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Abstract. We discuss the fonnulation of discrete maximum entropy problems given upper and
lower bounds on moments and probabilities. We show that with bounds on discrete probabilties
and bounds on cumulative probabilties, the solution is invarant to any additive concave
objective fuction. This observation simplifies the analysis of the problem and unfies the
solution of several generalized entropy expressions. We use this invarance result to provide an
exact grphical solution to the maximum entropy distrbution between upper and lower
cumulative probability bounds. We also discuss the maximum entropy joint distrbution with
bounds on margial probabilties and provide a graphical solution to the problem using
propertes of the entropy expression.

INTRODUCTION

In 1957 , Edwin Jaynes proposed a method to assign probabilities based on partial
information (1). Ths is known as the maximum entropy priciple and is stated from
his original paper as follows: "In makig inerences on the basis of parial
information, we use the probability distrbution which has maximum entropy subject
to whatever is known Maximum entropy applications have since found great
popularty in many fields such as natual language processing (2), bioinormatics (3),
medicine, thermodynamcs (4), DNA sequence alignment, hydraulics (5) , decision
analysis (6), (7), and many other fields.

A maximum entropy model is usually formulated to confmn to equality constraints
on moments or cumulative probabilities of the distrbution of a random varable

, () .

= arg max 
- i: 

In(pJ
;=1

Such that (1)

Lh/B;)Pi 
,oo.

, LPi 
= 1 and Pi ;=1 ;=1

where (B;) is either an indicator fuction over an interval for cumulative probability

constraints, or B; raised to a certin power for moment constraints, and s are a

given sequence of probabilities or moments.
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The solution to ths problem has the well-known form

l- (lI)
=e (2)

where is the Lagrange multiplier for each probability or moment constraint.

In many cases that arise in practice, however, precise values for moments and
probabilities are unavailable. For example, we may have (1) imprecision in certin
measurements, such as temperatue sensors needed to determine the average kietic
energy of molecules in a room; (2) insuffcient data collected in data minig
applications; (3) bounds on the assessed probabilities in a 

tyical probability encoding
in decision analysis; and (4) game theoretic formulations where we are uncertain about
an opponent's beliefs, but have upper and lower bounds resulting from prior
information.

When precise values for moments and probabilities are unavailable, the maximum
entropy priciple can be used to assign a representative probability distribution using
upper and lower bounds. This formulation has several applications such as the
maximum entropy joint distrbution with lower-order marginal constrints (7), (8).
The mathematical formulation for the problem using vector notation is shown below.
We choose (for convenience) to minimize the negative of the entropy fuction

f(p) LPi In(pi ' instead of maximizing the entropy fuction.
i=!

argminf(p)

such that

p=1
ma:S H(B)p:S mb

(3)

where H(B) Rmx is a matrx whose rows are the constraints h/B);
ma and mb 

mx1 are vectors whose elements and are the lower and upper
bounds (respectively) on the expected value of 

h/B); e 
nx1 is a vector of ones; and

is the transpose of e .

Equation (3) is a generalization of (1) when the upper and lower bounds coincide.
Our focus wil, therefore, be on (3), while keeping in mind that the same results apply
to (1). It is useful to thnk of the feasible region for (3) geometrcally where each
inequality constraint provides a region bounded by two cones: an outer cone whose
projection on the vector (B) is the dot product h/B)p and is also the lower
bound, and an inner cone whose projection on 

(B) is the dot product h/B)p 

and is also the upper bound. If there were only equality constraints, the upper and
lower cones would coincide. The equality constraint

= 1 , limits the norm of the
vector to be unty (Figue 1). The feasible region for the problem is the intersection



of the feasible regions of all the inequality constraints. We are interested in a vector in
the feasible region that wil mimize the convex objective fuction f(p).

(B)

mbi

FIGURE 1. Feasible region implied by the upper and lower bounds of one inequality constraint.

We wil discuss the optimality conditions for (3), and show that for (i) bounds on
discrete probabilities and (ii) bounds on cumulative probabilities, the solution is
invarant to any additive convex objective fuction. This observation simplifies the
analysis of the problem signficantly. For example, we can avoid some of the
problems that occur with the singularty of the objective fuction fj(x) xln(x) near
the origin, or choose an objective fuction that enables an exact graphical solution to
the problem. The invarance of (3) under the conditions stated above unfies the
solutions of several generalized entropy expressions when bounds on probabilities are
available.

We end ths paper with a discussion of the maximum entropy joint distrbution with
bounds on marginal probabilities, and show how properties of the entropy expression
enable the decomposition of this problem into a simpler formulation in terms of the
sum of the entropies of the marginal distrbutions. This result simplifies the analysis
and reduces the number of varables signficantly.

OPTIMAITY CONDITIONS FOR THE MAMUM ENTROPY
SOLUTION WITH UPPER AND LOWER BOUNS

Note that the objective fuction in (3) is an additive convex fuction since each
term Pi In(Pi , is strictly convex. Furhermore, the region defined by the inequality

constraints is the intersection of a set of half spaces and is, therefore, a convex set.
These conditions suffice the existence of a unque solution to the problem (9).

The first step in the analysis is to take the Lagrange operator of (3) to get



L(p, fJ,

j.) 

f(p)- j.(eT p - l)-((H(B))p- ma? a -(mb- (H(B))p? fJ (4)
where 

fJ 
mx1 are vectors whose elements are the Lagrange multipliers for the

lower and upper bounds respectively, and 

j. 

is a scalar Lagrange multiplier for the
normalizing equality constraint. For convenience, we re-arange (4) to get

L(p, fJ,

j.) 

(f(p)- p (j.e+ H(B? (a 
fJ))) 

j. 

a -
fJ . (5)

Now we consider the first-order optimality conditions for (3).

First-Order Optimality Conditions

(a) The First Partial Derivative L(p, a
, fJ, j.) I . = 08p 

This condition results in a solution
that minimizes L(p, fJ,

j.) 

and is also the
maximum entropy solution. I.e.

= argmn L(p, fJ,

j.).

(6)

Note that the argmin L(p, fJ,

j.) 

operation wil involve only the bracketed term in

(5). Furhermore, the argmn operation performed on the negative of the bracketed

term is (by definition) equal to the conjugate of the 
fuction f(p), written as 

(. .

See for example, Rockafeller (10), where

argmn(f(p) (j.e+ H(B? (a fJ)))

= -

argmax(p (j.e+H(B? (a- fJ))- f(p)) 

' (y

(7)

where f(. is the conjugate of 
f(p) and is by definition equal to

(j.e H(B? (a fJ)) . (8)
The conjugate of the negative of the entropy expression is 

feY") In(te
;=1

we show in the appendix. We can express the maximum entropy solution
in terms

of 

y" 

by takg the first parial derivative of (5) with respect to and equating it to
zero.

'if(p (j.e+ H(B? (a 
fJ)) 

' .

(9)



Note that the expression for 

y" 

in (8) as well as the relation for the gradient
'if(p

y" 

in (9) is the same if we minimize any additive convex objective fuction

f(p) Lf(Pi , where f(pJ is strctly convex. As a result, (9) is also the same for
i=l

any additive convex fuction in (3). Furhermore, the strct convexity of f(p) implies

that the arguent of its gradient 'if(p , is unquely determed by 

y". 

Hence, it is

sufficient to determne in order to determe the maximum entropy solution

. .

(b) The Partial Derivative L(p, , fJ,

j.) 

= 0
8j.

Takg the first parial derivative of (5) with respect to 

j. 

and equating it to zero
gives the normalizing constraint8L -=O =1 or LPi =1.

8j. i=l

(10)

(c) Complementary Slackness Conditions

The complementar slackness conditions for the inequality constraints in (3)
require

((H(B))p

' -

ma)T a 

(mb-(H(B))p / fJ = 0

(11)

(12)

Equations (11) and (12) can also be expressed on an element-by-element basis as

(h/B)T p = 0
T .fJ/mb h/B) p ) = 0

j=I

,...

j=l,oo.

(13)

(14)

(d) Non-negativity of the Lagrange Multipliers of the fnequality Constraints

These conditions can be expressed on an element-by-element basis for the vectors
and fJ 

? 0

j=l ,oo.

j=l,oo.

(15)

(16)

Equations (9), (10), (13), (14), (15), and (16) are sufficient to determne 

y" 

and the
maximum entropy solution to the problem. Once again, these equations apply to any



additive convex fuction; however the relation 'if(p

y" 

uniquely determnes the
paricular for a given additive convex fuction f(p). In the next section 

discuss some important special cases of this formulation that appear in many
applications in practice, and where the solution is invariant to any additive convex
fuction f(p).

INV ARANCE OF THE MAIMUM ENTROPY SOLUTION

Now we discuss some special cases of (3) where the solution is invarant to any
additive convex fuction.

Bounds on Discrete Probabilties

When only bounds on discrete probabilities are available, the matrx H(B) in (3)

reduces to an identity matrx, and the product hiB)T p reduces to Pj to give

inequality constraints of the form 
:S Pj :S j=I,.oo (17)

With no loss of generality, we can assume that since we can introduce a
constraint O:S P j :S 1 if we have no other inormtion about the probability, P j' The

expression for in (8) reduces to

y" 

(j.e+ (a fJ)) (18)

The fIrst-order optimality conditions reduce to

= 0 j=l ,oo. (19)

fJj (mb = 0

,..

(20)

j=I

,...

(21)

The non-negativity of in (21) implies thee possible cases for each
probability, P j .

Case 1: * 0

From (20), this implies that is determned solely by the upper bound, where



=mb. (22)

Let us now determne the value of 

j. 

for this case. From (18), we have j.- fJ

and from (9), we see that this condition implies

(P)
1mb j.- fJj'

1f 

(23)

The non-negativity of implies that (22) is an optimal solution when

8f(p)
Imb :S j..8Pi (24)

Now we discuss the implications of (23) and (24) for the fuction f(Pi Pi In(Pi
and for any general additive convex fuction.

(a) f(pJ Pi In(pJ
This is the case of (3), where equation (23) becomes

1 + In(mbJ j.- fJi' (25)

Since ~ 0 , (25) occurs when

j. 

~ 1 + In(mbJ, (26)

Using the substitution t5 we can wrte (26) as

t5 

(b) f(p) tf(pJ, 
where f(p) is any strctly convex fuction

i=l

(27)

Recall that 

y" 

is stil given by (8) for any additive convex fuction. Therefore, (23)

is also valid for any additive convex fuction where

1mb j.- fJ (28)

which occurs when

8f(p)
1mb :S 

j..

8pj (29)



Now we introduce a general definition of t5 as the inverse of the parial derivative

8f(P)
evaluated at 

j.. 

Using this general definition of t5 , (29) can be wrtten as

t5~m

From the previous results, we see that for any additive convex fuction in (3),
when t5 

Case 2: 

"* 

= 0

From (19), this case implies that

Pj =ma (31)

and from (18), we have

8f(p)

/ = 

j.+a.
(Jj ma

(32)

The non-negativity of implies that (31) is an optimal solution to (3) when

j.:S 1 + In(ma (33)

Furhermore, (31) is an optimal solution to any additive convex fuction f(p) 

when

t5:S ma (34)

Case 3: = 0

From (18), this case implies that

j.,

(35)

and from (9), we have

8f(p) =/1
Opj mO

j r (36)

Using the general definition of we can wrte (36) as



P; (37)

which occurs in the remaining interval ma j :S t5 :S 

We now sumarze the solution to the maximum entropy problem (or any additive
concave fuction) with bounds on discrete probabilities below.

t5:S ma

t5 ma. t5 mb.

t5 

(38)

Note that, from (38), we have another interpretation for t5 as a constant that
normalizes the sum of the probabilties to equal one. By sumng the probabilities

P;, and using sensitivity analysis, we can find the value of t5 at which the sum is
equal to one. Equation (38) is thus determned solely by the upper bounds; lower
bounds; and a normalizing parameter t5. Furhermore, we have seen that (38) is valid
for any additive convex fuction in (3). In the next sections, we wil present several
implications of this result, but first we sumarze our main conclusions about the
maximum entropy solution with bounds on discrete probabilities below.

Proposition 1: Invariance of the Maximum Entropy Solution with
Probabilty Bounds

The maximum entropy distrbution between upper and lower bounds on discrete
probabilities is invarant to any additive concave fuction of the probabilties.

The invarance of the maximum entropy solution presented above provides
additional justification for the use of the maximum entropy distrbution with bounds
on discrete probabilties, since the solution is invarant to any information measure
that is an additive concave fuction.

Freund and Saxena (11) presented an algorithm to solve the maximum entropy
problem with bounds on discrete probabilities. In this section, we have shown that ths
problem is invariant to any additive concave fuction. This observation simplifies the
analysis of the maximum entropy formulation. For example, we can maximize the

objective fuction f(p) L -

p( 

instead of the fuction f(p) L -Pi In(pJ 

these tyes of problems and obtain the same result.

Bounds on Cumulative Probabilties

In many situations that arse in practice, such as in probability encoding in decision
analysis, we assess a cumulative probability distrbution for a varable of interest
rather than a discrete event probabilty for each of its outcomes (Spetzler, C.S. and



Yon Holstein (12)). In these situations, the decision maker may provide upper and
lower bounds durng the probability assessment, or he may consult an expert who

provides another cumulative distrbution for the variable of interest. Faced with two
cumulative distrbutions, or upper and lower cumulative probabilty bounds, we are

interested in the maximum entropy distribution that lies between them. The

mathematical formulation for the problem is

' =argminf(p)

such that (39)

= 1 ~ 0

ma :SH(B)p:S mb

where H(B) is an upper (or lower) trangular matrx whose non-zero elements are

equal to one.
Let us now discuss (39) in more detail when 

H(B) isa lower trangular matrx.

The upper and lower bounds on cumulative probabilities can be written on an element-
by-element basis as

:SPl :Smb (40)

:5 PI + P2 :S 

...

etc. (41)

Equations (40) and (41) also provide upper and lower bounds on P2 as follows

max(ma -mb O):S P2 :S min(mb -ma 1) . (42)

Similarly, we can reduce the remaining cumulative probabilty constraints in (39)
into upper and lower bounds on the discrete probabilties, where

max(ma

j -

O):S Pj :S min(mb l), j ,oo. (43)

Necessary Conditions for the Upper and Lower Bounds

Since the upper and lower bounds on each discrete probability must lie between
zero and one, the bounds obtained in (43) must satisfy

j-m :Sl , Vm:Sj:Sn (44)

-ma ~ 0 Vm:S j:S n (45)

Equations (44) and (45) are necessar conditions for feasibilty. Furhermore, since

a cumulative distrbution fuction is non-decreasing, we can assume, with no loss of

generality, that both upper and lower bounds are monotonically non-decreasing, i.



:S and j-m :S \:m:S j:S n. (46)

The normalization of the cumulative distribution over a suffciently large support
also requires

= 0

=mb
(47)

Suffcient Conditons for the Upper and Lower Bounds

Equations (45), (44), (46), and (47) are suffcient conditions for the existence of a
unque solution to (39).

Proof. Note that if (44), (45), (46), and (47) apply, then we can reduced the
problem of bounds on cumulative probabilities into that of bounds on discrete
probabilities discussed earlier. As a result, the solution to ths problem is also invarant
to any additive concave fuction of probability. We sumarze this result below.

Proposition 2: Invariance of the Maximum Entropy Solution with
Cumulative Probabilty Bounds

The maximum entropy distribution between upper and lower cumulative
probability bounds is invariant to any additive concave function of the probabilities.

Proposition 2 allows for a simple graphical solution for the maximum entropy
distribution between upper and lower cumulative probability bounds. We ilustrate thisresult below. 

Graphical Solution between Two Cumulative Distributions

The invarance of the maximum entropy solution described above allows us to

minimize the additive convex objective function f(p) = i: 

+ /) 2 , instead 

;=1

f(p) L Pi In(Pi ) when bounds on cumulative probabilities are present. In this new
;=1

objective function, /) is the discretizing interval for the variable for which

successive cumulative probability assessments are made.
With no loss of generality, we wil now focus on the maximum entropy distrbution

between upper and lower bounds of two cumulative probability distributions Rand Q,
since they satisfy (45), (44), (46), and (47). We start with the case where there is
stochastic domiance between the two distributions.



a) The Two Distributions, Rand Q, have Stochastic Dominance

Observe that the new objective fuction f(p) = i: 

p; 

+ f12 , is the distance (path)
;=1

in the plane of the cumulative probability distrbution staring from point A to point B
(Figure 2). As a result, (39) is equivalent to the problem of finding the shortest path in
the plane that lies between the two distributions. To find this shortest path, imagine

pins in the plane at the points , R;) and (B , Q) for 0:S :S where is the value

of the varable at which the assessment took place, and R;, and Q are the value of the

cumulative distrbutions at Now thread a strng between the pins 
, R and (B , Q) for 0 :S :S and pull the strg taut. The taut strig traces out the

shortest path and is also the maximum entropy solution. Note that the taut string does
not have to be linear but takes the shape of the shortest path, which could be one of the
bounds themselves. We sumarze this result below.

Taut String solution between two distributions with
Stochastic Dominance 

0.4

...

.....oo.... ..

.. ... .. .. .. .. . /! '

.-. Dist 

- Dist R

Taut String

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Theta

FIGUR 2. Graphical detennination of maximum entropy solution between upper and lower

cumulative bounds.

Proposition 3: Maximum Entropy Solution is the Shortest Path
Solution

The maximum entropy distribution between upper and lower cumulative

probability bounds is the shortest path in the plane that lies between the upper and
lower bounds.

We note that taut string solutions exist in many applications in practice. For
example, Modiglian and Hohn (13) discuss a string solution for problems in
production plang over time; Dantzig (14) discusses a strng solution for special

cases in control theory, and Veinott (15) discusses a taut string solution for optimal
flow in network problems.



b) Stochastic Dominance Does Not Exist

When stochastic dominance does not exist between the two distributions, we may
be interested in the maximum entropy distribution between their upper bound
max(R;, ), and lower bound, min(R;, Q;). These bounds also satisfy (45), (44), (46),
and (47). When stochastic dominance does not exist, the two distributions wil cross at
least once. The crossing points comprise both upper and lower bounds at that value of

so the taut strig must pass through them. Figue 3 the maximum entropy
distribution between two distributions with no stochastic dominance.

Taut String solution between two distributions with no
Stochastic Dominance

- -- Dist Q

Dist R

-Taut String
0.4

o 0.1 0.2 0. 0.4 0.5 0. 7 0.8 0.
Theta

FIGUR 3.
dominance.

The maximum entropy distribution between two distributions with no stochastic

c) Maximum Entropy Distribution with Cumulative Probability Constraints

As a special case of the graphical solution discussed above, we refer to the
maximum entropy distribution given precise cumulative probability constraints. As we
noted earlier, we can think of equality constraints as upper . and lower bounds that
coincide. This implies that the taut strig must pass through them. When the string is
taut, the solution traces out the well known piece-wise linear cumulative distribution
that is also invarant to any additive concave fuction of probability.

MAXIMUM ENTROPY JOINT DISTRIBUTION WITH BOUNDS
ON MARGINAL PROBABILITIES

Now we present another application of (38), and consider the maximum entropy
joint distribution given bounds on the marginal probabilities of the varables. For
example, the maximum entropy formulation for a three-varable joint distribution in
terms of bounds on its marginal probabilities is



max - LPijk In(Pijk

such that

:S LPijk :S mb 'ii , ma :S LPijk :S mb 'ijk i (48)

:S 
LPijk 

:S 'ik , Pijk 'ii

LPijk =1

where the subscripts i ,j , represent the outcome of the first variable, the 

outcome of the second varable, and the outcome of the third variable respectively;
Pijk is the joint probability of i ,

j ,

k; map ma j' ma are lower bounds; and 

, mb are upper bounds.

We assume, with no loss of generality, that the upper and lower bounds range from
zero and one. Furthermore, we define and as the sum of the lower and upper

bounds for each varable respectively. For example Lmai' ub Lmb

L ma

,.. .

etc.

It is well known in information theory that the maximum entropy joint distribution
given its marginal distributions is equal to the product of the marginal distributions
(see for example Cover and Thomas (16)). The rationale for this assignent is that the
marginal constraints do not contain any information about the dependence relations
between the variables present. Furthermore, properties of the entropy expression show
that the value of this maximum entropy is equal to the sum of the entropies of the
marginal distrbutions.

When bounds on the marginal probabilities are available, the maximum entropy
joint distribution is equal to the product of the maximum entropy marginal
distributions given bounds on their marginal probabilities. We can now use (38) to
determine the maximum entropy joint distribution with bounds on marginal
probabilities. First we present the necessary and sufficient conditions for the existence
of a feasible solution to this problem.

Proposition 4: Necessary and Suffcient Conditions

The conditions :S 1 and 'in are necessar and suffcient for the
existence of a unique solution to (48).

Proof The proof of necessity is straightforward; if either ~ 1 or :S 1 , it wil
lead to solution whose marginal probabilities do not sum to one. The proof of



sufciency is more involved. From (38), we can see that the marginal probability for
the outcomes of each varable is equal either to either its lower bound; upper
bound; or a normalizing constant, 8 . Note also that the sum of marginal probabilities

in (38) is a monotonically non-decreasing fuction of 8. . For example, when 8. = 0 ,

the sum of marginal probabilities for varable is equal to the sum of lower bounds
and when 8. = 1 , the sum of marginal probabilities for varable is equal to the sum

of the upper bounds. Monotonicity of (38) implies there is a value of 8. for which the

sum of probabilities is equal to one. Using sensitivity analysis, we can determne this
value of 8. such that the marginal probabilities of varable sum to one.

The proof of the previous lemma provides a convenient method to solve (48)

graphically. We ilustrate this result using the following example.
Example: We are interested in the maximum entropy joint distrbution for three

variables, each discretized to three outcomes, and whose marginal probabilities have
the following lower and upper bounds (Table 1). We use the notation Pi.. for the

marginal probability of the outcome of the first varable; 

p.j. 

for the marginal

probability of the 
j'h outcome of the second variable; and P.. for the marginal

probability ofthe outcome of the thid varable.

TABLE 1. Upper and lower bounds on marginal probabilties.

P1.. P2.. P3.. P.. P.. P..
0.45 016 192 0.28

592 0.4

The first step is to check feasibility of the lower bounds

= 0.05 + 0.45 + 0.35 = 0. 85 0( 1

= 0.016+ 0.39+0. 192 = 0.597 

= 0.28 + 0.34 + 0.2 = 0.82 

(49)

The second step is to check the feasibilty ofthe upper bounds

=0.17 +0.16+0.8 =1.7).1
= 0.25 + 0.5 + 0.592 = 1.42 ).1

=0.4+0.37+0.3=1.07).1
(50)

From Lemma 1 , we know that there exists a unque solution to ths problem. The
sum of marginal probabilities for each variable can be plotted vs. 8. The value at
which the sum is equal to one determines the value of 8. for that variable. The

marginal probability for each outcome of variable can now be determined using



(38) and the value of 5. . Figue 4 shows a sensitivity analysis to the sum of marginal

probabilities for each varable and the corresponding values of 5

. .p", p" .... ----. .- . .

P.. P.. P.3

JL =0.

JL = 0.35 

p, 

= 0.38

"" ,/

0.4 0.
Value of 

FIGURE 4. Sensitivity analysis to the value of 5

. .

We now use (38) to determne the maximum entropy marginal probabilities as
shown below.

TABLE 2. Maxi urn entropy marginal probabilties.

P1. P2.. P3.. P.. P.. P..
0.45

The maximum entropy joint distribution is equal to the product of the marginal
distributions.

CONCLUSIONS

We have shown that the maximum entropy solution with bounds on discrete
probabilities and bounds on cumulative probabilities is invarant to any additive
concave objective fuction. This observation simplifies the analysis of the problem, by
choosing simpler objective fuctions, and unfies the results of several concave
information measures for these situations. We used this invariance result to provide a
graphical solution to the maximum entropy distribution between upper and lower
cumulative probability bounds. We also discussed the maximum entropy joint
distrbution given bounds on the marginal probabilities, and ilustrated how the
formulation can be decomposed into a simpler formulation with bounds on discrete
probabilities using properties of the entropy expression.



APPENDIX: CONJUGATE OF NEGATIV OF THE ENTROPY

The conjugate of the negative of the entropy expression is by definition

feY") sup(p (J.e+ H(Bl (a fJ)) f(p))
(51)

such that = 1

where f(p) tpi In(p). To solve (51) we evaluate the Lagrange operator as
i=l

L(p,

y", ).) 

T y" f(p)- ).(e (52)

The first parial of (52) with respect to gives

'if(p

y" -

).e (53)

Re-aranging (53) and substituting for the gradient of the negative of the entropy

expression
8f (p)

= 1 + In(Pi , for each element Pi gives
Bpi

. v

' -

Pi =e i =l ,oo (54)

The normalizing constraint in (51) gives

LP; 
.. =1i=l i=l

(55)

Re-aranging (55) gives

. = 

In(teY;- (56)

Substituing (54) and (56) into (52) gives

L(p

' , y" ) = 

T y" f(p)

= LPiY; ln(p);=1 ;=1

= LPiY; LPi (Y; -;=1 i=1

(57)

LPi (l+)" =(1+).
i=l



Substituting for from (56) gives

L(p

' , y" ,

= 1 + In(Le
;=1

= 1 + In(e

)+ 

In(te
;=1 (58)

= In(L 
Y; )

;=1

(y")

The conjugate of the negative of the entropy expression is thus 

' (y) 

= In(t 

) .

;=1

E.D.
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