and a7.

6 Discussion and Conclusion

In recent years increasing attention has been devoted to plan execution and
in particular to plan diagnosis ([1,6]). In fact, the early detection of an action
failure, and of a possible explanation of its causes, are essential to start a recovery
step (see e.g. [4]). The framework by Roos et al. [2] has many similarities with the
framework we propose as it considers a precise notion of multi-agent plan, where
actions are atomic and concurrently performed by a team of agents. However,
Roos et al. discuss a centralized approach: the diagnostic problem takes into
account all the agents in the team and all the available observations at a given
time. Moreover, their action models consider just the nominal action behavior,
while any abnormal behavior is unknown. On the contrary, the framework we
have discussed is distributed: each agent is responsible both for executing actions
and for diagnosing them. In addition to that, we can model the nominal as well
as the anomalous behavior of an action; in particular, the anomalous behavior
may be non deterministic or even abstracted by unknown.

It is important to note that the complexity of the plan diagnosis task strongly
depends on the amount of observations available to the agents. In previous works
([3]) we have described methods able to detect and diagnose action failures when
each agent has sufficient information for certainly detecting the outcome at least
of each action providing other agents with services.

In the present paper we have considered a very challenging scenario where
the degree of observability is so low, that an agent may not determine the out-
come of an action even when that action provides services to other agents. A
demanding consequence of such a scenario is that the agents must be able to
deal with ambiguous action outcomes and need to communicate one another to
refine as far as possible their beliefs. To face this problem we presented the weak-
commitment policy, which allows pending outcomes to be turned into success or
failure through the exchange of messages among agents. Notice that messages
are not raw data (such as low-level observations), but are action outcomes. The
advantage of this solution is twofold: first, agents reduce the amount of data to
be communicated; second, agents exchange much more informative data since
action outcomes are the results of (local) interpretation processes.

A preliminary set of experiments is currently carried on for testing the ap-
proach, which has been implemented by extending the software prototypes used
in [3], and by exploiting the symbolic formalism of the Ordered Binary Decision
Diagrams for compactly encoding both action models and trajectories.

78 R. Micalizio and P. Torasso

References

1. Kalech, M., Kaminka, G.A.: On the design of coordination diagnosis algorithms for
teams of situated agents. Artificial Intelligence 171(8-9), 491–513 (2007)

2. Roos, N., Witteveen, C.: Models and methods for plan diagnosis. Journal of Au-
tonomous Agent and MAS 19(1), 30–52 (2009)

3. Micalizio, R., Torasso, P.: Monitoring the execution of a multi-agent plan:dealing
with partial observability. In: Proc. of ECAI 2008, pp. 408–412 (2008)

4. Micalizio, R.: A distributed control loop for autonomous recovery in a multi-agent
plan. In: Proc. of the 21st IJCAI 2009 (to appear, 2009)

5. Cox, J.S., Durfee, E.H., Bartold, T.: A distributed framework for solving the mul-
tiagent plan coordination problem. In: Proc. AAMAS 2005, pp. 821–827 (2005)

6. Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organizational struc-
tures. In: Proc. Int. Conf. on Autonomous Agents (ICAA 2001), pp. 529–536 (2001)

	Agent Cooperation for Monitoring and Diagnosing a MAP
	Introduction
	Distributed Execution of a Multi-Agent Plan
	Basic Concepts on Distributed MAP Monitoring
	Dealing with Ambiguity in MAP Monitoring
	Cooperative Plan Monitoring and Diagnosis
	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

