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Abstract

Proximal average (PA) is an approximation technique proposed recently to handle non-
smooth composite regularizer in empirical risk minimization problem. For nonsmooth
composite regularizer, it is often difficult to directly derive the corresponding proximal up-
date when solving with popular proximal update. While traditional approaches resort to
complex splitting methods like ADMM, proximal average provides an alternative, featur-
ing the tractability of implementation and theoretical analysis. Nevertheless, compared to
SDCA-ADMM and SAG-ADMM which are examples of ADMM-based methods achieving
faster convergence rate and low per-iteration complexity, existing PA-based approaches ei-
ther converge slowly (e.g. PA-ASGD) or suffer from high per-iteration cost (e.g. PA-APG).
In this paper, we therefore propose a new PA-based algorithm called PA-SAGA, which is
optimal in both convergence rate and per-iteration cost, by incorporating into incremental
gradient-based framework.

1. Introduction

In this paper, we focus on empirical risk minimization which optimizes the model by min-
imizing the average loss from the training data. The averaged loss is often regularized by
a regularizer, e.g. smooth penalties such as l2 norm or nonsmooth penalties like lasso.
More complex regularizers such as group lasso (Yuan et al. (2011)), Mairal et al. (2010))
and graph lasso (Jacob et al. (2009)) have been widely used in bioinformatics, text and
other structured data mining tasks to introduce structured sparsity to the model. Opti-
mizing such structure regularized empirical risk minimization problem can be challenging,
especially confronted with very large dataset.

Generally, nonsmooth composite penalties such as group lasso and graph lasso are diffi-
cult to solve because we can neither directly take derivative as dealing with smooth regular-
izer like `2 norm nor have closed form proximal update for simple nonsmooth like `1 norm.
In other words, none of these simple methods mentioned above can be directly applied when
these complex regularizers are used. Apparently, other techniques need to be introduced. A
popular line of research is a split method called alternating direction method of multipliers
(ADMM) (Boyd et al. (2011)). There are already stochastic gradient and incremental gradi-
ent ADMM methods. Stochastic Gradient ADMM (Ouyang et al. (2013)) methods include
RDA-ADMM (Suzuki (2013)) which incorporates RDA method with ADMM. SADMM and
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optimal-SADMM in (Azadi and Sra (2014)) utilize nonuniform averaging of iterative vari-
able (Lacoste-Julien et al. (2012), Shamir and Zhang (2013)) and accelerated stochastic
gradient method (Ghadimi and Lan (2012)). In particular, SA-ADMM (Zhong and Kwok
(2014b)) and SDCA-ADMM (Suzuki (2014)) are two recent ADMM methods incorporating
incremental gradient method SAG (Roux et al. (2012a)) and SDCA (Shalev-Shwartz and
Zhang (2013)) correspondingly. When incorporating into incremental gradient framework,
both methods enjoy not only low per-iteration complexity, but also optimal convergence
rate. A major drawback of ADMM-based methods is the complex implementation and con-
vergence analysis, which are brought about by the additional variables introduced and the
alternating updating scheme.

Recently, proximal average (Bauschke et al. (2008), Yu (2013), Zhong and Kwok (2014a))
has been introduced to deal with component penalties efficiently when each of its component
allows cheap computation of proximal operator. It averages the proximal map from each
component proximal operator, which is surprisingly simple in terms of implementation.
In addition, (Zhong and Kwok (2014a)) shows that this proximal average update scheme
is equivalent to solving a proximal mapping operation on a surrogate regularizer. More
importantly, the approximation of this surrogate regularizer can be arbitrarily close to the
original composite regularizer. Compared with ADMM, (Zhong and Kwok (2014a)) points
out that ADMM is also a proximal method by duplicating variables. Apparently, proximal
average is much simpler to implement and also much easier to make analysis, which will be
introduced later. Pioneers includes (Yu (2013)), which introduces proximal average with
accelerated full gradient method FISTA (Beck and Teboulle (2009)). (Zhong and Kwok
(2014a)) incorporates proximal average technique with the stochastic variant of optimal
gradient method. It has provable superiority over smoothing technique which is also shared
by (Yu (2013)). Despite the simplicity advantage in terms of implementation and analysis,
when compared to incremental ADMM methods (e.g. SA-ADMM and SDCA-ADMM),
existing PA-based approaches either converge slowly (e.g. PA-ASGD) or suffer from high
per-iteration cost (e.g. PA-APG). To make the PA-based method more appealing, it is
worth incorporating PA technique into incremental gradient framework.

Incremental gradient methods featuring both scalability and fast convergence property
have been receiving considerable attention as an efficient approach to mitigating the ever
growing dataset problem. As these methods only calculate gradients associated with a
randomly picked data sample in each iteration as stochastic gradient methods (Bottou
(2010), Xiao (2010), Ghadimi and Lan (2012)), they have comparable low per-iteration
computation cost. More importantly, by well exploiting the finite sum structure of the
loss function which stochastic methods do not have, these incremental methods are able to
achieve linear convergence rate as full gradient methods (Nesterov and Nesterov (2004)). For
example, SAG (Roux et al. (2012a)) utilizes the average of the stored past gradients, one for
each data. SVRG (Johnson and Zhang (2013), Xiao and Zhang (2014)) adopts a multi-stage
scheme to progressively control the variance of the stochastic gradient. Both methods have
linear convergence rate for strongly convex problem, but the theoretical convergence result
for general convex loss is still unclear. SAGA (Defazio et al. (2014a), Defazio et al. (2014b))
has both sublinear convergence guarantee for general convex loss and linear convergence for
strongly convex loss. It is a midpoint of SAG and SVRG by taking both update pattern
from them in its iteration. There are also other incremental methods like FINITO (Defazio
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et al.) and MISO (Mairal (2014)), which consume more memory, in which they not only
store the gradient, but also the variable. S2GD (Konečnỳ and Richtárik (2013)) is a method
very similar to SVRG with the difference only in stage length. SDCA (Shalev-Shwartz and
Zhang (2013)) is a dual incremental method.

In this paper, we shall investigate the potential to incorporate incremental gradient
methods with proximal average technique. We will show that, by solving a surrogate prob-
lem, the proposed method can achieve linear convergence for strongly convex problem and
sublinear convergence rate for general convex problem. Meanwhile, it enjoys the simplicity
advantage brought about by proximal average technique. Also, our method is provided with
convergence analysis for both strongly convex and general convex loss functions, which is
another advantage over ADMM-based incremental gradient methods. For instance, SDCA-
ADMM only has convergence results for strongly convex loss, while the convergence analysis
of SAG-ADMM only applies when the loss is general convex.

The remainder of this paper is organized as follows: Sections 2 introduces the techniques
including incremental gradient method and proximal average, and gives the formulation of
the problem. In Section 3, we propose our method for strongly convex loss problem and
general convex loss with the corresponding convergence rate. Section 4 describes the related
algorithms and compares them with our method. Section 5 shows the experimental results
including efficiency verification for strongly convex problem and general convex problem on
two real datasets. Finally, Section 6 concludes the paper.

2. Problem Formulation and Background

In the following, we denote the gradients of the differentiable function li and l at x as l′i(x)
and ∇l(x), respectively. ||x||22 and ||x||1 denote the l2 and l1 norm of vector x correspond-
ingly. 〈l′i(x), y〉 is the inner product of l′i(x) and y. The superscript (·)T stands for the
transpose of (·).

2.1. Problem Formulation

Let us consider the following regularized empirical risk minimization problem:

min
x∈Rd

F (x) = l(x) + r(x) =
1

n

n∑
i=1

li(x) +

K∑
k=1

αkrk(x) with

K∑
k=1

αk = 1, αk ≥ 0, (1)

where li(x) is the loss taken at data sample (ξi, yi) with index i. ξi is the data vector, and yi
is its label. For example, the hinge loss used in SVM defines li(x) as max{0, 1− yiξTi x} and
the logistic loss for logistic regression defines li(x) as log(1+exp(−yiξTi x)). r(x) is composite
penalty, for example graph-guided fused lasso and overlapping group lasso. We hide the
constant balancing the loss and the regularizer in the loss as (Yu (2013)) and (Zhong and
Kwok (2014a)) so that r(x) is a convex combination of the K components rk(x). We make
the following assumptions to the loss and the penalty functions.

Assumption 1 The loss li(x) is convex if, for any x, y ∈ Rd,

li(y)− li(x)−
〈
l′i(x), y − x

〉
≥ 0. (2)
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In addition, if there is a µ > 0 such that:

li(y)− li(x)−
〈
l′i(x), y − x

〉
≥ µ

2
||y − x||22, (3)

then li(x) is strongly convex. Also li(x) is smooth with L Lipschitz continuous gradient, i.e.

li(y)− li(x)−
〈
l′i(x), y − x

〉
≤ L

2
||y − x||22, (4)

for all y, x ∈ Rd.

The next assumption is required by proximal average technique (Yu (2013), Zhong and
Kwok (2014a)). We first introduce the notation related to proximal step:

Mη
rk

(x) = min
y

1

2η
||x− y||22 + rk(y), (5)

and

P ηrk(x) = arg min
y

1

2η
||x− y||22 + rk(y). (6)

Assumption 2 Each rk(x) is convex and Lipschitz continues with constant Mk, i.e.

|rk(x)− rk(y)| ≤Mrk ||x− y||2, for all x, y ∈ Rd. (7)

In addition, the proximal map P ηrk for each rk individually is simple to compute (e.g. has
closed form solution) for any η > 0.

2.2. Incremental Gradient Method

The incremental gradient methods proposed recently make improvement on stochastic gra-
dient methods provided that the training data is finite. Generally, at each iteration, these
methods approximate the full gradient by a combination of a random gradient evaluated
at the latest variable with past gradients. SAG utilizes a table to record past gradients
one for each data sample. SVRG uses a single full gradient evaluated periodically. Both
of the methods have linear convergence for strongly convex and smooth problem. SAGA
shares part of update pattern from both SAG and SVRG, and has theoretical guarantee for
both general convex and strongly convex problem. In addition, SAGA also admits proximal
operator for simple nonsmooth regularizer as SVRG.

Let l′i(φ
t
i)(i = 1, 2, ..., n) be the gradient of data i kept in the gradient table up to

iteration t. SAGA, like SAG, updates the random it-th gradient with l′it(x
t) while keeping

other terms unchanged:

l′i(φ
t+1
i ) =

{
l′i(x

t), i = it

l′i(φ
t
i), i 6= it.

(8)

Then, SAGA approximates the gradient for iteration t in a similar manner as SVRG:

gt = l′it(φ
t+1
i )− l′it(φ

t
i) +

1

n

n∑
i=1

l′i(φ
t
i). (9)
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Conditioned on information up to the t-th iteration, gt is an unbiased estimation of the full
gradient in expectation. According to (Johnson and Zhang (2013), Xiao and Zhang (2014)),
such approximate gradients have the reduced variance, which would lead to speedup over
stochastic methods.

2.3. Proximal Average

Proximal average (Bauschke et al. (2008), Yu (2013)), first introduced by (Yu (2013)) to
deal with composite regularizer, admits a compact calculation when each single component
satisfies Assumption 2. With proximal average, one actually uses a surrogate regularizer
r̂(x).

Definition 1 (Proximal Average Bauschke et al. (2008), Yu (2013)) The proximal average
of r is the unique semicontinuous convex function r̂(x) such that Mη

r̂(x) =
∑K

k=1 αkM
η
rk .

The corresponding proximal map of the proximal average r̂(x) is

P ηr̂(x)(x) =

K∑
k=1

αkP
η
rk

(x). (10)

The next lemma shows that the approximation of r̂(x) can be controlled arbitrarily close
to r(x) by the step size η.

Lemma 2 (Yu (2013)) Under Assumption 2, we have 0 ≤ r(x) − r̂(x) ≤ ηM̄2

2 , where

M̄2 =
∑K

k=1 αkM
2
k .

3. Incremental Gradient Method with Proximal Average (PA-SAGA)

This section describes the proposed algorithm, denoted as PA-SAGA, based on incremen-
tal gradient decent SAGA and proximal average techniques. The procedure is shown in
Algorithm 1.

3.1. Algorithm Description

The proposed PA-SAGA initializes the step size with the constant η, the variable with
x0, and the gradient table with l′i(x0) for each item. Step 2-3 updates the gradient table,
followed by Step 4 calculating the gradient. Step 5 and 6 can be combined into

xk+1 =

K∑
k=1

αkP
η
rk

(xk − ηgt), (11)

which uses proximal average to compute the next step. Compared with SAGA, we replace
its proximal mapping which can be applied to simple regularizers only with proximal aver-
age. According to the property of proximal average, PA-SAGA approximates the original
component regularizer with the proximal average as a surrogate. The approximation can
be controlled arbitrarily close by the step size parameter η.
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Algorithm 1 PA-SAGA

Input: η (learning rate); x0 (initial value); l′i(φ
0
i ), φ

0
i = x0, i = 1, ..., n (initial table of

gradients).
1: for t = 1, 2, ... do
2: Randomly pick it ∈ {1, 2, ..., n};
3: Update the derivative table as in equation (8);
4: Calculate gt by equation (9);
5: wk+1 = xk − ηgt;
6: xk+1 =

∑K
k=1 αkP

η
rk(wk+1);

7: end for

3.2. Convergence Analysis

In this section, we discuss the convergence property of PA-SAGA. We denote F̂ (x) =
l(x) + r̂(x) as the surrogate problem implicitly solved by PA-SAGA. The next two theo-
rems describe the convergence for strongly convex problem and general convex problem,
respectively.

Theorem 3 Under Assumption 1 with li(x) µ-strongly convex and Assumption 2, let x̂∗ be
the optimal point of the surrogate problem. Denote a Lyapunov function T t as:

T t = Qt +
(
c1 +

c2

η

)
||xt − x̂∗||22 + c2

(
F̂ (xt)− F̂ (x̂∗)

)
, (12)

Qt =
1

n

n∑
i=1

li(φ
t
i)− l(x̂∗)−

1

n

n∑
i=1

〈
l′i(x̂

∗), φti − x̂∗
〉
, (13)

where t is the iteration number. After (1− 1
κ)(log T 0

ε ) iterations, we then have

E
[
F (xt)− F (x̂∗)

]
≤ 2ε. (14)

In addition, there exits some β ≥ 1 and possible choices of the parameters c1, c2, κ, η appeared

in the proof are as follows: η < min( 1
2L ,

2ε
M̄2 ,

1
2nµ), c1 = 1

2ηn
L

L−µ , c2 = c1η
(

1
2ηLβ − 1

)
, 1
κ =

2ηµ

1+ 1
2ηL

.

Theorem 4 Under Assumption 1 with li(x) general convex and Assumption 2, let x̂∗ be
the optimal point of the surrogate problem. With the same definition of Qt as in Theorem

3, after t ≥ 1
c2ε

(
Q0 +

(
c1 + c2

2η

)
||x0 − x̂∗||22

)
iterations, we then have

E
[
F (x̄t)− F (x̂∗)

]
≤ 2ε, (15)

where x̄t = 1
t

∑t
i=1 x

i. In addition, possible choices of the parameters c1, c2, η appeared in

the proof are as follows: η < min( 1
2L ,

2ε
M̄2 ), c1 = 1

2ηn , c2 = 1
2n

(
1

2ηLβ − 1
)

.

We defer the proof to the appendix. We represent all parameters by the step size η which
controls the approximation by Lemma 2. The convergence rate of strongly convex case is
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related to 1
κ , i.e. it converges faster when 1

κ is larger, which depends on L, µ and ε as given
the data size n. Please note that, for an ill-conditioned problem where L

u = n, 1
2nµ can be

converted to 1
2L . Thus, the convergence speed is related to L and ε. The convergence speed

for the general convex case depends on c2, i.e. the larger c2 is, the faster it converges. Given
the dataset size, the convergence speed is again related to L and ε.

Like the other incremental methods, the above convergence only reflects training loss
(Suzuki (2014), Zhong and Kwok (2014b), Roux et al. (2012b)). The generalization per-
formance is unknown partly because of the assumption of the finite training set size. Our
experiments on testing loss show empirical results of the generalization performance.

Furthermore, our algorithm will converge to the optimal point of the surrogate func-
tion. We show the convergence rate by measuring the loss with respect to the objective
function value at x̂∗ (F (x̂∗)), which is different from usual convention that measure with
F (x∗). Nevertheless, considering the over-fitting issue, a relative good approximation is po-
tentially able to achieve satisfactory generalization performance. As a good approximation
to the original problem, it is expected that our method will have satisfactory generalization
performance. Indeed, the experimental results in Section 5 have verified this in terms of
classification error and test loss on the test set of two real datasets.

4. Related Work

This section describes more recently proposed related algorithms targeting at problem (1).
Stochastic ADMM methods include SGD-ADMM (Ouyang et al. (2013)) and RDA-ADMM
(Suzuki (2013)). These methods have O( 1√

T
) convergence rate for general convex case and

O( log T
T ) for strongly convex case. SADMM (Azadi and Sra (2014)) utilizes nonuniform

averaging of the iterate variable and the accelerated stochastic gradient method for smooth
loss function to accelerate the speed. It has O( 1

T ) convergence rate for strongly convex loss
and O( 1

T 2 ) +O( 1
T ) +O( 1√

T
) for smooth loss function.

SA-ADMM (Zhong and Kwok (2014b)) and SDCA-ADMM (Suzuki (2014)) are incre-
mental gradient ADMM methods. Briefly, SA-ADMM (Zhong and Kwok (2014b)) uses SAG
with ADMM and shows O( 1

T ) convergence rate for general convex problem and empirically
it has fast convergence for strongly convex case. SDCA-ADMM solves problem that can be
expressed in the form of

min
x

1

n

n∑
i=1

li(ξ
T
i x) + r(BTx).

It takes Fenchel dual to convert the original problem to its dual form with a linear constraint.
Then, it solves the dual problem by ADMM method. SDCA-ADMM has both single update
and mini-batch update form, both of which are easy to be parallelized. Since its convergence
analysis requires the regularizer to be locally strongly convex, for regularizers such as graph
lasso, it perturbs the regularizer with a small l2 norm counterpart. However, even without
perturbation to guarantee locally strongly convex, it is empirically observed that it converges
fast.

PA-APG (Yu (2013)) first introduces proximal average technique into regularized risk
minimization. It uses proximal average with proximal FISTA (Beck and Teboulle (2009))
method. By virtue of the convergence analysis of FISTA (Beck and Teboulle (2009)) not
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relying on the optimal point x∗, PA-APG converges to the optimal of the original problem
with the well chosen η. However, PA-APG is a batch method that does not well suit large
scale problem. PA-ASGD (Zhong and Kwok (2014a)) incorporates proximal average with
the accelerated stochastic gradient method. It has O( 1

T 2 ) + O( log T
T 2 ) + O( 1√

T
) for strongly

convex problem and O( 1
T 2 ) + O( 1

T
3
2

) + O( 1√
T

) + O( 1
T ) for general convex problem. The

slowest term O( 1√
T

) is from the variance of the approximate gradient.

5. Experiments

This section evaluated the performance of the proposed method in comparison with two
incremental gradient ADMM: SA-ADMM (Zhong and Kwok (2014b)) and SDCA-ADMM
(Suzuki (2014)) along with a proximal average based stochastic gradient PA-ASGD (Zhong
and Kwok (2014a)). We did not compare with batch gradient proximal average method
as Zhong and Kwok (2014a) has already shown that it was less efficient than PA-ASGD.
We utilized the real dataset ‘20 Newsgroup’ and ‘a9a’, which were also used by Suzuki
(2014). 80% of the data were randomly sampled for training to study the convergence and
efficiency of the algorithms, while the rest are considered as testing data used to study the
generalization performance. We investigated the algorithms on general convex loss problem
and strongly convex loss problem, respectively.

5.1. General Convex Loss Function Problem

Let us consider the general convex loss problem, in which the smoothed hinge loss is:

li(u) =


0, yiu ≥ 1
1
2 − yiu, yiu ≤ 0
1
2(1− yiu)2, otherwise,

(16)

where u = ξTi x, (ξi, yi) is the i-th data sample. We utilized the graph guided fused lasso

λ
(
||x||1 +

∑
{i,j}∈E

|xi − xj |
)

(17)

as the composite regularizer. We constructed the graph as in Suzuki (2014) and set λ
at 0.001. The proximal map for ||x||1 is simply soft thresholding. The proximal map for
|xi − xj | is

[P ηrk ]s =

{
xs − sign(xi − xj) min{η, |xi−xj |2 }, s ∈ {i, j}
xs, otherwise

(18)

as given in (Yu (2013), Zhong and Kwok (2014a)). We reported the empirical risk, which is
the training loss, against the number of iterations for both datasets. As for the generalization
performance, we reported the classification error measured on testing set against the number
of iterations and CPU time for the ‘20 Newsgroup’ dataset. We plotted the testing loss
against the number of iteration and CPU time for ‘a9a’ dataset.

As shown in Figure 1, our method decreased the training loss almost the same as the
other two ADMM-based incremental gradient methods and had the similar generalization
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performance in terms of classification error on ‘20 Newsgroup’ dataset. On the ‘a9a’ dataset
(see Figure 2), the proposed method achieved the similar performance as SDCA-ADMM
method in both training and generalization performance, while it is a bit inferior to SA-
ADMM. In both datasets, our method is more efficient than PA-ASGD. Also, the clas-
sification error on ‘20 Newsgroup’ testing set and test loss on ‘a9a’ testing set indicated
that our solution obtained by the surrogate to regularizer is able to achieve satisfactory
generalization performance.

5.2. Strongly Convex Loss Function Problem

For strongly convex case, we utilized the logistic loss with the large margin graph lasso
regularizer as in (Zhong and Kwok (2014a)), i.e.

λ
(
||x||22 +

∑
{i,j}∈E

|xi − xj |
)
. (19)

We processed the logistic loss and the l2 norm together to ensure the strong convexity of
the loss part. Note that, in this case, the l2 norm term can neither be incorporated into
li(ξ

T
i x), nor into ||Ax||1 form, thus SDCA-ADMM is unable to handle this case. We only

compared with the other two methods. We reported the training loss, classification error
for this case on ‘20 Newsgroup’ dataset.

In this case, according to the experiment result (see Figure 3), our method has compara-
ble convergence and efficiency performance with SA-ADMM in terms of both training loss
and classification error against both of number of iterations and CPU time, and is better
than PA-ASGD.

5.3. Discussion

We would like to point out that, as a proximal average method, our method has generally
better performance than stochastic gradient-based method PA-ASGD in term of all perfor-
mance metrics we have tried so far. As an incremental gradient-based method, the proposed
method has comparable performance with SDCA-ADMM and SA-ADMM, but the merit
of the proposed method is two-fold: (1) SDCA-ADMM’s convergence analysis relies on the
local strongly convexity of the loss function. In addition, SDCA-ADMM requires the dual
problem to be in structure for ADMM to be applied to, which causes a stricter problem
format and therefore limits its application domain. For example, in the case studied in
Sub-section 5.2, SDCA-ADMM cannot work at all because the dual parts do not fit into
the structure for ADMM, despite each dual of their primal correspondences is easy to take.
By contrast, the proposed method has given the convergence analysis for both of general
convex loss and strongly convex loss problems. Further, the format of objective function in
our method is more general than SDCA-ADMM; (2) SA-ADMM lacks convergence analysis
for strongly convex loss problem, but the proposed one does.

6. Conclusion

In this paper, we have proposed a new incremental gradient method for empirical risk
minimization regularized by composite regularizer. As a proximal average technique-based
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method, it is more efficient and faster than its existing batch and stochastic counterpart.
Compared with popular ADMM-based incremental gradient, it has comparable perfor-
mance, yet enjoys more compact update form and simpler theoretical analysis by virtue
of the proximal average technique. Experimental results on two real datasets have shown
its efficiency and satisfactory generalization performance.

Appendix

The appendix contains proof sketch for Theorem 3 and Theorem 4, which is a combination
of the proof in (Defazio et al. (2014b)) and (Yu (2013)). We proceed the proof by two
steps. We first prove that, for the proximal average approximation F̂ (x) = l(x) + r̂(x)
and its global optimal value F̂ (x̂∗), F̂ (xt)− F̂ (x̂∗) converges linearly in expectation. Then,
we conclude the proof using Lemma 2, which shows the surrogate F̂ (x) and the original
F (x) can be arbitrarily close. Note that the step size η controls the approximation, and we
express the other parameters in terms of η. Also, to safely leave out terms appeared in the
proof, it requires a careful verification of the relationship among the parameters. This is
different from (Defazio et al. (2014b)) as our η has the additional approximation constraint.

Proof Sketch of Theorem 3

With the parameters chosen in the theorems, for strongly convex case, we can get

E
[
F̂ (xt)− F̂ (x̂∗)

]
≤ E

[
T t
]
≤
(
1− 1

κ

)t
T 0

=
(
1− 1

κ

)t[
Q0 +

(
c1 +

c2

η

)
||x0 − x̂∗||22 + c2

(
F̂ (x0)− F̂ (x̂∗)

)]
.

(20)

Hence, as long as t ≥ log T 0

ε

/
log(1− 1

κ), we have

E
[
F̂ (xt)− F̂ (x̂∗)

]
≤ ε. (21)

By Lemma 2, we have

E
[
F (xt)− F (x̂∗)

]
= E

[(
F (xt)− F̂ (xt)

)
+
(
F̂ (xt)− F̂ (x̂∗)

)
+
(
F̂ (x̂∗)− F (x̂∗)

)]
≤ ε+ ε+ 0.

(22)

Thus, as long as t ≥ log T 0

ε

/
log(1− 1

κ), we get E
[
F (xt)− F (x̂∗)

]
≤ 2ε.

Proof Sketch of Theorem 4

With the parameters chosen in the theorems, for general convex case, we have:

Ec2

[
F̂ (x̄t)− F̂ (x̂∗)

]
≤ 1

t

(
Q0 +

(
c1 +

c2

2η

)
||x0 − x̂∗||22

)
, (23)

By Lemma 2, we then obtain:E
[
F (x̄t)− F (x̂∗)

]
≤ ε+ ε+ 0. Thus, as long as t ≥ 1

c2ε

(
Q0 +(

c1 + c2
2η

)
||x0 − x̂∗||22

)
, E
[
F (x̄t)− F (x̂∗)

]
≤ 2ε.
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Figure 1: Smooth hinge loss with the graph lasso on 20 Newsgroup. Up: Training loss
against number of iterations; Middle: Classification error against number of iter-
ations; Bottom: Classification error against time.
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Figure 2: Smooth hinge loss with the graph lasso on a9a. Up: Training loss against number
of iterations; Middle: Test loss against number of iterations; Bottom: Test loss
against time.
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Figure 3: Logistic loss with the large margin graph lasso on 20 Newsgroup. Up: Training
loss against number of iterations; Middle: Classification error against number of
iterations; Bottom: Classification error against time.
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