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Abstract. In this paper, we prove a best approximation theorem in
generalized convex spaces. As an application, we derive a result on
the existence of a maximal element and a coincidence point theorem
in generalized convex spaces. The results of this paper generalize some
known results in the literature.

1. Introduction and preliminaries

The notion of a generalized convex space we work with in this paper
was introduced by S. Park and H. Kim in [9]. In generalized convex spaces
many results on fixed points, coincidence points, equilibrium problems, vari-
ational inequalities, continuous selections, saddle points, and others, have
been obtained, see for example [4, 5, 7, 9, 10, 11, 12, 13].

In this paper, we obtain a best approximation theorem for multimaps in
generalized convex spaces. Some applications to the existence of a maximal
elements and coincidence point theorems in generalized convex spaces are
given.
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A multimap or map F : X ( Y is a function from a set X into the power
set of a set Y . For A ⊂ X, let F (A) =

⋃
{Fx : x ∈ A}. For any B ⊂ Y , the

lower inverse and upper inverse of B under F is defined by

F−(B) = {x ∈ X : Fx ∩B 6= ∅} and F+(B) = {x ∈ X : Fx ⊂ B},
respectively. The lower inverse of F : X ( Y is the map F− : Y ( X
defined by x ∈ F−y if and only if y ∈ Fx.

Let X be a metric space with metric d. For any nonnegative real number
r and any subset A of X, we define the r-parallel set of A as

A+ r =
⋃
{B(a, r) : a ∈ A},

where B(a, r) = {x ∈ X : d(a, x) ≤ r}.
If A and B are nonempty subsets of X we define

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
For bounded and closed subsets A and B of X, the Hausdorff distance,
denoted by H(A,B), is defined by

H(A,B) = max{D(A,B), D(B,A)},
where

D(A,B) = sup
y∈A

inf
x∈B

d(x, y).

A mapping F : X ( Y is upper (lower) semicontinuous on X if and only
if for every open V ⊂ Y the set F+(V ) (F−(V )) is open. A mapping
F : X ( Y is continuous if and only if it is upper and lower semicontinuous.
A mapping F : X ( Y with compact values is continuous if and only if F
is a continuous mapping in the Hausdorff distance.

For a nonempty subset D of X, let 〈D〉 denote the set of all nonempty
finite subsets of D. Let ∆n denote the standard n-simplex with vertices
e1, e2, . . . , en+1, where ei is the ith unit vector in Rn+1.

A generalized convex space or G-convex space (X,D; Γ) consists of a
topological space X, a nonempty set D and a function Γ: 〈D〉 ( X with
nonempty values such that

1. for each A,B ∈ 〈D〉, A ⊂ B implies Γ(A) ⊂ Γ(B); and
2. for each A ∈ 〈D〉 with |A| = n+ 1, there exists a continuous function
ϕA : ∆n → Γ(A), such that ϕA(∆J) ⊂ Γ(J), where ∆J denotes the
faces of ∆n corresponding to J ∈ 〈A〉.

Particular forms of G-convex space are convex subset of a topological vector
space, Lassonde’s convex space, a metric space with Michael’s convex struc-
ture, S-contractible space, H-space, Komiya’s convex space, Bielawski’s
simplicial convexity, Joó’s pseudoconvex space, see for example [4, 10, 11].

For each A ∈ 〈D〉, we may write Γ(A) = ΓA. Note ΓA does not need to
contain A. For (X,D; Γ), a subset C of X is said to be G-convex if for each
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A ∈ 〈D〉, A ⊂ C implies ΓA ⊂ C. If D = X, then (X,D; Γ) will be denoted
by (X,Γ). The G-convex hull of K, denoted by G− co (K) is the set⋂

{B ⊂ X : B is a G-convex subset of X containing K}.

Let C be a subset of X, a map F : C ( X is called G-quasiconvex if
and only if the set F−(S) is a G-convex set for each G-convex subset S of
X. If X is a topological vector space and ΓA = co A, we obtain the class
quasiconvex map, see for example [6].

Let C be a G-convex subset of X, a map F : C ( X is called G-KKM
map if ΓA ⊂ F (A) for each A ∈ 〈C〉.

The following version of G-KKM type theorem, see for example [5], will
be used to prove the main result of this paper.

Theorem 1.1. Let (X,Γ) be a G-convex space, K a nonempty subset of X
and H : K ( X a map with closed values and G-KKM map. If H(x) is
compact for at least one x ∈ K then

⋂
x∈K H(x) 6= ∅.

2. Best approximation theorem

Theorem 2.1. Let (X,Γ) be a metrisable G-convex space with metric d,
K a nonempty G-convex compact subset of X, F1 : K ( X, F2 : K ( X
continuous maps with nonempty G-convex compact values, and let λ ≥ 1
such that

G− co (F−1 (A+ r)) ⊂ F−1 (A+ λr), (2.1)

for all G-convex subsets A of X and nonnegative real number r. Then there
exists y0 ∈ K such that

d(F1(y0), F2(y0)) ≤ λ inf
x∈K

d(F1(x), F2(y0)).

Proof. Let for every x ∈ K, H : K ( K be defined by

H(x) = {y ∈ K : d(F1(y), F2(y)) ≤ λd(F1(x), F2(y))} .
The maps F1 and F2 are continuous, hence they are continuous in the Haus-
dorff distance, too. From inequality

|d(A,C)− d(C,B)| ≤ H(A,B),

for each bounded and closed subsets A,B and C of X, we obtain that H(x)
is closed for each x ∈ K. Since K is a compact set we have that H(x) is
compact for each x ∈ C. We can prove that H is a G-KKM map, that is,
that for every D = {x1, x2, . . . , xn} ∈ 〈K〉

ΓD ⊆ H(D).
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Suppose that ΓD * H(D). Then there exists y ∈ ΓD such that y /∈ H(xi)
for every i ∈ {1, 2, . . . , n}. So, we have

d(F1(y), F2(y)) > λd(F1(xi), F2(y)) for every i ∈ {1, 2, . . . , n}.

Let ε > 0 be so that

λd(F1(xi), F2(y)) ≤ d(F1(y), F2(y))− ε for every i ∈ {1, 2, . . . , n}.

Let r = d(F1(y), F2(y))− ε. Then

F1(xi)
⋂(

F2(y) +
r

λ

)
6= ∅ for every i ∈ {1, 2, . . . , n}.

So,

xi ∈ F−1
(
F2(y) +

r

λ

)
for every i ∈ {1, 2, . . . , n}.

This implies

y ∈ G− co F−1
(
F2(y) +

r

λ

)
.

From condition (2.1) we obtain

y ∈ F−1 (F2(y) + r)

and hence
F1(y) ∩ (F2(y) + r) 6= ∅.

So,
d(F1(y), F2(y)) ≤ r < r + ε = d(F1(y), F2(y)).

This is a contradiction and H is G-KKM map. From Theorem 1.1 it follows
that there exists y0 ∈ K such that

d(F1(y0), F2(y0)) ≤ λd(F1(x), F2(y0)) for all x ∈ K.

Example 2.2. Let X be a hyperconvex metric space, see for example [2, 3].
For a nonempty bounded subset A of X put

co A =
⋂
{B : B is closed ball in X containing A}.

Let A(X) = {A ⊂ X : A = co A}. The elements of A(X) are called admis-
sible subset of X. It is known that any hyperconvex metric space (X, d) is
an G-convex space (X,Γ), with ΓA = co A for each A ∈ 〈X〉.

The r-parallel of an admissible subset of a hyperconvex metric space is
also an admissible set, [2, Lemma 4.10]. Let F1 : K ( X be a G-quasi-
convex map, i.e. F−1 (A) is admissible set for each admissible subset A of X.
Then the map F1 satisfies the condition (2.1) for each real number λ such
that λ ≥ 1.
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From Theorem 2.1, we have the following best approximation theorem
for hyperconvex metric space.

Theorem 2.3. Let X be a hyperconvex metric space and K a nonempty
admissible compact subset of X, F1 : K ( X, F2 : K ( X continuous
maps with nonempty admissible compact values, and F1 be a G-quasiconvex
map. Then there exists y0 ∈ K such that

d(F1(y0), F2(y0)) = inf
x∈K

d(F1(x), F2(y0)).

Corollary 2.4 ([3]). Let X be a hyperconvex metric space and K nonempty
admissible compact. Let f : K → X be continuous. Then there exists y0 ∈ K
such that

d(y0, f(y0)) = inf
x∈K

d(x, f(y0)).

3. Applications

From Theorem 2.1, we have the following coincidence point theorem.

Theorem 3.1. Let (X,Γ) be a metrisable G-convex space, K a nonempty
G-convex compact subset of X, F1 : K ( X, F2 : K ( X continuous maps
with nonempty G-convex compact values, and let λ ≥ 1 such that

G− co (F−1 (A+ r)) ⊂ F−1 (A+ λr),

for all G-convex subsets A of X and nonnegative real number r. If for
every x ∈ K, with F1(x) ∩ F2(x) = ∅ there exists α ∈ (0, 1/λ) such that
F1(K) ∩ (F2(x) + αd(F1(x), F2(x))) 6= ∅ then, there exists y0 ∈ K such that
F1(y0) ∩ F2(y0) 6= ∅.

Proof. By the Theorem 2.1, there exists y0 ∈ K such that

d(F1(y0), F2(y0)) ≤ λ inf
x∈K

d(F1(x), F2(y0)).

We claim that such y0 is a coincidence point, i.e. F1(y0) ∩ F2(y0) 6= ∅.
Suppose not, i.e. F1(y0) ∩ F2(y0) = ∅. Then we have the existence of
α ∈ (0, 1/λ) such that

F1(K) ∩ (F2(y0) + αd(F1(y0), F2(y0))) 6= ∅.
Let u1 ∈ F1(K)∩ (F2(y0) + αd(F1(y0), F2(y0))). Then we obtain that there
exists u2 ∈ F2(y0) such that u1 ∈ B(u2, αd(F1(y0), F2(y0)), and

d(u1, u2) ≤ αd(F1(y0), F2(y0)) <
d(F1(y0), F2(y0))

λ
.
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Hence,

d(F1(y0), F2(y0)) ≤ λ inf
x∈K

d(F1(x), F2(y0)) ≤ λd(u1, u2) < d(F1(y0), F2(y0)),

which is a contradiction. Therefore, F1(y0) ∩ F2(y0) 6= ∅.

Corollary 3.2. Let X be a hyperconvex metric space and K a nonempty ad-
missible compact subset of X, F : K ( X a continuous map with nonempty
admissible compact values. If for every x ∈ K, with x 6∈ F (x) there exists
α ∈ (0, 1) such that K ∩ B[x, αd(F (x), x)] 6= ∅, then there exists x0 ∈ K
such that x0 ∈ F (x0).

Remark 3.3. Note that, if x0 /∈ F (x0) then x0 ∈ BdK. Namely, if x0 ∈
IntK, then there exists r > 0 such that

B(x0, r) ⊂ K and r < d(F (x0), x0) ≤ d(F (x0), x) for all x ∈ B(x0, r).

We show that

B(x0, r) ∩ (F (x0) + d(F (x0), x0)− r) 6= ∅.
Let F (x0) =

⋂
α∈ΛB(xα, rα), xα ∈ F (x0). Then by [2, Lemma 4.10], we

have

F (x0) + d(F (x0), x0)− r =
⋂
α∈Λ

B(xα, rα + d(F (x0), x0)− r).

We show that
d(x0, xα) ≤ rα + d(F (x0), x0).

Namely,

inf
x∈K

d(F (x0), x) ≥ d(F (x0), x0) = d(u, x0), for any u ∈ F (x0),

and
d(u, x0) ≥ d(x0, xα)− d(xα, u) ≥ d(x0, xα)− rα.

So,
d(x0, xα) ≤ rα + d(x0, u) ≤ rα + d(F (x0), x0)

and
B(x0, r) ∩ (F (x0) + d(F (x0), x0)− r) 6= ∅.

Let z ∈ K be such that

z ∈ B(x0, r) ∩ (F (x0) + d(F (x0), x0)− r),
we obtain

d(F (x0), x0) ≤ d(F (x0), z) ≤ d(F (x0), x0)− r < d(F (x0), x0),

which is a contradiction. Therefore, x0 ∈ BdK.
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Corollary 3.4 ([8]). Let X be a hyperconvex metric space, K a nonempty
admissible compact subset of X, f : K → X continuous function and for
every x ∈ BdK, with x 6= f(x) there exists α ∈ (0, 1) such that K ∩
B(f(x), αd(x, f(x))) 6= ∅. Then f has a fixed point.

As an application of Theorem 2.1, we obtain the result of existence of
maximal elements for G-convex space. Let F : K ( X. An element x ∈ K
is a maximal element of K if F (x) = ∅, see for example [1]. The F -maximal
set of F is defined as MF = {x ∈ K : F (x) = ∅}.

Theorem 3.5. Let (X,Γ) be a metrisable G-convex space, K a nonempty
G-convex compact subset of X, F1 : K ( X, F2 : K ( X continuous maps
with G-convex compact values, and let λ ≥ 1 such that G−co (F−1 (A+r)) ⊂
F−1 (A+ λr), for all G-convex subsets A of X and nonnegative real number
r. If F2(x) ⊂ F1(K\{x}) for each x ∈ K, then MF1 ∪MF2 is a nonempty
set.

Proof. Suppose that MF1 ∪MF2 = ∅. Then by Theorem 2.1, there exists
an y0 ∈ K such that

d(F1(y0), F2(y0)) ≤ λ inf
x∈K

d(F1(x), F2(y0)).

Since F2(x) ⊂ F1(K\{x}) for each x ∈ K, we obtain

inf
x∈K

d(F1(x), F2(y0)) = 0,

and d(F1(y0), F2(y0)) = 0. This implies that F1(y0) ∩ F2(y0) 6= ∅. This
contradicts to the assumption F2(x) ⊂ F1(K\{x}) for each x ∈ K. Hence,
MF1 ∪MF2 is nonempty.

Corollary 3.6. Let X be a hyperconvex metric space, K a nonempty ad-
missible compact subset of X, F : K ( K a continuous map with admissible
compact values and x /∈ F (x) for each x ∈ K. Then F has a maximal ele-
ment.
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[7] Park, S., Continuous selection theorems in generalized convex spaces, Numer. Funct.
Anal. Optim. 25 (1999), 567–583.

[8] Park, S., Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 37
(1999), 467–472.

[9] Park, S., Kim, H., Admissible classes of multifunction on generalized convex spaces,
Proc. Colloq. Natur. Sci. Seoul Natl. Univ. 18 (1993), 1–21.

[10] Park, S., Kim, H., Coincidence theorems for admissible multifunctions on generalized
convex spaces, J. Math. Anal. Appl. 197 (1996), 173–187.

[11] Park, S., Kim, H., Foundations of the KKM theory on generalized convex spaces, J.
Math. Anal. Appl. 209 (1997), 551–571.

[12] Tan, K. K., Zhang, X. L., Fixed point theorems on G-convex spaces and applications,
Proc. Nonlinear Funct. Anal. Appl. 1 (1996), 1–19.

[13] Yu, Z. T., Lin, L. J., Continuous selection and fixed point theorems, Nonlinear Anal.
52 (2003), 445–455.

Zoran D. Mitrović
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