

A Semantic Double-Buffer Based Approach to Enhance Semantic Web
Search*

Ling Chen, Hai Jin, Sheng Di
Cluster and Grid Computing Lab

Services Computing Technology and System Lab
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract

With the development of semantic web, search
efficiency is becoming a challenging issue. To address
this problem, we design an approach which mainly has
two features. First, we explore potential semantic
relationship between different objects and make full
use of them to build a semantic buffer on server end,
enhancing search speed. Second, we put another
relatively small semantic buffer on each client so as to
adapt to each individual user’s interests, further
improving the whole search efficiency and reducing
server’s load. Through testing on a practical platform,
we testified that this Semantic Double-Buffer based
search approach can not only effectively reduce user’s
request response time, but considerably release
server’s load, bringing a high scalability.

1. Introduction

With the emergence and development of semantic
web [1], search methods based on semantic web
techniques promise advantages compared to
conventional approaches. Semantic web is an
extension of the current web, based on the idea of
exchanging information with explicit, formal and
machine-accessible descriptions of meaning. Semantic
web contains resources corresponding not only to real
world objects (e.g., texts, images, people, places,
organizations), but also to relationships between
objects [2]. Semantic web search can reveal
relationship and semantic related information.

* This work is supported by National Basic 973 Research
Program of China under grant No.2003CB317003, and the
Cultivation Fund of the Key Scientific and Technical
Innovation Project, Ministry of Education of China under
grant 705034.

There are some solutions to address how to store
and search objects and relationship in semantic web
encoded with RDF [3], and the most famous one is
Sesame [4], an RDF data repository. Sesame can store
and query metadata and relation in RDF(S). Yet, its
running efficiency is comparatively low, especially
when the data quantities scale up, in that it has to
traverse all data every time users query information. As
a matter of fact, we notice that some information and
their semantic related information would always be
searched more frequently than others. Taking literature
retrieval for example, because of qualities of various
papers, some classic papers and their semantic related
information might often be queried, while in contrast,
the access probability of comparatively plain ones
would be much less. Furthermore, for an individual
user, because of his/her specific interests, some
information and their related information may also be
accessed more frequently. So we believe that
sufficiently mining relationship among objects and
buffering them in a suitable way would immensely
improve search efficiency. Based on this thought, we
explore potential semantic relationship between objects
and design an algorithm to buffer them on server-end,
and design another buffering algorithm on client-end to
adapt to every individual’s interests, for further
improving search efficiency.

It is necessary to note that to explain the
applicability of our approach, we select scientific
literature as research domain in this paper. But it is
also appropriate to extend it to other application
domains, such as document search and music search.

The rest of this paper is organized as follows. In
section 2, we introduce the related work. Section 3
introduces the architecture of semantic double-buffer
based search approach. Section 4 discusses the
algorithms of semantic double-buffer based search. In
section 5 we test the performance of our approach.
Finally, we present some concluding remarks.

Second International Conference on the Digital Society

0-7695-3087-7/08 $25.00 © 2008 IEEE
DOI

111

Second International Conference on the Digital Society

0-7695-3087-7/08 $25.00 © 2008 IEEE
DOI

111

Second International Conference on the Digital Society

0-7695-3087-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDS.2008.13

111

Second International Conference on the Digital Society

0-7695-3087-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDS.2008.13

111

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 13, 2008 at 02:53 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357358818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Related Work

To our knowledge, semantic relationship of almost
all the current search engines are mainly used to
present the relationship between different concepts,
making related metadata more readable or clear.
Presently, some related systems includes EKOSS [5],
CiteSeer [6], Flink [7, 8], and so on.

EKOSS (Expert Knowledge Ontology based
Semantic Search) is a web-based system developed for
sharing expert knowledge from research fields related
to bioscience, engineering and environment. Since
there are some semantic-inference methods used in this
system, a user can submit semantically meaningful
queries and the system can return more accurate results
that matches the user's search target. But EKOSS just
consider semantic relationships from inference's
perspective to express terms precisely. Instead, we
make full use of these relationships to enhance search
efficiency from many aspects.

CiteSeer is an autonomous citation indexing system
which indexes academic literature in electronic format.
It can not only understand how to parse citations, but
identify citations to the same paper in a variety of
formats and the context of citations in the body of
articles. In CiteSeer, papers related to a given paper
can be located using common citation information or
word vector similarity. However, this implementation
mainly focuses on the method of indexing.

Flink employs semantic technology for reasoning
with personal information extracted from a number of
electronic information sources including web pages,
emails, publication archives and Friend-Of-A-Friend
(FOAF) [9] profiles. It can also be regarded as a
presentation of the professional work and social
connectivity of semantic web researchers. Its
architecture can be divided in three layers concerned
with metadata acquisition, storage and visualization.
The storage layer is implemented through RDF Sesame
repository which is in terms of semantic web standard,
but with a comparatively low search speed. That is

mainly because it has to traverse through all data every
time users query any information.

Just as mentioned above, all the three related
systems can reveal in-depth semantic information and
semantic relationships between objects. Moreover,
they are able to do not only key-based searches, but
relationship-based searches. It is possible for their
users to search a paper via the normal way, inputting
keywords, and then browse the related information on
the basis of these previous search results, say, a series
of cited papers. However, since there is not any buffer-
related module in their architectures, the response time
when querying some information, whether it is key-
based or relationship-based, will definitely be more or
less over-wasted.

3. Architecture

The architecture of the Semantic Double-Buffer
based search is shown in Fig.1. After a user submits a
request, it will be sent to a buffer-agent of user’s client
before being transferred to server. As long as there is
target information in the client’s buffer, the
information will be popped out and presented
straightforwardly to users. Otherwise, the request will
be submitted to servers, and the result from server will
be cached into the client’s buffer for future use. So far,
the first-level buffer which is on client has been
searched.

For server-end, as soon as it receives a request, it
will first search server-buffer via an agent, in that the
buffer would have cached many results activated by
other users’ requests in the near period. If there is
needed information in the buffer, then the buffer takes
out the information immediately and responds back. If
there is not any information matched, then querying
database (Sesame) can not be avoided. After finishing
searching, the results will be analyzed and structured
and then put into the server-buffer. So far, the second-
level buffer has been searched and structured.

Figure 1. Architecture of Semantic Double-Buffer-Based Semantic Web Search

112112112112

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 13, 2008 at 02:53 from IEEE Xplore. Restrictions apply.

4. Semantic Double-Buffer Algorithm

4.1 Semantic Model

We use ontology [11-13], which is defined as
shared formal conceptualizations of particular domains,
to reveal objects and their relationship. We design an
ontology model (simplified RDF graph) of scientific
literature. This ontology model integrates all valuable
objects, metadata and semantic related information of
scientific literature field. As shown in Figure 2, there
are two classes in the ontology model: publication and
author. Each class has several properties which
describe the class in detail, for example, name of the
author and title of the publication. There are several
relationships between classes. The relationships
include write (between author and literature), co-write
(between author and author), cited by (between
literature and literature), cite (between literature and
literature), and similar (between literature and
literature). If we provide information to users
according to this model, it would be of great help for
searching.

rdfs:Class

authors

Publication

rdf:Seq

person

first name

last name

create degree

abstract

title

year

similar

citedby

cite

similarity
rdfs:Literarl

co-author

co-times

rdfs:Property

range

domain & range

domain

domain

rdfs:Literarl

range

Property

Property

range

domain

member
domain&range

cited-timedomain

rdfs:Literarl

range

Figure 2. Ontology Model of Scientific
Literature

The algorithm discussed in sessions 4.2 and 4.3 are
based on this ontology model. Actually, as long as any
two related objects are equivalent to each other, the
relationship, defined as peer-to-peer-relationship (p2p-
relationship), between them can be used in this
algorithm. For instance, cite (or cited by) is between
papers, co-write is between authors. It is clear that
there are two key common points in the above two
relationships: 1) Objects are equivalent to each other,
such as paper1 and paper2 are both papers; 2) The

relationship between objects is recursive. For example,
any paper cited by other papers can also cites some
papers else. In comparison, the relationship between
author and paper is not a p2p-relationship.

4.2 Server-Buffer Algorithm

It is always the case that users not only pay

attention to semantic related information of an object,
but also are interested in its semantic related
information’s semantic related information, which is
defined as two layer semantic related information in
this paper. For example, a user who pays attention to
an author called Denial may probably be interested in
Denial’s co-author Sam, and Sam’s co-author may
probably write valuable paper that the user wants. So it
is useful to link these authors together and buffer
author’s co-author’s co-author in a buffer. We call it
multi-layer semantic relationship.

Because we not only buffer objects themselves, but
also link them together and buffer multi-layer semantic
relationships. Hence, users can always immediately
retrieve needed information on server-end indirectly
instead of directly. Indirectly means that users can
retrieve information immediately even though no
previous users requested the same author.

Based on this idea, we design a structure which can
integrate objects and semantic relationships together,
and propose a server buffer algorithm which describes
a process on how to build this structure.

Now we define Semantic Server-Buffer Structure.
This structure includes some sub-structures.

Define Author Association Information Object
(AAIO) as follow:

AAIO = (Static Property Information, Index)
= (UID, Name, CreateDegree, index of coAuthor List)

AAIO consists of two parts: Static Property
Information Field (SPIF) and Index Field (IF). SPIF
includes three sub-fields: UID, Name, CreateDegree.
UID is unique ID of author. CreateDegree is a
coefficient used to evaluate the authority of an author.
IF is the index of coAuthor List.

Define a buffer-carrier - Link Information Buffer
Structure (LIBS), composed by a series of AAIO.

LIBS = (AAIO)
Define Co-Author Association Information Object

(C-AAIO) as follow:
C-AAIO = (Degree of co-write relationship, UID of

co-author) = (Cooperate Times, UID)
Cooperate Times are referred to the times of two

authors co-writing papers.
Define Co-Author Object List (C-AOL) which is

composed by a series of C-AAIO.
C-AOL = (C-AAIO)

113113113113

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 13, 2008 at 02:53 from IEEE Xplore. Restrictions apply.

In addition, define Link Information Structure (LIS)
as follow: LIS = (AAIO)

LIS is only used to keep a set of AAIO queried
based on the current request. That is to say, after
processing a submitted request each time, no matter
whether or not database needs to be searched, the
server-buffer-agent would construct a LIS transmitted
to clients as response. Obviously, LIS ⊂ LIBS

Here, a Semantic Server-Buffer Structure example
is shown in Figure 3. In this example, Alice has three
co-authors: Tony, Frank and Jane, and Tony has two
co-authors: Alice and Ross.

Figure 3. An Example of Semantic Server-
Buffer Structure

After defining the structure, we use an iterative
method to build our Semantic Server-Buffer Structure.
We construct every AAIO and store them in LIBS. LIS
is built to be transmitted to client. The detailed
procedure of the algorithm is shown below.

4.3 Client-Buffer Algorithm

In order to further improve the client’s querying

time by adapting to individuals’ interests, we organize
another buffer on client-end similar to that of server-
end.

There are totally three kinds of data structures in
client buffer. The first two are AAIO and LIBS, whose
structures are the same as those of server buffer. The
third one, History, is used to record all authors’ UIDs
that the current user submitted to server in the past. So
this structure can be depicted as follow:

History = (Author’s UID)
The construction of client buffer is relatively easier

than that of server buffer. This is because the author-
objects kept in client buffer are right in LIS that have
already been built-up and transmitted from server-end,
no need to be created again, just put in client buffer.

As soon as the client-buffer-agent receives a LIS, it
would get the LIS’s AAIO (information carrier) one by
one and judge whether there are corresponding carriers
in client buffer. Each AAIO will be put into client
buffer unless there is already one in it. Finally, add the
current requested UID into History.

Following is the pseudo-code of the algorithm.

114114114114

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 13, 2008 at 02:53 from IEEE Xplore. Restrictions apply.

1 User submits an author A and UID to Client;
 2 A exists in History
3 return;

 4
 5 Submit request to Server;

6 Waiting for response……;
7 Receive querying result: LIS from server;

 8 Record A in History Map;
 9 Traverse each LIS’s AAIO
 10 the AAIO does not exist in client’s LIB
 11 add it into LIBS;
 12
 13

14 Free LIS;
 15

5. Performance Analysis

We test our design from three aspects: response
time when one user requests information, average
response time when lots of users request information
simultaneously, the comparison of time cost among
different parts in the system.

5.1 Single Request Situation

We test response time for single user to request

semantic information.
We design a method to simulate a user's search

behavior, which is described as follows: Step 1):
Randomly select an author from database and submit
the request, putting its multi-layer co-authors (returned
result) into a set called Author-SET. Step 2): Select an
author from Author-SET, submit the request, and add
its multi-layer co-authors into the Author-SET. In the
meantime, record the response time and the number of
AAIOs to be transmitted.

Figure 4 shows the testing result. From the figure, if
there is no semantic double-buffer, the response time
will increase in a linear trend. This is not ideal,
especially when the number of AAIO to be transmitted
from server is up to 50, the waiting time for users
would be over 25 seconds, which is because all AAIOs
have to be queried from database. Comparatively, let
us take a look at the situation with semantic double-
buffer. In this case, when a user submits a request of a
new author, the increased-rate of the response time is
clearly smaller than the previous situation, in that the
more AAIOs to be retrieved, the larger the possibility
they overlap, and the more frequently the server-buffer
will be accessed. Furthermore, when this user submits
the same request, the corresponding response time
would be down to less than 1s because of client-buffer.
Hence, semantic double-buffer design does have a
good efficiency in single request situation.

Figure 4. Response Time of Single User

5.2 Multiple Requests Situation

We use 1~11 computers (nodes) to simulate the
behaviors of 10~110 users, and there are 10 suspended
threads on each computer to simulate 10 users. As for
the testing result, we use the same testing method
above to record the response time for each virtual user,
and calculate their mean value as the average response
time. Figure 5 shows the logarithm of the average
response time when quite a few users submit requests
to the server in the meantime.

Figure 5. Logarithm of Response Time of
Multi-Users

Through the testing, we can clearly see that our
approach really has a high scalability. If there is no any
buffer set, neither in server nor in client, the average
response time will increase very fast with the
increasing number of users. If there is no buffer on
client but server, the average time would be reduced to
about 3 seconds. As soon as we adopt semantic double-
buffer, the corresponding time will be controlled far
below 1 second.

115115115115

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 13, 2008 at 02:53 from IEEE Xplore. Restrictions apply.

5.3 Comparison of Time Cost

Through this part of testing, we testify that the time
cost by processing either semantic server-buffer or
client-buffer can be ignored comparing to that of
searching Sesame database. In fact, Sesame really is
able to do semantics/ontology-based query-operation,
but all the data have to be stored in several files on disk.
That is why the database is so relatively slow, that is,
each querying operation for Sesame has be involved
with a lot of I/O operations. However,
semantics/ontology-based query operation via Sesame
database provides quite a few conveniences for us to
build semantic relationships and double-buffer. So, the
design of our semantic-double-buffer makes full use of
its efficiency, to avoid frequently accessing semantic-
database to a certain extent. The detailed testing data is
shown in Figure 6.

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40
The number of AAIO to be processed

Ti
m

e/
s

Time cost on Semantic Client-Buffer
Time cost on Semantic Server-Buffer
Time cost on Database

Figure 6. Cost Time Comparison of Different
Parts in System

6. Conclusion

In this paper, we present the design and
implementation of semantic double-buffer based search
approach. We reveal semantic relationship according to
ontology and design an algorithm that buffer multi-
layer semantic relationship on server-end, and design
another algorithm on client-end to adapt to every
individual’s interests, further improving search
efficiency.

References

[1] S. Decker, S. Melnik, F. V. Harmelen, D. Fensel, M.
Klein, J. Brockstra, M. Erdmann, and I. Horrocks, “The
Semantic Web: The Roles of XML and RDF”, IEEE
Internet Computing, 15(3), 2000, pp.63-74.

[2] R. Guha and R. McCool, “TAP: A semantic web
platform”, Computer Networks: The International Journal
of Computer and Telecommunications Networking,
Special Issue: The Semantic Web: An Evolution for a
Revolution, 42(5), 2003, pp.557-577.

[3] O. Lassila and R. Swick, “Resource Description
Framework (RDF) Model and Syntax Specification”,
W3C Recommendation, Feb. 1999: Online at http://
www.w3.org/TR/REC-rdf-syntax/.

[4] J. Broekstra, F. Van Harmelen, and A. Kampman,
“Sesame: a generic architecture for storing and querying
RDF and RDF Schema”, Proceedings of the First
International Semantic Web Conference (ISWC’02), 2002,
pp.54-68.

[5] S. Kraines, W. Guo, B. Kemper, and Y. Nakamura,
“EKOSS: A knowledge-user centered approach to
knowledge sharing, discovery and integration on the
Semantic Web”, Proceedings of 5th International
Semantic Web Conference, Nov. 2006, pp.833-846.

[6] C. L. Giles, K. Bollacker, and S. Lawrence, “CiteSeer: An
Automatic Citation Indexing System”, Proceedings of
Third ACM Conf. on Digital Libraries, 1998, pp.88-98.

[7] P. Mika, “Flink: Semantic Web Technology for the
Extraction and Analysis of Social Networks”, Journal of
Web Semantics, 3(2), 2005, pp.211-223.

[8] Flink Website: Online at http://www.aduna-softw
are.com/technologies/autofocus_server/overview.view.

[9] FOAF project: Online at http://www.foaf-project.or g.
[10] SOAP Version 1.2 Part 1: Messaging Framework: Online

at http://www.w3.org/TR/soap/.
[11] F. Baader, I. Horrocks and U. Sattler, “Description logics

as ontology languages for the semantic web”, Lecture
Notes in Artificial Intelligence, Springer, 2003.

[12] B. Smith and C. Welty, “Ontology: Towards a New
Synthesis”, Proceedings of Formal Ontology and
Information Systems (FOIS’01), 2001, pp.3-9.

[13] P. Borst, H. Akkermans, and J. Top, “Engineering
Ontologies”, International Journal of Human-Computer
Studies, 1997, Vol.46, No.2-3, pp.365-406.

[14] X. Ning, H. Jin, and H. Wu, “SemreX: Towards Large-
scale Literature Information Retrieval and Browsing with
Semantic Association”. Proceedings of 2nd IEEE
International Symposium on Service-Oriented
Applications, Integration and Collaboration (SOAIC'06),
Shanghai, China, 2006, pp.602-609.

116116116116

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 13, 2008 at 02:53 from IEEE Xplore. Restrictions apply.

