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Abstract

We obtain upper bounds and Nordhaus—-Gaddum-type results for the Laplacian
energy. The bounds in terms of the number of vertices are asymptotically best pos-
sible.

1. INTRODUCTION

In this paper we are concerned with simple graphs. Let G be a graph with vertex
set V(G). The spectrum of the graph G, consisting of the numbers Ay, Aa, ..., Ay, is
the spectrum of its adjacency matrix A(G) of G [1]. The Laplacian spectrum of the

graph G, consisting of the numbers g, pia, . . ., fin, is the spectrum of its Laplacian
matrix L(G) = D(G) — A(G) [2], where D(G) is the diagonal matrix of vertex degrees
of G.

The energy of the graph G is defined as [3-6]

E(G) =Z\>\i|~
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Let d, be the degree of vertex u in the graph G. Let d(G) be the average degree of G,

ie,d(G)=1 3 d, =22 wheren and m are respectively the numbers of vertices

wev(@) "
and edges of G. The Laplacian energy of the graph G is defined as [7]

LE(G) =3 _lni = d(G)].

Some recent results on the Laplacian energy were reported in [8, 9]. Nordhaus and
Gaddum [10] gave bounds for the sum of the chromatic numbers of a graph G and
its complement G. Nordhaus-Gaddum-type results for energy and Laplacian energy
were discussed in [11].

We establish a relation between Laplacian energy, energy and degree sequence of
a graph, from which upper bounds for the Laplacian energy in terms of the number
of vertices and/or number of edges are deduced and improved Nordhaus-Gaddum-
type results for Laplacian energy are given. We find that the bounds in terms of the

number of vertices are asymptotically best possible.

2. RESULTS

Let X be an n x n complex matrix. The square roots of the eigenvalues of X*X are
the singular values of X, denoted by s1(X), s2(X), ..., $,(X), where X* denotes the
Hermitian adjoint of X [13]. The following lemma due to Fan [12] is well-known, see,

e.g., [13].

Lemma 1. Let X and Y be n x n complex matrices. Then

n

S s(X+Y) < Zs,;(X) + ZSi(Y).

i=1
For the graph G with n vertices, obviously, |\;| = s;(A(G)) and |u; — d(G)| =
$i (L(G) — d(G)1,,) for i = 1,2, ..., n, where I, is the n x n identity matrix.
Let I, be the complete graph with n vertices. Obviously, K, consists of n isolated

vertices. The vertex—disjoint union of the graphs G and H is denoted by G U H.

Proposition 1. Let G be a graph. Then

LE(G) < E(G)+ > |dy—d(G)|.

ueV(G)



- 555 -

Proof. Let n = |V(G)|. Note that
L(G) — d(G)I, = D(G) — A(G) — d(G), = —A(G) + [D(G) — d(G)L,].

Applying Lemma 1,
LE(G) = Zs (—A(G) 4+ [D(G) — d()L,))
> s (—AG) + Z s: ([D(G) — d(G)L,))

i=1

IA

= D_si(AG) + s (ID(G) — dG)L))
= EG)+ Y |d.—dG),

ueV(G)

as desired. W

We note that the upper bound in Proposition 1 has been reported in [14], and that
it may be attained, e.g., for regular graphs. A proof is included for completeness.
By Proposition 1, we may deduce upper bounds for the Laplacian energy from

the upper bounds of energy and the quantity > |d, — d(G)|.
ueV(G)

For a graph G with n vertices, it was shown in [15] that

n3? +n
E(G) < ntn
2
with equality if and only if G is a strongly regular graph (regular of degree %ﬁ each
pair of adjacent vertices and each pair of non-adjacent vertices have exactly W

common neighbors).
Recall that the discrepancy of the graph G with n vertices is defined as
. 1
disc(G) = u;:g) |d, — d(G)] .
Let a = min{d(G),d(G)} = min{d(G),n — 1 — d(G)}. Then 0 < a < “;!. Haviland
[16] showed that
n - disc(Q) §a(2n—1—m>.,

and as a function of a in the range 0 < a < %, the upper bound for n - disc(G) is

2n2—2n—1+(2n—1)vn2—n+1
n?—2n +(97:L )Vn2—n+ , and thus

2 [(Qn —Dn+1n—-2)+2n*—n+ 1)3/2]
2Tn :

maximized at a =

n - disc(G) <
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For a graph G with n vertices, a (2n —1—+4na + 1) =0 if and only if a = 0 for
0<a< "T_l, ie, G =K, or G =K,. Applying Proposition 1, and the bounds for

E(G) and n - disc(G) mentioned above, we have

Proposition 2. Let G be a graph with n vertices. Then

n3? 4+ n

LE(G) < 3

+a(2n—1—\/4na+1)

n?? 4 n N 2[(2n — 1)(n+1)(n —2) + 2(n* —n +1)*?] .

LE
(G) <= 27n

For a graph G with n > 2 vertices, our earlier Nordhaus—Gaddum-type result for
Laplacian energy [11] says LE(G)+ LE(G) < nv/n? — 1. This may now be improved
as:

Proposition 3. Let G be a graph with n > 3 vertices. Then

LEGY+LEG)<n—1+n—-1)vVn+1+2a <2n—1—\/4na+1)

LEG)+LEG) < n—1+nm—-1)vVn+1
4[@2n—1)(n+1)(n —2) +2(n* —n+1)*?]
+ 27n '

Proof. Let m be the number of edges of G. Note that >> A2 = 2m and by the
i=1

Cauchy-Schwarz inequality, E(G) < A\; + +/(n — 1)(2m — A\?) with equality if and

only if [Ay| = - -+ = |\,|, where )\ is the largest eigenvalue of G. Let A, be the largest

eigenvalue of G. Then

E(G)+E(G) < M+4y/(n—1)(2m—)})
+71+\/(n—1)[n(n—1)—2m—712]
< /\1+)\71+\/2(n—1) [n(n—l)—()\%-i-x?)}
< /\1+/\1+\/2(n1) |:TL(TL*1)*%(/\1+)\71)2:|.

Note that the function f(z) = = + \/2(n -1)[n(n—1)— %} is monotonously de-

creasing for x > /2(n — 1) and that by Weyl’s theorem [13], A; + A; is no less than
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the largest eigenvalue n — 1 of the matrix A(G) + A(G) = A(K,), implying that
MAMN>n—12>/2n—1) (or from [1], Ay + N > d(G) + d(G) =n — 1). Thus,

EG)+EG) <fn—-1)=n—1+mn-1)Vn+1,

and if equality is attained then G is regular, A\, = \; = "T_l, and thus ﬁ (2m — \?)
= Vil -l ( — ﬁ), which can not be an
integer for n > 3. Then the above bound for E(G) + E(G) can not be attained. Now
the result follows from the bounds for n - disc(G). W

is an eigenvalue of G with multiplicity

Let G = K,U K,,_,. Then d(G) = @. The Laplacian spectrum of G consists
of ¢ (¢ —1 times) and 0 (n — ¢ + 1 times). It follows that

q(qfl)(n_qﬂ):2q(q71)(n*q+1).

Le(c) =M=,

—1)+

Let ¢ = %" Then
4(2n - 3)(n +3)
27

Note that d(G) = % and the Laplacian spectrum of G consists of n (n — ¢

LE(G) =

times), n — ¢ (¢ — 1 times) and 0 (1 times). We have

n+q(q—1)(n_q)+nq—n—Q(q—1)(

LE(G) = - - q—1)
o alg ) |
_ 2(n—q)[n+q(qg—1)] _ 2n(4n + 3)
n 27 '

This example and the previous two propositions imply

Proposition 4. Let G,, be the class of graphs with n vertices. Let
LE(n) =max{LE(G): G € G,}

NGLE(n) = max{LE(G) + LE(G) : G € G,}.

Then (n)
. LE(n 8
dm = =%
lim NGLE(n) _ E

n—oo n? 27
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Recall that the first Zagreb index [17, 18] of the graph G is Zg(G) = > d2.
ueV(G)
Let GG be a graph with n vertices and m edges. By the Cauchy—Schwarz inequality,

Soody—d@)] < fn DY [de— d(@)? = /nZg(G) — 4m?
ueV(G) uweV(G)
with equality if and only if |d, — d(G)] is a constant for each u € V(G). We note that
LS~ [d, — d(G))* was called the variance of G, e.g., in [19]. Thus, by Proposition

n
ueV(G)

1, we have
LE(G) < E(G) 4+ nZg(G) — 4m2.

Remark 1. We may give somewhat finer upper bounds for the Laplacian energy by
applying Proposition 1. We give an example. Let G be a graph with n > 2 vertices,
m edges and the first Zagreb index Zg, then [20]

E(G)g\/?+\/(n—1) (zm_%)

with equality if and only if G is K,,, K,, mK, (m copies of vertex-disjoint K5), or a

non-complete connected strongly regular graph with two non-trivial eigenvalues both

with absolute value «/W . Thus,
Z Z
LE(G) < /22 + \/(n —1) <2m - l) +/nZg(G) — dm?
n n

with equality if and only if G is K,,, K, , mKs, or a non-complete connected strongly

regular graph with two non-trivial eigenvalues both with absolute value 4/ 2m=(@m/n)?

n—1 ’

LE(G)§\/?—}—\/(n—l)(Zm—an>+a(2n—1—M)

with equality if and only if G = K, or G = K,, .

and

Remark 2. Let G be a graph with n > 3 vertices and m > 0 edges. If G is K, 1-free
with 2 <7 < n —1, then [21]

2r — 2

Zg(G) < nm

with equality for » = 2 if and only if G is a complete bipartite graph, and thus

2
n?m — 4m?2 .




- 559 -

In particular, if G is bipartite (r = 2), then [22]

B(G) < 7’”(@2 v2)

and thus

LE(G) < E(G)+ Vn2m —4m?
n(v/n+v2) i n?
V8 4
The second inequality is strict because the bound for F(G) can not be attained for the
complete bipartite graph, which is equal to QW < n for some 1 < s < [3].
Note that for rational number o with 0 < o < %7 LE (Kum(l_u),,L) = 2an + 2a(1 —
a)(1 —2a)n®. Let LEy;,(n) be the maximum Laplacian energy of n-vertex bipartite

graphs. Then 2a(1 — a)(1 — 2a) < lim w’;’iw < 0.25. For real z with 0 < z < 3,

z(1—2)(1 —2z) is maximum if and only if z = % Let « = 0.211 < 3*6‘/3, we have

0.19 < lim LE’,’I'i‘;(") < 0.25. If G is a tree, then Zg(G) < n(n — 1), and thus

LE(G) < E(G)+vVn—1(n—2).
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