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Structural Optimization by Density 
Distribution for Maximization of 
Natural Frequency 

Y o s h i k o  K a w a b e  1 a n d  S h i n o b u  Y o s h i d a  I 

This paper proposes a basic method for  designing light and 
rigid structures that have a maximum natural frequency for  a 
designated mode. A design variable "density," related to the 
material properties of  a three-dimensional solid element, is 
introduced into the finite element method ( FEM ). Thus, a struc- 
ture is expressed as a density distribution inside its design 
domain, and the optimal structure is obtained by searching for  
the most suitable such distribution. 

Introduct ion  

Various kinds of mobile mechanisms need to be designed 
lightly and rigidly. For example, accurate hard-disk head posi- 
tioners must be designed to have higher natural frequencies to 
avoid interference with their control systems. In such cases, 
the natural frequency of a certain vibration mode needs to be 
increased in order to reduce the maximum displacement of a 
certain point on the structure. The purpose of the proposed 
method is to increase the natural frequency of the most critical 
mode for a given application by optimizing the shape of a 
structure. 

Precise dimensions of a structure can be optimized by compu- 
tation. However, topology, such as choices between tubes and 
solid cylinders or the best number of holes to be made in an 
object, is designed on an empirical basis. 

To determine optimal topology, Bendsce and Kikuchi pro- 
posed a material property-driven topology-optimization method 
using homogenization (1988), Homogenization is a method of 
estimating the effective properties of materials having micro- 
structures. 

A design variable, "density" is introduced in this paper. This 
value is related to the material properties of a three-dimensional 
solid element. The relation between the density and the Young's 
modulus is expressed by an estimate based on the Voigt and 
the Reuss models. The estimation assumes that the microstruc- 
tures are cubes. Only the one variable, density, serves as an 
indicator of material properties of an element, while the homog- 
enization method requires at least 6 variables to determine mate- 
rial properties. We show here that the natural frequency of any 
designated mode can be increased by repeatedly modifying the 
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density distribution according to the sensitivities of each indi- 
vidual element's densities to that natural frequency. 

Structural  O p t i m i z a t i o n  

Optimum Criteria and Voluminal Sensitivity. We have 
formulated an optimization problem as follows, and will intro- 
duce a new concept, voluminal sensitivity, to solve it: 

K(v)  - # M ( v )  = 0, 

(27rf) 2 = /.z, 

maximize fj(v),  

with respect to v = ( v ~ , v 2  . . . . .  v,) for ( 0 < v <  1), 

subject to mtot~(v) = m0, (1) 

where fj denotes the natural frequency of the designated mode, 
mtota] denotes the total mass of the structure, v denotes a vector 
whose components are design variables, K and M denotes the 
stiffness and mass matrices, respectively, for the FEM model. 
The first equation represents the generalized eigenvalue problem 
of three-dimensional elasticity. The design variable v is the 
effective density of a porous material defined in the next section. 
The energy function is 

2~' = ½yrKy - #(½yrMy - ½). (2) 

When # is the eigenvalue of eigenvector y, this functional is 
stationary, and the natural frequency f~ of designated mode j is 
derived from eigenvalue/zj, via the second equation in (1). 

When the set of variables v = (v~, v2 . . . . .  vn) maximizes 
the natural frequencyfj(v) with mass held constant, it will make 
the following functional stationary: 

2~ = ½yrKy - /z(½yrMy - ½) - ~k(mtotal -- m0). (3) 

Therefore, the optimum criteria (Gallagher, 1973) will satisfy 
the following equations: 

K ( v ) y  = #M( v ) y ,  

mtot~(v) = mo, 

½YrM(v)y = ½, 

1 y r (  0K(v)~  1 ( 0M(v)~  
\ T / Y - 2 P Y T \  Ov~ ] Y  

(Omtota,(V) ~ 
- k 0vi ] = 0 ,  for ( i =  1,2 . . . . .  n).  (4) 

To find the numerical solution Vop, that satisfies Eqs. (4) simulta- 
neously, the voluminal sensitivity s~j is defined as the following: 

(Ofj/Or, ) 1 ( O].~j/ OV i ) 

Sij -- (Omtotal/OVi) 471"~j (OmtotallOVi) ' 

where 

0v---7 = yf  yj - /zjyf (5) j , 

Voluminal sensitivity shows the total increase in thejth natural 
frequency if the density value of the corresponding element 
were to increase from 0 to 1. All of the elements' voluminal 
sensitivities become uniform value for all of the variables v = 
(1)1 ,  1J 2 . . . . .  1)n) when the optimum criteria are satisfied. We 
define the convergence value e of the voluminal sensitivities as 

• = 1 ~ ( s i _ s , w )  2, (6) 
n 

where n is the number of design variables, and s,v¢ is the average 
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~P " ~' E Hooke's Law: P Hooke's Law: I ( I-  t)In l - ~ t  = fin E 

(a) the solid layer (a) the cavitary lay~ 

wh,~re P: the focce load on the cross section 
~: strain 
n: number of  holes pet unit length 
t: the edge length of  the cubic cavities of  the unit cell 

Fig. 1 Young's modulus of cavitary layer (estimated by the Voigt model) 
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Fig. 3 Material properties vs density 

voluminal sensitivity. The value c will approach 0 as the objec- 
tive function 3~(v) increases to its maximum value. 

Density. We defined a variable "density" for a hypotheti- 
cal material that has porous homogeneous microstructure. Den- 
sity is defined to mean the proportion of the solid part within 
a unit of substructure. Density will take a value in the range 
between 0 and 1. If the design domain of a structure is divided 
as in an FEM model, that structure is expressed as elements, 
the densities of which are equal to 1. And "vacancies" can be 
expressed as a group of elements the densities of which are 0. 
Our objective, is to find within a limited weight, the optimum 
density distribution giving the highest natural frequency for the 
designated vibration mode. 

We have estimated the relation between the density and the 
equivahmt Young's modulus by using a combination of the 
Voigt and the Reuss models (Kingery, 1976). The Voigt model 
is introduced to evaluate the equivalent Young's modulus of a 
single cavitary layer, Fig. 1 (b), and the Reuss model is intro- 
duced to evaluate the equivalent Young's modulus of the multi- 
ply-layered substructure, Fig. 2. The strain on each layer is 
assumed to be independent of neighboring layers. Therefore, 
the t0t~.l of the longitudinal strains of the component layers 
makes lap the longitudinal strain of a unit of substructure. The 
Young's modulus of the unit substructure is expressed as 

1 - (1 - v) 2/3 
E* = E. (7) 

2 - v - (1 - 1 ) )  2 / 3  

The curves in Fig. 3 are the graphs of density vs. Young's 
modulus and Poisson's ratio. The latter is calculated by interpo- 
lating from the results of FEM simulations 

u* = -'0.082721v 3 + 0.054451v 2 

+ 0.19598v + 0.13288. (8) 

Hooke's Law: 

5- E. 
w h e r e  

"(~'+~)" -"~ ( i:~ +l-t) 
which makes the equivaleal Young's 
modulus 

E*- P " E 
n (sr,.¢:.2) (l~t2 + l . t )  

neasity vis inttoduotxl as: v -  I -0  
The Young's modulus is: 

2 

E * - ~  E.  

Fig. 2 Young's modulus of a multi-layer unit cell (estimated by the Re- 
uss modlel) 

Voluminal Sensitivity of an Element. The stiffness matrix 
K and the mass matrix M of an FEM model are composed of 
submatrices k~ and mi 

K = ~ k i  

M = ~ m i  ( i =  1 , 2  . . . . .  n) .  (9 )  

The submatfices k~ and mi for the ith element are defined by 
the following: 

ki = f BirDiBidV, 

mi = Pi f BTBidV, (10) 
d 

where 

Di = Di (E*(vi),  l}*(1)i)), (11) 

and Pi denotes the weight of one unit of substructure for element 
i. The strain-displacement matrix Bl is defined by the constituent 
nodes of the ith element and is independent of its material 
properties. The stress-strain matrix D,, on the other hand, is 
independent of the nodes of the element. To prevent the compli- 
cation of calculation that would be caused if we allowed for 
the movement of the nodes because they are shared with neigh- 
boring elements, the differentials of the matrices ki and m~ 
are obtained simply by differentiating the material properties 
according to the density of the element, so they do not involve 
any shape-defining variables. 

I Input initial data 

• Eigeuvalue Analysis 
( subspace method ) 

+ 
I ModaTrao .g I 

q, 
I Sensitivity Analysis I 

- t  R  s bution I 

Fig. 4 Flowchart for calculating density distribution according to volu- 
minal sensitivities 
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L u m p e d  mass 

E = 70.6 x l09 N / m  2 

p = 2.7 x 103 kg / m 3 

v = 0.7 

5 x 1 0 x 5 0 m m ~  

480 e lements  

Fig. 5 Initial density distribution 

Fig. 7 Final density distribution 

Fig. 6 Initial sensitivity distribution 

Optimization Program 
The flowchart of  the optimization program is shown in Fig. 

4. Initial data includes node data, element data defining the  
design domain, material properties, constraint conditions, 
lumped masses, and the initial, uniform density distribution. As 
the order of the designated mode may shift during the iterative 
calculations, it is necessary to identify which of the eigenvectors 
is that of  the designated mode. Whether to continue on to an- 
other iteration is determined by the convergence value e. If  this 
value becomes less than a certain threshold value, the calcula- 
tion is discontinued, otherwise the density distribution is modi- 
fied and another eigenvalue analysis is performed. The density 
values are revised by the vector space method according to the 
values of corresponding voluminal sensitivities. Both minimum 
value 1)min, and maximum value v . . . .  are imposed on all of  the 
values vi so that they will take values between 0 and 1. 

Example 
We applied this method to a rectangular beam structure (Fig. 

5) made of  aluminum with both ends fixed. The initial model 
had a uniform density of v = 0.7, and the four nodes at the 
center of the beam's  edges had extra lumped mass. The objec- 
tive function was the natural frequency of the torsional vibration 
mode, which was initially at the third mode, 15.10 kHz. The 
voluminal sensitivity distribution of  the initial model (Fig. 6) 
shows the areas where densities should be increased or de- 
creased. The convergence value e was 0.1159. 

Fig. 8 Final sensitivity distribution 

The final density distribution after 20 iterative calculations 
is shown in Fig. 7. With this density distribution, the natural 
frequency was increased to 16.66 kHz. The densities were lim- 
ited to be between 0 and 1~ The black parts of  Fig. 7 represent 
areas where the densities have become 1, and the white parts 
represent areas where the densities have become 0. The final 
density distribution suggests a possible structure with a topology 
that differs from that of the initial model, i.e., a bar with the 
lighter areas carved away. Figure 8 shows the voluminal sensi- 
tivity distribution of the final model, with its convergence value 
e = 0.0016. The voluminal sensitivities of the final model have 
become less disparate than those of the initial model. 

Summary 
We have proposed a new method for structural optimization. 

A design variable "dens i ty"  was defined and related to the 
elastic propelXies. By differentiating the eigenvalue according 
to the density, the "voluminal  sensitivity" for the natural fre- 
quency of a designated mode was calculated for each element. 
This voluminal sensitivity of  an element showed whether its 
density should be increased or reduced to maximize the natural 
frequency. After iterated calculations to homogenize the volu- 
minal sensitivities of the elements, the optimal density distribu- 
tion for a designated vibration mode was obtained. The final 
density distribution suggested an optimum structure with a to- 
pology differing from that of the initial model. 
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