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Abstract

In this work, using the q-Jackson integral and some elements of the q-
harmonic analysis associated with zero order q-Bessel operator, for a fixed
q ∈]0, 1[, we study the q analogue of the continuous Gabor transform asso-
ciated with the q-Bessel operator of order zero. We give some q-harmonic
analysis properties (a Plancherel formula, an L2

q(Rq,+, xdqx) inversion for-
mula, etc), and a weak uncertainty principle for it. Then, we show that
the portion of the q-Bessel Gabor transform lying outside some set of finite
measure cannot be arbitrarily too small. Finally, using the kernel reproduc-
ing theory, given by Saitoh [13], we give the q analogue of the practical real
inversion formula for q-Bessel Gabor transform.
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1. Introduction

Time-Frequency analysis plays a central role in signal analysis. Since
years ago, it has been recognized that the global Fourier transform of a long
time signal has a little practical value to analyze the frequency spectrum
of a signal. That is why, the Gabor method is preferred to the classical
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Fourier method, whenever the time dependence of the analyzed signal is of
the same importance as its frequency dependence.

However, there exist strict limits to the maximal Time-Frequency res-
olution of this transform, similar to Heisenberg’s uncertainty principles in
the Fourier analysis.

In fact, Gabor [4] was the first to introduce the Gabor transform, in
which he uses translations and modulations of a single Gaussian to represent
one dimensional signal. Other names for this transform used in literature,
are: short time Fourier transform, Weyl-Heisenberg transform, windowed
Fourier transform (cf. Grochening [6] for more details).

In the present paper we show the q-analogue of the continuous Gabor
transform associated with the q-Bessel operator of order zero, giving a def-
inition and some q-analysis properties for it. We discuss some uncertainty
principles, which basically claim that the support of this transform of a
function cannot be too small, and we conclude by some applications.

The paper is organized as follows. In §2, we recall the main results about
the harmonic analysis related to the third basic zero order Bessel function.
In §3, we introduce the q-analogue of the continuous Gabor transform asso-
ciated with the q-Bessel operator and give some q-harmonic properties for
it (Plancherel formula, L2

q inverse formula, weak uncertainty for it). §4 is
devoted to some applications. More precisely, using the kernel reproducing
theory given by Saitoh [13] we study the problems of approximative con-
centration, practical real inversion formulas and extremal function for the
q-Bessel Gabor transform.

2. Preliminaries

Throughout this paper, we fix q ∈]0, 1[. In this section we provide some
notations and results used in the q-theory. We refer to the book by Gasper
and Rahman [5], for the definitions, notations and properties of the q-shifted
factorials and the q-hypergeometric functions.

2.1. Notations.
For a ∈ C, the q-shifted factorials are defined by

(a; q)0 = 1; (a; q)n =
n−1∏

k=0

(1− aqk), n = 1, 2, ...; (a; q)∞ =
∞∏

k=0

(1− aqk).

(2.1)
We also denote

(a1, a2, .., ap : q)n = (a1; q)n(a2; q)n...(ap; q)n, n = 0, 1, ..,∞, (2.2)
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[x]q =
1− qx

1− q
, x ∈ C (2.3)

and

[n]q! =
(q; q)n

(1− q)n
, n ∈ N. (2.4)

Rq,+ =
{

qn : n ∈ Z
}

, R̃q,+ = Rq,+ ∪ {0} and Rq =
{
± qn : n ∈ Z

}
.

(2.5)
The q-Jakson integrals from 0 to a and from 0 to ∞ are defined by

a∫

0

f(x)dqx = (1− q)a
∞∑

n=0

f(aqn)qn, (2.6)

∞∫

0

f(x)dqx = (1− q)
∞∑

n=−∞
f(qn)qn, (2.7)

provided the sums converge absolutely.
The q-Jakson integral in a generic interval [a, b] is given by (cf. [7])

b∫

a

f(x)dqx =

b∫

0

f(x)dqx−
a∫

0

f(x)dqx. (2.8)

The q-derivatives Dqf and D+
q f of a function f are given by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, (D+

q f)(x) =
f(q−1x)− f(x)

(1− q)x
if x 6= 0, (2.9)

(Dqf)(0) = f ′(0) and (D+
q f)(0) = q−1f ′(0) provided f ′(0) exists.

Using these two q-derivatives, we put

∆q =
(1− q)2

x
Dq[xD+

q ]. (2.10)

2.2. The q-Bessel function
In [10], Koornwinder and Swarttouw, in order to study a q-analogue of

the Hankel transform and to give its inversion formula and a Plancherel for-
mula, defined the third Jackson’s q-Bessel function using the q-hypergeometric
function 1ϕ1, as follows

Jα(z; q2) =
zα(q2α+2; q2)∞

(q2; q2)∞
1ϕ1(0; q2α+2; q2, q2z2). (2.11)
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It follows that for all λ ∈ C, the function x 7→ J0(λx; q2) is the solution of
the q-problem {

∆qu(x) = −λ2u(x),
u(0) = 1, u′(0) = 0.

(2.12)

We denote by
• S∗q(Rq) the space of all functions f on Rq,+ such that for all m, n ∈ N :

sup
x∈Rq,+

|x2m∆n
q f(x)| < ∞, and (D+

q (∆n
q f)(x)) → 0 as x ↓ 0 in Rq,+.

• D∗q(Rq) the space of all functions f on Rq,+ with bounded support such
that for all n ∈ N, we have (D+

q (∆n
q (f))(x)) → 0 as x ↓ 0 in Rq,+.

• C∗q,0(Rq) the space of all functions f on R̃q,+ for which f(x) → 0 as
x →∞ in Rq,+ and f(x) → f(0) as x ↓ 0 in Rq,+.

Using the q-Jackson integrals, we note that for p > 0:

• Lp
q(Rq,+, xdqx) =

{
f : ‖f‖p,q =

( ∞∫

0

|f(x)|pxdqx
) 1

p
< ∞.

}

• L∞q (Rq,+, xdqx) =
{

f : ‖f‖∞,q = sup
x∈Rq,+

|f(x)| < ∞.
}

.

The following lemma shows some properties for the third Jackson’s
q−Bessel function of order zero.

Lemma 2.1. For x ∈ Rq,+, we have
i) |J0(x; q2)| ≤ 1
ii) x 7→ J0(λx; q2) ∈ S∗q(Rq), for all λ ∈ Rq,+.

In the following subsections we collect some notations and results on
the q-generalized translation, q-Bessel Fourier transform and q-generalized
convolution product (cf. [2,3]).

2.3. The q-generalized translation
Let f be a function defined on Rq,+, the q−generalized translation of f

is given by

τq,x(f)(y) =
∞∑

k=−∞
K(x, y, qk)f(qk), x, y ∈ Rq,+, (2.13)

provided the sum absolutely converges and

τq,0(f) = f, (2.14)
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where

K(qm, qn, qk) = [Jm−k(qn−k; q2)]2, for m,n, k ∈ Z. (2.15)

The q-generalized translation is positive and verifies the following properties:

τq,x(f)(y) = τq,y(f)(x), x, y ∈ Rq,+. (2.16)

For f ∈ L1
q(Rq,+, xdqx), we have

∞∫

0

τq,x(f)(y)ydqy =

∞∫

0

f(y)ydqy, x ∈ Rq,+. (2.17)

For f, g ∈ L1
q(Rq,+, xdqx), we have

∞∫

0

τq,x(f)(y)g(y)ydqy =

∞∫

0

f(y)τq,x(g)(y)ydqy, x ∈ Rq,+. (2.18)

τq,xJ0(.; q2)(y) = J0(x; q2)J0(y; q2), x, y,∈ Rq,+. (2.19)

2.4. The q-Bessel Fourier transform

For f ∈ L1
q(Rq,+, xdqx), we define the q-Bessel Fourier transform by:

Fq(f)(λ) =
1

1− q

∞∫

0

f(x)J0(λx; q2)xdqx, λ ∈ R̃q,+. (2.20)

This transform satisfies the following properties:
i) For f ∈ L1

q(Rq,+, xdqx),

‖Fq(f)‖∞,q ≤ 1
1− q

‖f‖1,q. (2.21)

ii) For f ∈ L1
q(Rq,+, xdqx) we have

Fq(τq,xf)(λ) = J0(λx; q2)Fq(f)(λ), x, λ ∈ R̃q,+. (2.22)

iii) If f, D+
q f, ∆qf ∈ L1

q(Rq,+, xdqx) and xD+
q f(x) → 0 as x ↓ 0 in

Rq,+, then
Fq(∆qf)(λ) = −λ2Fq(f)(λ), λ ∈ Rq,+. (2.23)
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Theorem 2.1. For all f in L1
q(Rq,+, xdqx), we have

f(x) =
1

1− q

∞∫

0

Fq(f)(λ)J0(λx; q2)λdqλ, x ∈ Rq,+. (2.24)

Theorem 2.2. i) Plancherel formula for Fq:
a) Fq is an isomorphism from S∗,q(Rq) onto itself and F−1

q = Fq.
b) For all f in S∗q(Rq), we have

‖Fq(f)‖2,q = ‖f‖2,q. (2.25)

ii) Plancherel theorem for Fq:
The q-Bessel Fourier transform f → Fq can be uniquely extended to an
isometric isomorphism on L2

q(Rq,+, xdqx).
2.5. The q-convolution product
We define the q-convolution product for two suitable functions f and g

by

f ∗B g(x) =
1

1− q

∞∫

0

τq,xf(y)g(y)ydqy, x ∈ Rq,+. (2.26)

This q-convolution product is commutative, associative and satisfies the
following properties:

i) Let 1 ≤ p, k, r ≤ +∞, such that
1
p

+
1
k
− 1

r
= 1. If f is in Lp

q(Rq,+, xdqx)

and g an element of Lk
q (Rq,+, xdqx), then f ∗B g belongs to Lr

q(Rq,+, xdqx)
and we have

‖f ∗B g‖r,q ≤
1

1− q
‖f‖p,q ‖g‖k,q . (2.27)

ii) Let f be in L1
q(Rq,+, xdqx) and g in L2

q(Rq,+, xdqx).
The q-convolution product of f and g is the function f∗B g of L2

q(Rq,+, xdqx)
satisfying

Fq(f ∗B g) = Fq(f)Fq(g). (2.28)

Moreover, for f, g in L2
q(Rq,+, xdqx), the function f ∗B g belongs to L2

q(Rq,+,
xdqx) if and only if the function Fq(f)Fq(g) belongs to L2

q(Rq,+, xdqx) and
(2.28) holds.

iii) Let f and g be in L2
q(Rq,+, xdqx). Then, we have

||f ∗B g||22,q =

∞∫

0

|Fq(f)(ξ)|2|Fq(g)(ξ)|2ξdqξ, (2.29)

both members being finite or infinite.
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3. The q-Bessel Gabor transform

In this section we show the q-analogue of the continuous Gabor trans-
form associated with the zero order q-Bessel operator, and discuss their
properties.

Notation. We denote by Xp
q , p ∈ [1,∞] the space of all functions f

defined on Rq,+ × Rq,+ with respect to the measure dµq(x, y) = xydqxdqy
such that

‖f‖p,µq =




∞∫

0

∞∫

0

|f(x, y)|pdµq(x, y)




1
p

< ∞, 1 ≤ p < ∞

and

‖f‖∞,µq = ess sup
x,y∈Rq,+

|f(x, y)|.

Definition 3.1. For any function g in L2
q(Rq,+, xdqx) and any ν in

Rq,+, we define the modulation of g by ν as:

Mq,νg := gq,ν := Fq(
√

τq,ν(g2)). (3.1)

Remark 3.1. For a function g in L2
q(Rq,+, xdqx) we have

‖gq,ν‖2,q = ‖g‖2,q. (3.2)

Let us define the family gν
q,y(x) = τq,ygq,ν(x), for x ∈ Rq,+.

Definition 3.2. Let g be a function in L2
q(Rq,+, xdqx). We define the

q-Bessel Gabor transform Gq
g for a function f in L2

q(Rq,+, xdqx) by

Gq
gf(y, ν) :=

1
1− q

∞∫

0

f(x)gν
q,y(x)xdqx, y, ν ∈ Rq,+ (3.3)

which can also be written in the form

Gq
gf(y, ν) := f ∗B gq,ν(y). (3.4)

From the relation (2.27) we have the following proposition:

Proposition 3.1. For functions f, g in L2
q(Rq,+, xdqx), we have

‖Gq
gf‖∞,µq ≤

1
1− q

‖f‖2,q‖g‖2,q.
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Proposition 3.2. (Plancherel formula)
Let g be in L2

q(Rq,+, xdqx). Then, for all f in L2
q(Rq,+, xdqx), we have

||Gq
gf ||2,µq = ‖g‖2,q‖f‖2,q. (3.5)

P r o o f. The relation (2.29), Fubini’s theorem, Theorem 2.2 and the
relation (3.1) give the result.

Remark 3.2. Let g ∈ L2
q(Rq,+, xdqx)\{0}. From Proposition 3.2 we can

see that the normalized q-Bessel Gabor transform
1

‖g‖2,q
Gq

g is an

isometry from the Hilbert space L2
q(Rq,+, xdqx) into the Hilbert space X2

q .

As in the classical case, the q-Bessel Gabor transform preserves the
orthogonality relation, which is shown below.

Corollary 3.1. Let g be a function in L2
q(Rq,+, xdqx). Then, for all

f, h in L2
q(Rq,+, xdqx), we have

∞∫

0

∞∫

0

Gq
gf(y, ν)Gq

gh(y, ν)dµq(y, ν) = ‖g‖2
2,q

∞∫

0

f(x)h(x)xdqx. (3.6)

Theorem 3.1. (L2
q inversion formula)

Let g be a function in
(
L2

q(Rq,+, xdqx) ∩ L∞q (Rq,+, xdqx)
)
\ {0}. Then, for

any function f in L2
q(Rq,+, xdqx), we have

f = lim
N→+∞

N∫

0

∞∫

0

Gq
g(Fqf)(y, ν)Fq(τq,ygq,ν)(.)

dµq(ν, y)
‖g‖2

2,q

(3.7)

in L2
q(Rq,+, xdqx).

P r o o f. Using the relations (3.4), (3.1), Theorem 2.2 i) and the fact
that

∞∫

0

τq,ν(|g|2)(x)xdqx = ‖g‖2
2,q,

we get

f =
1

‖g‖2
2,q

∞∫

0

Fq

(
Gq

g(Fqf)(., ν)
)
(.)Fq(gq,ν)(.)νdqν , a.e. (3.8)
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From the Cauchy-Schwarz inequality and Fubini’s theorem, we obtain
N∫

0

∞∫

0

|Gq
g(Fqf)(y, ν)|

√
τq,ν |g|2(y)dµq(ν, y)

≤ ‖Gq
g(Fqf)‖

2,µq
‖g‖2,q‖χ[0,N ]‖1,q

< ∞.

Thus, from Fubini’s theorem, the relation (2.22) and Theorem 2.2 i), we
deduce that

fN (x) =
1

‖g‖2
2,q

N∫

0

∞∫

0

Gq
g(Fqf)(y, ν)Fq(τq,ygq,ν)(x)νydqν dqy

=
1

‖g‖2
2,q

∞∫

0

Fq

(
χ[0,N ]Gq

g(Fqf)(., ν)
)
(x)Fq(gq,ν)(x)νdqν.

On the other hand, using the relation (3.8), we get

||f − fN ||22,q =
1

‖g‖4
2,q

∞∫

0

∣∣∣
∞∫

0

Fq

(
(1− χ[0,N ])Gq

g(Fq(f)(., ν)
)
(x)

Fq(gq,ν)(x)νdν
∣∣∣
2
xdqx.

Applying the Cauchy-Schwarz inequality, Fubini’s theorem and Plancherel
formula for the q-Bessel transform we obtain

||f − fN ||22,q ≤
1

‖g‖2
2,q

‖(1− χ[0,N ])Gq
g(Fqf)‖2

2,µq
.

Taking this result into consideration and by applying the dominated con-
vergence theorem to it, we find that

||f − fN ||2,q → 0 as N →∞.

This end the proof.

Corollary 3.2. (Coherent states).

Let g be in L2
q(Rq,+, xdqx)\{0}. Then, Gq

g

(
L2

q(Rq,+, xdqx)
)

is a reproducing

kernel Hilbert space in X2
q with kernel function Kg(y, ν; y′, ν ′) defined by

Kg(y, ν; y′, ν ′) =
1

‖g‖2
2,q

∞∫

0

τq,ygq,ν(x)τq,y′gq,ν′(x)xdqx
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=
1− q

‖g‖2
2,q

τq,ygq,ν ∗B gq,ν′(x) (3.9)

is pointwise bounded such that:

|Kg(y′, ν ′; y, ν)| ≤ 1; (y′, ν ′), (y, ν) ∈ Rq,+ × Rq,+. (3.10)

P r o o f. From the representation of the q-Bessel Gabor transform given
by the relations (3.4), (3.1) and the inversion formula (3.8), we get

Gq
gf(y, ν) =

1
‖g‖2

2,q

∞∫

0

( ∞∫

0

Fq(Gq
g(f(., ν ′))(x)Fq(gq,ν′)(x)ν ′dqν

′
)

× Fq(gq,ν)(x)J0(xy; q2)xdqx.

Thus, Fubini’s theorem and the relation (2.22), Theorem 2.2 i) and the
relation (2.28) give

Gq
gf(y, ν) =

1
‖g‖2

2,q

∞∫

0

∞∫

0

Fq(Gq
g(f(., ν ′))(x)Fq(τq,ygq,ν ∗B gq,ν′)(x)dµq(ν ′, x).

On the other hand, one can easily see that for every y, ν, ν ′ ∈ Rq,+, the
function

y′ 7→ τq,ygq,ν ∗B gq,ν′(y′)

belongs to L2
q(Rq,+, xdqx). Therefore, the result follows by applying the

Parseval formula for the q-Bessel Fourier transform.
To simplify the notation, we shall indicate | . |q the product measure

dµq(x, y) in Rq,+ × Rq,+

Proposition 3.3. Let f and g be two functions in L2
q(Rq,+, xdqx) such

that ‖g‖2,q = 1. Suppose that ‖f‖2,q = 1. Then, for U ⊂ Rq,+ × Rq,+ and
ε > 0 satisfying ∫ ∫

U

|Gq
gf(y, ν)|2dµq(y, ν) ≥ 1− ε,

we have
|U |q ≥ (1− ε)(1− q)2.

P r o o f. Using Proposition 3.1 we obtain

‖Gq
gf‖∞,q ≤ 1

1− q
.
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Hence,

1− ε ≤
∫ ∫

U

|Gq
gf(y, ν)|2dµq(y, ν) ≤ ‖Gq

gf‖2
∞,q|U |q ≤ (

1
1− q

)2|U |q.

Therefore,

(1− ε)(1− q)2 ≤ |U |q.

Proposition 3.4. Let f be in L2
q(Rq,+, xdqx) and g be a function in

L2
q(Rq,+, xdqx) such that ‖g‖q,2 = 1 and p ∈ [2,∞[. Then,

∞∫

0

∞∫

0

|Gq
gf(y, ν)|pdq(y, ν) ≤ 1

(1− q)p−2
‖f‖p

2,q. (3.11)

P r o o f. Using Propositions 3.1 and 3.2, the result follows by applying
the Riesz-Thorin interpolation theorem.

As a consequence of the inequality (3.11), we deduce that if the
q-Bessel Gabor transform is essentially supported on a set U ⊂ Rq,+×Rq,+

(example, when Gq
gf = |U |−

1
2

q χU ), then |U |q ≥ (1− q)2.

4. Applications

4.1. Approximative concentration of Gabor transform in
quantum calculus

In order to prove a concentration result for the q-Bessel Gabor trans-
form, we need the following notations:

PR : X2
q −→ X2

q the orthogonal projection from X2
q onto

Gq
g

(
L2

q(R q,+, xdqx)
)
.

PM : X2
q −→ X2

q the orthogonal projection from X2
q onto the sub-

space of function supported in M , where M ⊂ Rq,+×Rq,+ with |M |q < ∞.
We put

‖PMPR‖q = sup
{
‖PMPR v‖2,µq , v ∈ X2

q ; ‖v‖2,µq = 1
}

. (4.1)

The aim result of this subsection is the following.

Theorem 4.1. (Concentration of Gq
gf in small sets.)

Let g be a function in L2(Rq,+, xdqx) and M ⊂ Rq,+ × Rq,+ with
(1− q)

√|M |q < 1. Then, for all f in L2
q(Rq,+, xdqx) we have
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‖Gq
gf − χMGq

gf‖2,µq ≥
(

1− (1− q)
√
|M |q

)
‖g‖2,q‖f‖2,q. (4.2)

P r o o f. From the definition of PM and PR we have

‖Gq
gf − χMGq

gf‖2,µq = ||(I − PMPR)Gq
gf ||2,µq .

Thus, using Proposition 3.2 we obtain

‖Gq
gf − χMGq

gf‖2,µq ≥ ‖Gq
gf‖2,µq(1− ‖PMPR‖)

≥ ‖g‖2,q‖f‖2,q‖(1− ‖PMPR‖). (4.3)

As PR is a projection onto a reproducing kernel Hilbert space, then, from
Saitoh [13], PR can be represented by

PRF (y, ν) =

∞∫

0

∞∫

0

F (y′, ν′)Kg(y′, ν′; y, ν)dµq(y′, ν ′)

with Kg defined by (3.9). Hence, for F ∈ X2
q arbitrary, we have

PMPRF (y, ν) =

∞∫

0

∞∫

0

χM (y, ν)F (y′, ν ′)Kg(y′, ν ′; y, ν)dµq(y′, ν′)

and its Hilbert-Schmidt norm

‖PMPR‖HS =
( ∞∫

0

∞∫

0

|χM (y, ν)|2|Kg(y′, ν′; y, ν)|2dµq(y′, ν ′)dµq(y, ν)
) 1

2
.

By the Cauchy-Schwarz inequality we see that

‖PMPR‖HS ≥ ‖PMPR‖q. (4.4)
On the other hand, from (3.9), Plancherel’s formula for q-Bessel Fourier
transform and Fubini’s theorem, it is easy to see that

‖PMPR‖HS ≤ (1− q)
√
|M |q. (4.5)

Thus, from the relations (4.3), (4.4) and (4.5) we obtain the result.
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4.2. Practical real inversion formulas for Gq
g

In this paragraph we give practical real inversion formulas.
Let s ∈ R . We define the space Hs

q (Rq,+) by

Hs
q (Rq,+) :=

{
f ∈ L2

q(Rq,+, xdqx) : (1 + ξ2)s/2Fq(f) ∈ L2
q(Rq,+, xdqx)

}
.

The space Hs
q (Rq,+) provided with the inner product

〈f, g〉Hs
q

=

+∞∫

0

(1 + ξ2)sFq(f)(ξ)Fq(g)(ξ)ξdqξ, (4.6)

and the norm ‖f‖2
Hs

q
= 〈f, f〉Hs

q
, is a Hilbert space.

Proposition 4.1. Let g be a function in L2(Rq,+, xdqx)
⋂

L∞(Rq,+, xdqx)
and ν ∈ Rq,+. The integral transform Gq

g(., ν), is a bounded linear operator
from Hs

q (Rq,+), s in R+, into L2(Rq,+, xdqx), and we have

‖Gq
gf(., ν)‖2,q ≤ ||g||∞,q‖f‖Hs

q
.

P r o o f. Let f be in Hs
q (Rq,+). Using Theorem 2.2 we have

‖Gq
gf(., ν)‖2

2,q = ‖Fq(Gq
gf(., ν))‖2

2,q.

Involving the relationships (3.4),(3.1) and (2.25), we can write

‖Gq
gf(., ν)‖2

2,q =

+∞∫

0

|Fq(f)(ξ)|2τq,ν(g2)(ξ)ξdqξ.

Therefore
‖Gq

gf(., ν)‖2,q ≤ ||g||∞,q‖f‖Hs
q
.

Definition 4.1. Let g be a function in L2(Rq,+, xdqx)
⋂

L∞(Rq,+, xdqx).
Let r > 0, ν ∈ Rq,+ and s ∈ R+. We define the Hilbert space Hr,s

q (Rq,+) as
the subspace of Hs

q (Rq,+) with the inner product:

〈f, h〉Hr,s
q

= r〈f, h〉Hs
q

+ 〈Gq
gf(., ν),Gq

gh(., ν)〉2,q, f, h ∈ Hs
q (Rq,+).

The norm associated to the inner product is defined by:

‖f‖2
Hr,s

q
:= r‖f‖2

Hs
q

+ ‖Gq
gf(., ν)‖2

2,q.

Proposition 4.2. Let g be a function in L2(Rq,+, xdqx)
⋂

L∞(Rq,+, xdqx).
For s ≥ 0, the Hilbert space Hr,s

q (Rq,+) admits the following reproducing
kernel:
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Pr(x, y) =
1

(1− q)2

+∞∫

0

J0(xξ; q2)J0(yξ; q2)ξdqξ

r(1 + ξ2)s + τq,ν(g2)(ξ)
.

P r o o f. i) Let y be in Rq,+, from Theorem 2.1 we can prove that there
exists a function x 7→ Pr(x, y) belongs to L2(Rq,+, xdqx) such that we have

Fq

(
Pr(., y)

)
(ξ) =

1
1− q

J0(yξ; q2)
r(1 + ξ2)s + τq,ν(g2)(ξ)

. (4.7)

On the other hand we have

∀ ξ ∈ Rq,+, Fq

(
Gq

g(Pr(., y))(., ν)
)
(ξ) =

√
τq,ν(g2)(ξ)Fq

(
Pr(., y)

)
(ξ). (4.8)

Hence from Theorem 2.2 ii), we obtain

‖Gq
g(Pr(., y))(., ν)‖2

2,q =

+∞∫

0

τq,ν(g2)(ξ)|Fq

(
Pr(., y)

)
(ξ)|2ξdqξ

≤ C

r2

∞∫

0

τq,ν(g2)(ξ)|J0(yξ; q2)|2
(1 + ξ2)2s

ξdqξ < ∞.

Therefore we conclude that ‖Pr(., y)‖2
Hr,s

q
< ∞.

ii) Let f be in Hr,s
q (Rq,+) and y in Rq,+. Then

〈f, Pr(., y)〉Hr,s
q

= rI1 + I2, (4.9)
where

I1 = 〈f, Pr(., y)〉Hs
q

and I2 = 〈Gq
gf(., ν),Gq

g(Pr(., y))(., ν)〉2,q.

From (4.6) and (4.7), we have

I1 =
1

1− q

+∞∫

0

(1 + ξ2)sFq(f)(ξ)J0(yξ; q2)ξdqξ

r(1 + ξ2)s + τq,ν(g2)(ξ)
.

From (4.8),(4.7) and Theorem 2.2 ii) we have

I2 =
1

1− q

+∞∫

0

τq,ν(g2)(ξ)Fq(f)(ξ)J0(yξ; q2)ξdqξ

r(1 + ξ2)s + τq,ν(g2)(ξ)
.

The relations (4.9) and (2.24) imply that

〈f, Pr(., y)〉Hr,s
q

= f(y).
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4.3. Extremal function for q-Gabor transform
In this subsection, we prove for a given function g in L2(Rq,+, xdqx)

⋂
L∞(Rq,+, xdqx) that the infinitum of

{
r‖f‖2

Hs
q

+ ‖h− Gq
gf(., ν)‖2

2,q, f ∈ Hs
q (Rq,+)

}

is attained at some function denoted by f∗r,h, which is unique, called the
extremal function. We start it with the following fundamental theorem (cf.
[13]).

Theorem 4.2. Let Hr
K be a Hilbert space admitting the reproducing

kernel Kr(p, q) on a set E and H a Hilbert space. Let L : Hr
K → H be a

bounded linear operator on HK into H. For r > 0, we introduce the inner
product in Hr

K and we call it HKr as

〈f1, f2〉HKr
= r〈f1, f2〉Hr

K
+ 〈Lf1, Lf2〉H .

Then:
i) HKr is a Hilbert space with the reproducing kernel Kr(p, q) on E and

satisfying the equation

Kr(., q) = (rI + L∗L)Kr(., q),

where L∗ is the adjoint operator of L : HK → H.
ii) For any r > 0 and for any h in H, the infinitum

inf
f∈HK

{
r‖f‖2

Hr
K

+ ‖Lf − h‖2
H

}

is attained by a unique function f∗r,h in HK and this extremal function is
given by

f∗r,h(p) = 〈h,LKr(., p)〉H . (4.10)

We can now state the main result of this paragraph.

Theorem 4.3. Let g be a function in L2(Rq,+, xdqx)
⋂

L∞(Rq,+, xdqx).
Let s ≥ 0. For any h in L2(Rq,+, xdqx) and for any r > 0, the infinitum

inf
f∈Hs

q

{
r‖f‖2

Hs
q

+ ‖h− Gq
gf(., ν)‖2

2,q

}
(4.11)

is attained by a unique function f∗r,h given by

f∗r,h(x) =

+∞∫

0

h(y)Qr(x, y)ydqy, (4.12)

where
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Qr(x, y) = Qr,s(x, y) =
1

(1− q)2

+∞∫

0

√
τq,ν(g2)(ξ)J0(xξ; q2)J0(yξ; q2)

r(1 + ξ2)s + τq,ν(g2)(ξ)
ξdqξ.

(4.13)

P r o o f. By Proposition 4.2 and Theorem 4.2 ii), the infinitum given
by (4.11) is attained by a unique function f∗r,h, and from (4.10) the extremal
function f∗r,h is represented by

f∗r,h(y) = 〈h,Gq
g(Pr(., y))(., ν)〉2,q, y ∈ Rq,+,

where Pr is the kernel given by Proposition 4.2. On the other hand we have

Gq
gf(x, ν) =

1
1− q

+∞∫

0

√
τq,ν(g2)(ξ)Fq(f)(ξ)J0(xξ; q2)ξdqξ, for all x ∈ Rq,+.

Hence by (4.8), we obtain

Gq
g

(
Pr(., y)

)
(., ν)(x) =

1
(1− q)2

+∞∫

0

√
τq,ν(g2)(ξ)J0(xξ; q2)J0(yξ; q2)

r(1 + ξ2)s + τq,ν(g2)(ξ)
ξdqξ

= Qr(x, y).
This gives (4.13).

Corollary 4.1. Let g be a function in L2(Rq,+, xdqx)
⋂

L∞(Rq,+, xdqx),
s ≥ 0, r, δ > 0 and h, hδ in L2(Rq,+, xdqx) such that

‖h− hδ‖2,q ≤ δ.

Then

‖f∗r,h − f∗r,hδ
‖Hs

q
≤ δ

2
√

r
.

P r o o f. From (4.13) and Fubini’s theorem we have

Fq(f∗r,h)(ξ) =

√
τq,ν(g2)(ξ)Fq(h)(ξ)

r(1 + ξ2)s + τq,ν(g2)(ξ)
. (4.14)

Hence

Fq(f∗r,h − f∗r,hδ
)(ξ) =

√
τq,ν(g2)(ξ)Fq(h− hδ)(ξ)
r(1 + ξ2)s + τq,ν(g2)(ξ)

.

Using the inequality (x + y)2 ≥ 4xy, we obtain
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(1 + ξ2)s
∣∣∣Fq(f∗r,h − f∗r,hδ

)(ξ)
∣∣∣
2
≤ 1

4r
|Fq(h− hδ)(ξ)|2.

Thus and from Theorem 2.2 ii) we obtain

‖f∗r,h − f∗r,hδ
‖2

Hs
q
≤ 1

4r
‖Fq(h− hδ)‖2

2,q =
1
4r
‖h− hδ‖2

2,q,

which gives the desired result.

Corollary 4.2. Let g be a function in L2(Rq,+, xdqx)
⋂

L∞(Rq,+, xdqx).
Let s ≥ 0 and r > 0. If f is in Hs

q (Rq,+) and h = Gq
gf(., ν). Then

‖f∗r,h − f‖2
Hs

q
→ 0 as r → 0.

P r o o f. From (4.4), we have

Fq(f∗r,h)(ξ) =

√
τq,ν(g2)(ξ)Fq(h)(ξ)

r(1 + ξ2)s + τq,ν(g2)(ξ)
.

Hence

Fq(f∗r,h − f)(ξ) =
−r(1 + ξ2)sFq(f)(ξ)

r(1 + ξ2)s + τq,ν(g2)(ξ)
.

Then we obtain

‖f∗r,h − f‖2
Hs

q
=

∞∫

0

hr,t,s(ξ)|Fq(f)(ξ)|2ξdqξ,

with

hr,t,s(ξ) =
r2(1 + ξ2)3s

(
r(1 + ξ2)s + τq,ν(g2)(ξ)

)2 .

Since
lim
r→0

hr,t,s(ξ) = 0, and |hr,t,s(ξ)| ≤ (1 + ξ2)s,

we obtain the result from the dominated convergence theorem.
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