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Abstract

We obtain upper bounds and Nordhaus–Gaddum-type results for the Laplacian

energy. The bounds in terms of the number of vertices are asymptotically best pos-

sible.

1. INTRODUCTION

In this paper we are concerned with simple graphs. Let G be a graph with vertex

set V (G). The spectrum of the graph G, consisting of the numbers λ1, λ2, . . . , λn, is

the spectrum of its adjacency matrix A(G) of G [1]. The Laplacian spectrum of the

graph G, consisting of the numbers μ1, μ2, . . . , μn, is the spectrum of its Laplacian

matrix L(G) = D(G)−A(G) [2], where D(G) is the diagonal matrix of vertex degrees

of G.

The energy of the graph G is defined as [3–6]

E(G) =
n∑

i=1

|λi|.
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Let du be the degree of vertex u in the graph G. Let d(G) be the average degree of G,

i.e., d(G) = 1
n

∑
u∈V (G)

du = 2m
n

, where n and m are respectively the numbers of vertices

and edges of G. The Laplacian energy of the graph G is defined as [7]

LE(G) =
n∑

i=1

|μi − d(G)| .

Some recent results on the Laplacian energy were reported in [8, 9]. Nordhaus and

Gaddum [10] gave bounds for the sum of the chromatic numbers of a graph G and

its complement G. Nordhaus–Gaddum-type results for energy and Laplacian energy

were discussed in [11].

We establish a relation between Laplacian energy, energy and degree sequence of

a graph, from which upper bounds for the Laplacian energy in terms of the number

of vertices and/or number of edges are deduced and improved Nordhaus–Gaddum-

type results for Laplacian energy are given. We find that the bounds in terms of the

number of vertices are asymptotically best possible.

2. RESULTS

Let X be an n × n complex matrix. The square roots of the eigenvalues of X∗X are

the singular values of X, denoted by s1(X), s2(X), . . . , sn(X), where X∗ denotes the

Hermitian adjoint of X [13]. The following lemma due to Fan [12] is well-known, see,

e.g., [13].

Lemma 1. Let X and Y be n × n complex matrices. Then

n∑
i=1

si(X + Y) ≤
n∑

i=1

si(X) +
n∑

i=1

si(Y).

For the graph G with n vertices, obviously, |λi| = si(A(G)) and |μi − d(G)| =

si (L(G) − d(G)In) for i = 1, 2, . . . , n, where In is the n × n identity matrix.

Let Kn be the complete graph with n vertices. Obviously, Kn consists of n isolated

vertices. The vertex–disjoint union of the graphs G and H is denoted by G ∪ H.

Proposition 1. Let G be a graph. Then

LE(G) ≤ E(G) +
∑

u∈V (G)

|du − d(G)| .

- 554 -



Proof. Let n = |V (G)|. Note that

L(G) − d(G)In = D(G) − A(G) − d(G)In = −A(G) + [D(G) − d(G)In] .

Applying Lemma 1,

LE(G) =
n∑

i=1

si (−A(G) + [D(G) − d(G)In])

≤
n∑

i=1

si (−A(G)) +
n∑

i=1

si ([D(G) − d(G)In])

=
n∑

i=1

si (A(G)) +
n∑

i=1

si ([D(G) − d(G)In])

= E(G) +
∑

u∈V (G)

|du − d(G)| ,

as desired. �

We note that the upper bound in Proposition 1 has been reported in [14], and that

it may be attained, e.g., for regular graphs. A proof is included for completeness.

By Proposition 1, we may deduce upper bounds for the Laplacian energy from

the upper bounds of energy and the quantity
∑

u∈V (G)

|du − d(G)|.

For a graph G with n vertices, it was shown in [15] that

E(G) ≤ n3/2 + n

2

with equality if and only if G is a strongly regular graph (regular of degree n+
√

n
2

, each

pair of adjacent vertices and each pair of non-adjacent vertices have exactly n+2
√

n
4

common neighbors).

Recall that the discrepancy of the graph G with n vertices is defined as

disc(G) =
1

n

∑
u∈V (G)

|du − d(G)| .

Let a = min{d(G), d(G)} = min{d(G), n − 1 − d(G)}. Then 0 ≤ a ≤ n−1
2

. Haviland

[16] showed that

n · disc(G) ≤ a
(
2n − 1 −

√
4na + 1

)
,

and as a function of a in the range 0 ≤ a ≤ n−1
2

, the upper bound for n · disc(G) is

maximized at a = 2n2−2n−1+(2n−1)
√

n2−n+1
9n

, and thus

n · disc(G) ≤ 2
[
(2n − 1)(n + 1)(n − 2) + 2(n2 − n + 1)3/2

]
27n

.
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For a graph G with n vertices, a
(
2n − 1 −

√
4na + 1

)
= 0 if and only if a = 0 for

0 ≤ a ≤ n−1
2

, i.e., G = Kn or G = Kn. Applying Proposition 1, and the bounds for

E(G) and n · disc(G) mentioned above, we have

Proposition 2. Let G be a graph with n vertices. Then

LE(G) <
n3/2 + n

2
+ a
(
2n − 1 −

√
4na + 1

)

LE(G) <
n3/2 + n

2
+

2
[
(2n − 1)(n + 1)(n − 2) + 2(n2 − n + 1)3/2

]
27n

.

For a graph G with n ≥ 2 vertices, our earlier Nordhaus–Gaddum-type result for

Laplacian energy [11] says LE(G)+LE(G) < n
√

n2 − 1 . This may now be improved

as:

Proposition 3. Let G be a graph with n ≥ 3 vertices. Then

LE(G) + LE(G) < n − 1 + (n − 1)
√

n + 1 + 2a
(
2n − 1 −

√
4na + 1

)

LE(G) + LE(G) < n − 1 + (n − 1)
√

n + 1

+
4
[
(2n − 1)(n + 1)(n − 2) + 2(n2 − n + 1)3/2

]
27n

.

Proof. Let m be the number of edges of G. Note that
n∑

i=1

λ2
i = 2m and by the

Cauchy–Schwarz inequality, E(G) ≤ λ1 +
√

(n − 1)(2m − λ2
1) with equality if and

only if |λ2| = · · · = |λn|, where λ1 is the largest eigenvalue of G. Let λ1 be the largest

eigenvalue of G. Then

E(G) + E(G) ≤ λ1 +
√

(n − 1)(2m − λ2
1)

+λ1 +

√
(n − 1)

[
n(n − 1) − 2m − λ1

2
]

≤ λ1 + λ1 +

√
2(n − 1)

[
n(n − 1) −

(
λ2

1 + λ1
2
)]

≤ λ1 + λ1 +

√
2(n − 1)

[
n(n − 1) − 1

2

(
λ1 + λ1

)2]
.

Note that the function f(x) = x +
√

2(n − 1)
[
n(n − 1) − x2

2

]
is monotonously de-

creasing for x ≥
√

2(n − 1) and that by Weyl’s theorem [13], λ1 + λ1 is no less than
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the largest eigenvalue n − 1 of the matrix A(G) + A(G) = A(Kn), implying that

λ1 + λ1 ≥ n − 1 ≥
√

2(n − 1) (or from [1], λ1 + λ1 ≥ d(G) + d(G) = n − 1). Thus,

E(G) + E(G) ≤ f(n − 1) = n − 1 + (n − 1)
√

n + 1 ,

and if equality is attained then G is regular, λ1 = λ1 = n−1
2

, and thus
√

1
n−1

(2m − λ2
1)

=
√

n+1
2

is an eigenvalue of G with multiplicity n−1
2

(
1 − 1√

n+1

)
, which can not be an

integer for n ≥ 3. Then the above bound for E(G) + E(G) can not be attained. Now

the result follows from the bounds for n · disc(G). �

Let G = Kq ∪ Kn−q . Then d(G) = q(q−1)
n

. The Laplacian spectrum of G consists

of q (q − 1 times) and 0 (n − q + 1 times). It follows that

LE(G) =
nq − q(q − 1)

n
(q − 1) +

q(q − 1)

n
(n − q + 1) =

2q(q − 1)(n − q + 1)

n
.

Let q = 2n
3

. Then

LE(G) =
4(2n − 3)(n + 3)

27
.

Note that d(G) = n(n−1)−q(q−1)
n

and the Laplacian spectrum of G consists of n (n − q

times), n − q (q − 1 times) and 0 (1 times). We have

LE(G) =
n + q(q − 1)

n
(n − q) +

nq − n − q(q − 1)

n
(q − 1)

+
n2 − n − q(q − 1)

n

=
2(n − q) [n + q(q − 1)]

n
=

2n(4n + 3)

27
.

This example and the previous two propositions imply

Proposition 4. Let Gn be the class of graphs with n vertices. Let

LE(n) = max{LE(G) : G ∈ Gn}

NGLE(n) = max{LE(G) + LE(G) : G ∈ Gn}.

Then

lim
n→∞

LE(n)

n2
=

8

27

lim
n→∞

NGLE(n)

n2
=

16

27
.
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Recall that the first Zagreb index [17, 18] of the graph G is Zg(G) =
∑

u∈V (G)

d2
u.

Let G be a graph with n vertices and m edges. By the Cauchy–Schwarz inequality,

∑
u∈V (G)

|du − d(G)| ≤
√

n
∑

u∈V (G)

[du − d(G)]2 =
√

nZg(G) − 4m2

with equality if and only if |du − d(G)| is a constant for each u ∈ V (G). We note that

1
n

∑
u∈V (G)

[du − d(G)]2 was called the variance of G, e.g., in [19]. Thus, by Proposition

1, we have

LE(G) ≤ E(G) +
√

nZg(G) − 4m2 .

Remark 1. We may give somewhat finer upper bounds for the Laplacian energy by

applying Proposition 1. We give an example. Let G be a graph with n ≥ 2 vertices,

m edges and the first Zagreb index Zg, then [20]

E(G) ≤
√

Zg

n
+

√
(n − 1)

(
2m − Zg

n

)

with equality if and only if G is Kn, Kn, mK2 (m copies of vertex–disjoint K2), or a

non-complete connected strongly regular graph with two non-trivial eigenvalues both

with absolute value
√

2m−(2m/n)2

n−1
. Thus,

LE(G) ≤
√

Zg

n
+

√
(n − 1)

(
2m − Zg

n

)
+
√

nZg(G) − 4m2

with equality if and only if G is Kn, Kn , mK2, or a non-complete connected strongly

regular graph with two non-trivial eigenvalues both with absolute value
√

2m−(2m/n)2

n−1
;

and

LE(G) ≤
√

Zg

n
+

√
(n − 1)

(
2m − Zg

n

)
+ a
(
2n − 1 −

√
4na + 1

)
with equality if and only if G = Kn or G = Kn .

Remark 2. Let G be a graph with n ≥ 3 vertices and m > 0 edges. If G is Kr+1-free

with 2 ≤ r ≤ n − 1, then [21]

Zg(G) ≤ 2r − 2

r
nm

with equality for r = 2 if and only if G is a complete bipartite graph, and thus

LE(G) ≤ E(G) +

√
2r − 2

r
n2m − 4m2 .
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In particular, if G is bipartite (r = 2), then [22]

E(G) ≤ n(
√

n +
√

2)√
8

,

and thus

LE(G) ≤ E(G) +
√

n2m − 4m2

<
n(
√

n +
√

2)√
8

+
n2

4
.

The second inequality is strict because the bound for E(G) can not be attained for the

complete bipartite graph, which is equal to 2
√

s(n − s) ≤ n for some 1 ≤ s ≤ �n
2
�.

Note that for rational number α with 0 < α ≤ 1
2
, LE

(
Kαn,(1−α)n

)
= 2αn + 2α(1 −

α)(1 − 2α)n2. Let LEbip(n) be the maximum Laplacian energy of n-vertex bipartite

graphs. Then 2α(1 − α)(1 − 2α) < lim
n→∞

LEbip(n)

n2 ≤ 0.25. For real x with 0 < x ≤ 1
2
,

x(1−x)(1− 2x) is maximum if and only if x = 3−√
3

6
. Let α = 0.211 < 3−√

3
6

, we have

0.19 < lim
n→∞

LEbip(n)

n2 ≤ 0.25. If G is a tree, then Zg(G) ≤ n(n − 1), and thus

LE(G) ≤ E(G) +
√

n − 1(n − 2).
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