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Abstract. In this paper, we prove a best approximation theorem in
generalized convex spaces. As an application, we derive a result on
the existence of a maximal element and a coincidence point theorem
in generalized convex spaces. The results of this paper generalize some
known results in the literature.

1. Introduction and preliminaries

The notion of a generalized convex space we work with in this paper
was introduced by S. Park and H. Kim in [9]. In generalized convex spaces
many results on fixed points, coincidence points, equilibrium problems, vari-
ational inequalities, continuous selections, saddle points, and others, have
been obtained, see for example [4, 5, 7, 9, 10, 11, 12, 13].

In this paper, we obtain a best approximation theorem for multimaps in
generalized convex spaces. Some applications to the existence of a maximal
elements and coincidence point theorems in generalized convex spaces are
given.
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A multimap or map F': X — Y is a function from a set X into the power
set of aset Y. For A C X, let F(A) = J{Fz: x € A}. For any B C Y, the
lower inverse and upper inverse of B under F' is defined by

F (B)={zr€X:FzxNB#0}and F'(B)={r € X: Fx C B},

respectively. The lower inverse of F': X — Y is the map F7:Y — X
defined by « € F~y if and only if y € Fx.

Let X be a metric space with metric d. For any nonnegative real number
r and any subset A of X, we define the r-parallel set of A as

A—i—r:U{B(a,r): a€ A},

where B(a,r) = {z € X: d(a,z) <r}.
If A and B are nonempty subsets of X we define

d(A, B) = inf{d(a,b): a € A, b € B}.

For bounded and closed subsets A and B of X, the Hausdorff distance,
denoted by H(A, B), is defined by

H(A, B) = max{D(A, B), D(B, A)},

where

D(A, B) = sup inf d(z,vy).

yeATEB

A mapping F': X — Y is upper (lower) semicontinuous on X if and only
if for every open V' C Y the set F*(V) (F~(V)) is open. A mapping
F: X — Y is continuous if and only if it is upper and lower semicontinuous.
A mapping F': X — Y with compact values is continuous if and only if F’
is a continuous mapping in the Hausdorff distance.

For a nonempty subset D of X, let (D) denote the set of all nonempty
finite subsets of D. Let A, denote the standard n-simplex with vertices
e1,€2,... ,ent1, where e; is the ith unit vector in R™+1,

A generalized convex space or G-convex space (X, D;I") consists of a
topological space X, a nonempty set D and a function I': (D) — X with
nonempty values such that

1. for each A, B € (D), A C B implies I'(4) € I'(B); and

2. for each A € (D) with |A| = n + 1, there exists a continuous function

wa: Ap — T'(A), such that pa(Ay) C I'(J), where A; denotes the
faces of A,, corresponding to J € (A).

Particular forms of G-convex space are convex subset of a topological vector
space, Lassonde’s convex space, a metric space with Michael’s convex struc-
ture, S-contractible space, H-space, Komiya’s convex space, Bielawski’s
simplicial convexity, Jo6’s pseudoconvex space, see for example [4, 10, 11].

For each A € (D), we may write ['(A) = I's. Note I'4 does not need to
contain A. For (X, D;T"), a subset C' of X is said to be G-convex if for each
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Ae (D), AC CimpliesI'y C C. If D = X, then (X, D;I") will be denoted
by (X,I'). The G-convex hull of K, denoted by G — co (K) is the set

ﬂ{B C X: B is a G-convex subset of X containing K'}.

Let C be a subset of X, a map F: C — X is called G-quasiconvex if
and only if the set F'~(5) is a G-convex set for each G-convex subset S of
X. If X is a topological vector space and I'y = co A, we obtain the class
quasiconvex map, see for example [6].

Let C be a G-convex subset of X, a map F': C' — X is called G-KKM
map if ['y C F(A) for each A € (C).

The following version of G-KKM type theorem, see for example [5], will
be used to prove the main result of this paper.

Theorem 1.1. Let (X,T") be a G-convez space, K a nonempty subset of X
and H: K — X a map with closed values and G-KKM map. If H(z) is
compact for at least one x € K then (\,cp H(x) # 0.

2. Best approximation theorem

Theorem 2.1. Let (X,I') be a metrisable G-convex space with metric d,
K a nonempty G-convex compact subset of X, F1: K — X, Fo: K — X
continuous maps with nonempty G-convex compact values, and let A > 1
such that

G —co(Fy (A+r)) C Ff (A+ Ar), (2.1)

for all G-convex subsets A of X and nonnegative real number r. Then there
exists yo € K such that

d(Fi(yo), F2(yo)) < A;é% d(F1(z), F2(yo))-

Proof. Let for every x € K, H: K — K be defined by
H(z) ={y € K: d(F1(y), F2(y)) < Md(Fi(z), F2(y))} -

The maps F} and Fj are continuous, hence they are continuous in the Haus-
dorff distance, too. From inequality

for each bounded and closed subsets A, B and C' of X, we obtain that H(x)
is closed for each x € K. Since K is a compact set we have that H(x) is
compact for each x € C. We can prove that H is a G-KKM map, that is,
that for every D = {z1,x2,... ,2,} € (K)

I'p C H(D).
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Suppose that I'p € H(D). Then there exists y € I'p such that y ¢ H(z;)
for every i € {1,2,... ,n}. So, we have
d(F1(y), Fa(y)) > Ad(Fyi(x;), Fa(y)) for every i € {1,2,... ,n}.
Let € > 0 be so that
M (Fy (i), Fo(y)) < d(Fi(y), Fa(y)) — € for every i € {1,2,... ,n}.
Let r = d(Fi(y), F>(y)) — €. Then

Fi(z;) ﬂ (Fg(y) + g) # () for every i € {1,2,... ,n}.
So,
_ r .
x; € Fy (Fg(y) + X) for every i € {1,2,... ,n}.
This implies
eG—co Fy (Byy)+75)
Y CO Iy 2\Y VA
From condition (2.1) we obtain
y € Fy (Fa(y) +7)
and hence
Fi(y) 0 (Fa(y) +7) # 0.
So,
d(Fi(y), Fa(y)) < v <r+e=d(F1(y), F2(y))-

This is a contradiction and H is G-KKM map. From Theorem 1.1 it follows
that there exists yg € K such that

d(Fl(yo),Fg(yg)) < )\d(Fl(l‘),Fg(yQ)) for all z € K.
O

Example 2.2. Let X be a hyperconvex metric space, see for example [2, 3].
For a nonempty bounded subset A of X put

co A= ﬂ{B: B is closed ball in X containing A}.

Let A(X)={A C X: A=co A}. The elements of A(X) are called admis-
sible subset of X. It is known that any hyperconvex metric space (X,d) is
an G-convex space (X,I"), with 'y = co A for each A € (X).

The r-parallel of an admissible subset of a hyperconvex metric space is
also an admissible set, [2, Lemma 4.10]. Let F}: K — X be a G-quasi-
convex map, i.e. Fy (A) is admissible set for each admissible subset A of X.
Then the map F} satisfies the condition (2.1) for each real number A such
that A > 1.
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From Theorem 2.1, we have the following best approximation theorem
for hyperconvex metric space.

Theorem 2.3. Let X be a hyperconvex metric space and K a monempty
admissible compact subset of X, F1: K — X, Fy: K — X continuous
maps with nonempty admissible compact values, and Fy be a G-quasiconvex
map. Then there exists yo € K such that

A(F (o). Falwo)) = inf d(F1(2), Fa(yo))

Corollary 2.4 ([3]). Let X be a hyperconvex metric space and K nonempty
admissible compact. Let f: K — X be continuous. Then there exists yg € K
such that

d(yo, f(yo)) = xlgf( d(z, f(vo))-

3. Applications
From Theorem 2.1, we have the following coincidence point theorem.

Theorem 3.1. Let (X,I') be a metrisable G-convex space, K a nonempty
G-convex compact subset of X, F1: K — X, Fb: K — X continuous maps
with nonempty G-convexr compact values, and let A > 1 such that

G —co(F (A+7)) C FT (A4 \r),

for all G-convex subsets A of X and nonnegative real number r. If for
every x € K, with Fi(z) N Fy(z) = 0 there exists a € (0,1/)) such that
Fi(K) N (Fy(x) + ad(Fi (), Fa(z))) # 0 then, there exists yo € K such that
Fi(yo) N Fa(yo) # 0.

Proof. By the Theorem 2.1, there exists yg € K such that
d(F1(yo), F2(yo)) < A inf d(Fi(z), Fa(yo))-

We claim that such yg is a coincidence point, i.e. Fi(yo) N Fa(yo) # 0.
Suppose not, i.e. Fi(yo) N Fa(yo) = . Then we have the existence of
a € (0,1/)) such that

F1(K) N (Fay(yo) + ad(Fi(yo), F2(yo))) # 0.

Let uy € F1(K) N (Fa(yo) + ad(Fi(yo), F2(y0))). Then we obtain that there
exists up € Fy(yo) such that u; € B(ug, ad(Fi(yo), F2(yo)), and
d(F1(yo), F2(y0))

d(u1,u2) < ad(Fi(yo), F2(yo)) < 3 :
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Hence,
d(Fi(yo), F2(yo)) < A inf d(F1(x), F2(yo)) < Ad(u1, u2) < d(Fi(yo), F2(yo)),
which is a contradiction. Therefore, F(yo) N Fa(yo) # 0. O

Corollary 3.2. Let X be a hyperconvex metric space and K a nonempty ad-
missible compact subset of X, F': K — X a continuous map with nonempty
admissible compact values. If for every x € K, with x ¢ F(x) there exists
a € (0,1) such that K N Blz,ad(F(z),z)] # 0, then there exists zg € K
such that xo € F(xo).

Remark 3.3. Note that, if 29 ¢ F(xg) then o € Bd K. Namely, if zg €
Int K, then there exists r > 0 such that

B(zg,7) C K and r < d(F(xg),x0) < d(F(zp),z) for all z € B(zg,r).
We show that
B(xo, ) N (F(x0) + d(F(x0),z0) — 1) # 0.
Let F'(20) = (Nper B(Za:Ta), Ta € F(xg). Then by [2, Lemma 4.10], we
have
F(x0) + d(F(z0),20) = = [ B(2a,7a + d(F(wo),z0) — 7).
aEN
We show that
d(xo,Ta) < 1o + d(F(0), z0).

Namely,

inf d(F(20),2) 2 d(F(20), 20) = d(u, 20), for any u € F (o),

S
and

d(u, o) > d(xg, ) — d(Ta,u) > d(zg, o) — Ta-
So,
d(z0, o) < ro + d(z0,u) < 7o + d(F(20), 70)

and

B(xo,r) N (F(x0) + d(F(x0),z0) — 1) # 0.
Let z € K be such that
z € B(xo,r) N (F(zo) + d(F(x0),z0) — 1),
we obtain
d(F(z0),z0) < d(F(z0),2) < d(F(zo),z0) —r < d(F(x0), z0),

which is a contradiction. Therefore, xg € Bd K.
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Corollary 3.4 ([8]). Let X be a hyperconvexr metric space, K a nonempty
admissible compact subset of X, f: K — X continuous function and for
every x € BAK, with x # f(x) there exists a € (0,1) such that K N
B(f(x),ad(z, f(z))) # 0. Then f has a fized point.

As an application of Theorem 2.1, we obtain the result of existence of
maximal elements for G-convex space. Let F': K — X. An element x € K
is a maximal element of K if F'(x) = (), see for example [1]. The F-maximal
set of F is defined as Mp = {x € K: F(z) = 0}.

Theorem 3.5. Let (X,I') be a metrisable G-convex space, K a nonempty
G-convex compact subset of X, F1: K — X, Fo: K — X continuous maps
with G-convex compact values, and let X > 1 such that G —co (Fy (A+r)) C
F (A+ Ar), for all G-convex subsets A of X and nonnegative real number
r. If Fo(x) C Fy(K\{z}) for each x € K, then Mp, U Mg, is a nonempty
set.

Proof. Suppose that Mg, U Mp, = (. Then by Theorem 2.1, there exists
an yg € K such that

d(Fi(yo), F2(yo)) < A inf d(F1(z), F2(yo)).
Since Fy(z) C Fi(K\{z}) for each z € K, we obtain
inf d(Fl(x)a FQ(yO)) = 07
zeK

and d(F1(yo), F2(yo)) = 0. This implies that Fy(yo) N Fa(yo) # 0. This
contradicts to the assumption Fy(z) C Fi(K\{z}) for each x € K. Hence,
Mp, U MF, is nonempty. O

Corollary 3.6. Let X be a hyperconvex metric space, K a nonempty ad-
missible compact subset of X, F: K — K a continuous map with admissible
compact values and x ¢ F(x) for each x € K. Then F has a mazimal ele-
ment.
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