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Abstract

Distributed computer systems consist of a set of het-
erogeneous host computers (i.e., nodes) connected by a
communication network. A job that arrives at a node
may either be processed locally or transferred to another
node for remote processing, which we call load balanc-
ing. One possible performance objective of load balanc-
ing in distributed computer systems is to minimize the
overall mean response time. We can characterize an-
alytically the static load balancing policy whereby the
mean overall response time is minimized, which we call
the overall optimal policy. This policy, however, lacks
fairness in the sense that, for example, two jobs arriving
at the same node but being forwarded to different nodes
may not have the same expected response time. To sat-
isfy fairness among jobs we can consider an individually
optimal load balancing policy whereby jobs arriving at
the same node have the same (minimum) expected re-
sponse time regardless of the nodes which process them.
Furthermore, we can think of a node optimal load bal-
ancing policy whereby the mean response time of jobs
arriving at each node is minimum given the decision by
the other nodes of which jobs arriving at those nodes are
forwarded. We report the existence of some seemingly
anomalous phenomena in the mutual relation among the
above policies.

1 Introduction

It is very important to design and implement computer
systems that have good performance. We may have,
however, several performance measures in evaluating the
performance of computer systems. To evaluate and op-
timize the performance of each computer system, we are
forced to use one out of these performance measures. It
is clear that the following situation could happen: Sup-
pose that there are two computer systems A and B and
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that we think of two performance measures M and N.
It could happen that A is better than B in performance
measure M whereas A is worse than B in performance
measure N. In this paper we investigate this kind of is-
sues further. Although this kind of discussion applies to
systems in general, we use distributed computer systems
as the platform of our discussion.

We consider a distributed computer system that con-
sists of a number of host computers (nodes) connected
by a single-channel communication network (e.g., an
Ethernet). In this paper we use the two terms, node and
host, interchangeably as having the same meaning. In
this system, jobs that arrive at a node can be processed
locally or be forwarded to another node for remote pro-
cessing. In this way, loads on nodes are balanced so as
to improve the performance of the entire system. We
call such balancing the load over the system the load
balancing. Load balancing policies can be either static
or adaptive (dynamic). Adaptive load balancing poli-
cies are generally based on current information about
the state of the system. Static load balancing policies,
on the other hand, are based on the time-average behav-
ior of the system. Adaptive load balancing is generally
more effective but more expensive than static load bal-
ancing. Since adaptive load balancing is mathematically
intractable in general, we use in this paper static load
balancing as a base of our discussion. The reader is re-
ferred to [1] as one example of discussions on static vs.
adaptive load balancing issues.

It seems that the most common performance measure
is the overall mean response time, which is defined to be
the expected value of the time length that starts when
a job arrives at the system (i.e., an arbitrary node) and
ends when the job leaves the system after the processing
of the job is completed. We call an optimal load balanc-
ing policy whereby the overall mean response time is
minimized the overall optimal policy. We can formulate
a nonlinear optimization problem in which the overall
mean response time is minimized. The solution of the
problem characterizes the decision by the overall opti-
mal policy. We call the solution the overall optimum.
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Based on the solution we can obtain an optimal
load balancing algorithm which gives the decision by
the overall optimal policy. In the decision the following
situation can arise: The expected response time for a
job that arrives at the node and is processed locally is
different from the expected response time for a job that
arrives at the same node but is forwarded to another
node for remote processing. The users of jobs which
have longer mean response times would feel this situa-
tion unfair.

On the other hand, we can think of another static
load balancing policy whereby the expected response
time for all jobs that arrive at the same node are identi-
cal regardless of which node processes them. Naturally
there may be some nodes to which no jobs are forwarded
from the node. If a job were forwarded to such nodes,
the expected response time for a job would be longer
than the identical one. We call such a load balancing
policy an individually optimal policy. By the individual
optimization problem we mean the problem of obtain-
ing the scheduling decision that achieves the objective
of the individually optimal policy. We call the solution
of the individual optimization problem the individually
optimal solution or the inter-individual equilibrium. We
also call the solution the individual optimum. In the
equilibrium, no user has any incentive to change the
processing node of his job. The overall mean response
time, however, may not be minimized by the policy. The
existence of the equilibrium is proved by Kameda and
Hazeyama [2] and its uniqueness is discussed by Kameda
and Zhang [3].

Furthermore, we can classify arriving jobs into a fi-
nite number of classes. For example, jobs arriving at
the same node can be classified into the same class. We
can think that each such class corresponds to a group of
users. A group of users can think of optimizing a per-
formance measure pertaining to its own class. A group
of users corresponds to a user defined by Orda et al. [4].
Each group of users decides load balancing only on its
own jobs, i.e., each group of users determines whether
a job of its class should be processed locally or sched-
uled to a different node for remote processing, given the
scheduling decision on jobs of other classes. Each group
of users aims at minimizing the expected response time
for a job of its own class. We call the above minimiza-
tion problem a class optimization problem. We call its
solution a class optimal solution or an inter-class equilib-
rium. Such an equilibrium is a type of Nash equilibrium
of a noncooperative game. In the inter-class equilibrium,
no group of users would find it beneficial to change its
job scheduling decision. We call the solution the class
optimum. Naturally, the overall, individually, and class
optimal solutions are not mutually identical.

In this paper, we consider a class optimal policy
where each class has one-to-one correspondence to each
node. Then we think of a node optimal policy, the node
optimal solution, and the node optimum. We examine,
by using numerical algorithms, the overall, individually,

and node optimal load balancing policies. We found that
according as the values of system parameters change, the
decisions by these policies show sometimes awkward or
seemingly anomalous behaviors. These behaviors seem
to betray our intuition or expectation that if individuals
or groups of users seek their own goals, the entire sys-
tem improves also. Section 2 describes the model and
problem formulation. Section 3 provides the numerical
experiments. Section 4 presents the results and discus-
sion. Section 5 concludes the paper.

2 The Model and Problem Formulation

The model used is that of a distributed computer sys-
tem as given by Tantawi and Towsley [5], and Kim and
Kameda [6][7]. The system consist of n nodes, which
represent host computers, connected by a single channel
communication network. Nodes may be heterogeneous;
that is, they may have different configurations, number
of resources, and speed characteristics. However, they
have the same processing capability, that is, a job may
be processed from start to finish at any node in the sys-
tem.

Jobs are classified into M classes. Class-k jobs arrive
at node i according to a time-invariant Poisson process
with rate φ

(k)
i . A job arriving at node i (referred to

as the origin node) may be either processed at node i
or transferred through the communication channel to
another node j (processing node). After the job is pro-
cessed at node j, a response (answer) is sent back to the
origin node.

As the node models, we use central-server type mod-
els. As the model of the communication channel, we use
an M/G/1 type model.

The notation is given as follows:

• φ
(k)
i External class k job arrival rate to node i

• x
(k)
ij Class k job forwarding rate from node i to

node j, i.e., the rate of how many class k jobs
arriving at node i are forwarded to node j during
unit time interval.

• β
(k)
i Class k job processing rate (load) of node i

(β(k)
i =

n∑
i=1

x
(k)
ij )

• βi Total job processing rate (load) at node i (βi =∑m
k=1 β

(k)
i ), i.e., the rate how many class k jobs are

processed by node i during unit time interval.
• λ(k) Class k job traffic through network
• λ Total job traffic through network
• φi Total job arrival rate to node i (φi =∑m

k=1 φ
(k)
i )

• φ(k) Total class k job arrival rate (φ(k) =∑n
i=1 φ

(k)
i )

• Φ Total external job arrival rate (Φ =
∑m

k=1 φ
(k))
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• φφφi [φ(1)
i , φ

(2)
i , . . . , φ

(m)
i ]

• φφφ [φφφ1, φφφ2, . . . , φφφn]

• φφφ(k) [φ(k)
1 , φ

(k)
2 , . . . , φ

(k)
n ]

• xxxx(k) [xxxx(k)
1 , xxxx

(k)
2 , . . . , xxxx

(k)
n ]

• xxxx [xxxx(1), xxxx(2), . . . , xxxx(m)]

• xxxx
(k)
i [x(k)

i1 , x
(k)
i2 , . . . , x

(k)
in ]

• ββββi [β(1)
i , β

(2)
i , . . . , β

(m)
i ]

• ββββ [ββββ1, ββββ2, . . . , ββββn]

• ββββk [β(k)
1 , β

(k)
2 , . . . , β

(k)
n ]

• λλ [λ(1), λ(2), . . . , λ(m)]

• F
(k)
i (ββββ i) Expected node delay of class k job pro-

cessed at node i (We assume that it is differen-
tiable, increasing, and convex and that it is strictly
convex as a function of a single variable β

(k)
i for

each k).
• G(k)(λλ) Expected communication delay of class

k job (We assume that it is source-destination-
independent, differentiable, nondecreasing, and
convex).

2.1 The objective of each policy

(1) The objective of the overall optimal policy
The objective of this policy is to implement a solution xxxx
of the following problem of minimizing the overall mean
response time:
minimize

T (xxxx) =
1
Φ

m∑
k=1

(
n∑

i=1

β
(k)
i F

(k)
i (ββββi) + λ(k)G(k)(λλ)

)
,

subject to

n∑
i=1

β
(k)
i = φ(k), k = 1, 2, . . .,m,

β
(k)
i ≥ 0, i = 1, 2, . . ., n, k = 1, 2, . . .,m,

with respect to xxxx.

(2) The objective of the class optimal policy
The objective of this policy is to implement a solution
xxxx = [xxxx(1), xxxx(2), . . . , xxxx(m)] such that each xxxx(k) is a solu-
tion of the following problem of minimizing the mean
response time of class k jobs given other xxxx(j), j �= k:
minimize

T (k)(xxxx) =
1

φ(k)

(
n∑

i=1

β
(k)
i F

(k)
i (ββββi) + λ(k)G(k)(λλ)

)
,

subject to
n∑

i=1

β
(k)
i = φ(k),

β
(k)
i ≥ 0, i = 1, 2, . . . , n,

with respect to xxxx(k) given other xxxx(j), j �= k.
The objective of the node optimal policy can be ob-

tained by identifying class index k with node index i.

(3) The objective of the individually optimal pol-
icy
The objective of this policy is to implement such a so-
lution xxxx that for each class k jobs that arrive at node
i, if there exist jobs that are processed at node j, the
following relation holds:

T
(k)
ij (xxxx) = min

l
T

(k)
il (xxxx).

2.2 The solution of each policy

(1) The solution of the overall optimal policy
Define f

(k)
i (ββββi), g(k)(λλ) and f

(k)−1
i (ββββi |β(k)

i
=x

) as follows.

f
(k)
i (ββββi) =

∂

∂β
(k)
i

m∑
l=1

β
(l)
i F

(l)
i (ββββ i).

g(k)(λλ) =
∂

∂λ(k)

m∑
l=1

λ(l)G(l)(λλ).

f
(k)−1
i (ββββi |β(k)

i
=x

) =




a f
(k)
i (ββββi |β(k)

i =α
) = x

0 f
(k)
i (ββββi |β(k)

i
=0

) ≥ x

where ββββi |β(k)
i =x

denotes the vector whose elements are

the sames as those of ββββi except that the element β
(k)
i is

replaced by x.
The decision of ββββ by the overall optimal policy is

given by the following relations [6].

f
(k)
i (ββββi) ≥ α(k) + g(k)(λλ) and β

(k)
i = 0 (i ∈ R

(k)
d )

or
f

(k)
i (ββββi) = α(k) + g(k)(λλ) and 0 < β

(k)
i < φ

(k)
i (i ∈ R

(k)
a )

or
α(k) ≥ f

(k)
i (ββββ i) ≥ α(k) + g(k)(λλ) and β

(k)
i = φ

(k)
i (i ∈

N (k))
or

α(k) = f
(k)
i (ββββi) and β

(k)
i ≤ φ

(k)
i (i ∈ S(k))

subject to∑
i∈S(k)

f
(k)
i (ββββ i |β(k)

i
=α(k)) +

∑
i∈N(k)

φ
(k)
i

+
∑

i∈R
(k)
a

f
(k)−1
i (ββββ i |β(k)

i
=α(k)+g(k)(λ)

) = φ(k),

where α(k) is the Lagrange multiplier.

(2) The solution of the class optimal policy
Define f̃

(k)
i ,g̃(k) as follows.

f̃
(k)
i (ββββi) =

∂

∂β
(k)
i

β
(k)
i F

(k)
i (ββββi),
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g̃(k)(λλ) =
∂

∂λ(k)
λ(k)G(k)(λλ).

Define f̃
(k)−1
i similarly as f

(k)−1
i . Then the decision of

ββββ by the class optimal policy is given by the following
relations, similarly as the above [2].

f̃
(k)
i (ββββi) ≥ α̃(k) + g̃(k)(λλ) and β

(k)
i = 0 (i ∈ R

(k)
d )

or
f̃

(k)
i (ββββi) = α̃(k) + g̃(k)(λλ) and 0 < β

(k)
i < φ

(k)
i (i ∈ R

(k)
a )

or
α̃(k) ≥ f̃

(k)
i (ββββ i) ≥ α̃(k) + g̃(k)(λλ) and β

(k)
i = φ

(k)
i (i ∈

N (k))
or

α̃(k) = f̃
(k)
i (ββββ i) and β

(k)
i ≤ φ

(k)
i (i ∈ S(k))

subject to∑
i∈S(k)

F
(k)
i (ββββi |β(k)

i =α̃(k)) +
∑

i∈N(k)

φ
(k)
i

+
∑

i∈R
(k)
a

f̃
(k)−1
i (ββββi |β(k)

i =α̃(k)+g̃(k)(λ)
) = φ(k),

where α̃(k) is the Lagrange multiplier.
The solution of the node optimal policy can be ob-

tained by identifying class index k with node index i.

(3) The solution of the individually optimal pol-
icy
Define F

(k)−1
i similarly as f

(k)−1
i . Then, the decision

of ββββ by the individually optimal policy is given by the
following relations, similarly as the above [2].

F
(k)
i (ββββi) ≥ K(k) + G(k)(λλ) and β

(k)
i = 0 (i ∈ R

(k)
d )

or
F

(k)
i (ββββi) = K(k)+G(k)(λλ) and 0 < β

(k)
i < φ

(k)
i (i ∈ R

(k)
a )

or
K(k) ≥ F

(k)
i (ββββi) ≥ K(k) + G(k)(λλ) and β

(k)
i = φ

(k)
i (i ∈

N (k))
or

K(k) = F
(k)
i (ββββi) and β

(k)
i ≤ φ

(k)
i (i ∈ S(k))

subject to∑
i∈S(k)

F
(k)
i (ββββi |β(k)

i =K(k)) +
∑

i∈N(k)

φ
(k)
i

+
∑

i∈R
(k)
a

F
(k)−1
i (ββββ i |β(k)

i
=K(k)+G(k)(λ)

) = φ(k),

where K(k) = min
i

F
(k)
i (ββββ i). Therefore the decisions

by these three optimal policies can be obtained by the
Kim and Kameda algorithm [6] or the slightly modified
version of it. xxxx can be obtained form ββββ .
In case β

(k)
i = 0(i ∈ R

(k)
d ), x

(k)
ii = 0 and x

(k)
ij ≥ 0

(j ∈ S(k)),
∑

j∈S(k) xij = φ
(k)
i . In case 0 < β

(k)
i <

φ
(k)
i (i ∈ R

(k)
a ), x

(k)
ii = β

(k)
i and x

(k)
ij ≥ 0 (j ∈ S(k)),∑

j∈S(k) xij = φ
(k)
i −β

(k)
i . In case β

(k)
i = φ

(k)
i (i ∈ N (k)),

x
(k)
ii = φ

(k)
i and x

(k)
ij = 0, for all j �= i. In case β

(k)
i ≥

φ
(k)
i (i ∈ S(k)), x(k)

ii = φ
(k)
i and x

(k)
ij = 0, for all j �= i.

3 Numerical Experiments

In this section, we give the details of the system model
that we use in the numerical experiments. The system
consists of nodes and a communication channel. We
also give the values of the system parameters examined
in the numerical experiments.

3.1 The node model
We use a central-server type model. Server 0 is a CPU
that processes jobs according to the processor sharing
discipline. Servers 1,2,. . . ,d are I/O devices that pro-
cess jobs according to the FCFS discipline. Let p

(k)
i,0

and p
(k)
i,j , j=1,2,. . . ,d denote the transition probabili-

ties that, after departing from the CPU, a class k job
leaves the node i or requests and I/O service at device
j, j=1,2,...,d, respectively.

Then the expected class k node delay is given by

F
(k)
i (ββββ i) =

d∑
j=1

q
(k)
i,j

1

µ
(k)
i,j

1− (q(1)
i,j

β
(1)
i

µ
(1)
i,j

+ · · ·+ q
(m)
i,j

β
(m)
i

µ
(m)
i,j

)
,

where q
(k)
i,0 =

1

p
(k)
i,0

, and q
(k)
i,j =

p
(k)
i,j

p
(k)
i,0

, and where µ
(k)
i,j

denotes the class k processing rate for server j at node
i. µ(k)

i,j is the same for j=1,2,. . . ,d and k=1,2,. . . ,m.

3.2 The communication channel model
We use a processor sharing M/G/1 model. Expected
class k communication delay is given by

G(k)(λλ) =
t(k)

1− (t(1)λ(1) + · · ·+ t(m)λ(m))
,

where t(k) denotes the mean communication time (ex-
cluding the queueing time) for class k jobs.

3.3 The parameters of the experiment
We examined 4 node model (n=4). We assume that
each class corresponds to a node. That is, φ

(k)
i =0,

i �= k. We denote φ
(k)
i by φi and all other system

parameters are independent of the class. That is, for
example, µ

(k)
i,j = µ

(k′)
i,j = µi,j , q

(k)
i,j = q

(k′)
i,j = qi,j,

t(k) = t(k
′) = t. Therefore F

(k)
i (ββββi) = F

(k′)
i (ββββi) = Fi(ββββi),

G(k)(λλ) = G(k′)(λλ) = G(λλ). Thus we say the node opti-
mal policy instead of the class optimal policy.

The system parameter is given as follows: (See Fig.1)
(The unit of measure of uij is jobs/sec.)

d1 = 3
µ1,0 = 1500.0 µ1,1 = 450.0 µ1,2 = 450.0 µ1,3 = 450.0
q1,0 = 10.0 q1,1 = 3.0 q1,2 = 3.0 q1,3 = 3.0
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d2 = 2
µ2,0 = 100.0 µ2,1 = 20.0 µ2,2 = 20.0
q2,0 = 10.0 q2,1 = 4.5 q2,2 = 4.5
d3 = 3
µ3,0 = 100.0 µ3,1 = 30.0 µ3,2 = 30.0 µ3,3 = 30.0
q3,0 = 10.0 q3,1 = 3.0 q3,2 = 3.0 q3,3 = 3.0
d4 = 2
µ4,0 = 120.0 µ4,1 = 54.0 µ4,2 = 54.0
q4,0 = 10.0 q4,1 = 4.5 q4,2 = 4.5

CPU 1500

CPU 100

2φ

β
2

β
I/O 30

30

30

0.3
0.3

0.3

φ

I/O 450

450

4500.3

0.3
0.3

β1

3

3

φ1

φ

β4

4

0.45

0.45

0.45

0.45

node 2

node 4

node 1
0.1

0.1
0.1

0.1

node3

CPU 120

I/O 54

54

CPU 100

I/O 20

20

Figure 1: A distributed computer system model.

We first obtain the case (A) where
φ1 = 80.0, φ2 = 7.0, φ3 = 7.0, φ4 = 7.5 (jobs/sec),
for 0 ≤ t < 4.00,
and the case (B) where
φ1 = 120.0, φ2 = 7.0, φ3 = 7.0, φ4 = 7.5 (jobs/sec),
for 0 ≤ t < 4.00,

In both cases of A and B, we apply three load bal-
ancing algorithms: the overall optimal algorithm, the
individually optimal algorithm, and the class(=node)
optimal algorithm, and obtain the values of perfor-
mance variables such as the overall mean response time,
the mean response time for jobs arriving at each node,
etc. These algorithms are obtained from the Kim and
Kameda algorithm [6] as mentioned at the end of section
3.

4 Results and Discussion

Figures 2, 3, . . . , 9 show the results of calculation. Fig-
ures 2 and 3 show how the overall mean response time of
the overall optimum, the individual optimum, and the
node optimum depend on the value of mean communi-
cation time, respectively, in cases A and B. It is natural
that we conjecture that the larger the mean communica-
tion time, the less the merit of forwarding jobs to other

nodes for each policy.
In Figure 2 (case A), the effect of the mean commu-

nication time on the overall mean response time is sim-
ilar for three optimal policies. That is, the behaviors of
these three policies resemble to one another, although
the values of the mean response time is generally differ-
ent for each optimum. This seems in line with what we
intuitively guess; the individual optimization and the
node optimization will lead to an approximate overall
optimization. Figures 4, 5, and 6 show the effect of
the communication time on the job forwarding rates in
case A, under the overall, individually, and node opti-
mal policies. We can see that the rate of jobs forwarded
decreases for each source node (nodes 1, 2, and 3) as the
mean communication time increases.

Occasionally, however, we observed such counterin-
tuitive cases as illustrated in Fig. 3 (case B). In Figure
3, the effect of the communication time on the overall
mean response time seems awkward for individual and
node optimum. The mean response time under the indi-
vidually optimal policy is very large for very small mean
communication time, and it first decreases and then in-
creases as the mean communication time increases. The
effect of the mean communication time on the mean
response time under the node optimal policy appears
to be more strange. As the mean communication time
increases, it first increases, then decreases, and again
increases. The above phenomenon tells us that these
three policies have clearly different effects.

Figures 7, 8, and 9 show the effect of the communi-
cation time on the job forwarding in case B, under the
overall, individually, and node optimal policies, respec-
tively. We observed the following seemingly counterin-
tuitive case peculiar to the node optimum. In Figure
9 (case B), under the node optimal policy, we can see
that, for small t, a part of jobs arriving at nodes 2, 3
and 4 are forwarded to node 1 for remote processing,
that is, x21, x31, and x41 are not zero. In return, how-
ever, a part of jobs arriving at node 1 are forwarded to
nodes 2, 3 and 4 for remote processing, that is, x12, x13,
and x14 are not zero. It is clear that this type of mu-
tual forwarding never leads to the overall optimum. It
is natural that different policies behave differently from
one another. These types of the phenomena look, how-
ever, remarkably awkward. We should anticipate these
strange behaviors in some occasions.

5 Conclusion

We have studied the mutual relationship among various
performance objectives. We used the distributed com-
puter system as the basis of our discussion. We exam-
ined three distinct optimal policies, the overall, individ-
ually, and node optimal policies. By means of numer-
ical experiment, we have found that seemingly anoma-
lous behaviors among these performance objectives may
sometimes occur.
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Figure 2: Overall mean response time. (case A)
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Figure 3: Overall mean response time. (case B)
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Figure 4: Job forwarding rates in the overall optimum (case
A).

xij denotes the rate of jobs that arrive at node i and are
forwarded to node j by the overall optimal policy.
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Figure 5: Job forwarding rates in the individual optimum
(case A).

xij denotes the rate of jobs that arrive at node i and are
forwarded to node j by the individually optimal policy.
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Figure 6: Job forwarding rates in the node optimum (case
A).

xij denotes the rate of jobs that arrive at node i and are
forwarded to node j by the node optimal policy.
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Figure 7: Job forwarding rates in the overall optimum (case
B).

xij denotes the same as in Figure 4.
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Figure 8: Job forwarding rates in the individual optimum
(case B).

xij denotes the same as in Figure 5.
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Figure 9: Job forwarding rates in the node optimum (case
B).

xij denotes the same as in Figure 6.
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