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Abstract Tuberculosis has a high morbidity and mortality

worldwide. Mycobacterium tuberculosis (Mtb) has a com-

plex pathophysiology; it is an aerobic bacillus capable of

surviving in anaerobic conditions in a latent state for a very

long time before reactivation to active disease. In the latent

tuberculosis infection, the individual has no clinical evi-

dence of active disease, but exhibits a hypersensitive

response to proteins of Mtb. Only some 5–10 % of latently

infected individuals appear to have reactivation of tuber-

culosis at any one time point after infection, and neither

imaging nor immune tests have been shown to predict

tuberculosis reactivation reliably. The complex pathology

of the organism provides multiple molecular targets for

imaging the infection and targeting therapy. Positron

emission tomography (PET) integrated with computer

tomography (CT) provides a unique opportunity to nonin-

vasively image the whole body for diagnosing, staging and

assessing therapy response in many infectious and inflam-

matory diseases. PET/CT is a powerful noninvasive tool

that can rapidly provide three-dimensional views of disease

deep within the body and conduct longitudinal assessment

over time in one particular patient. Some PET tracers, such

as 18F-fluorodeoxyglucose (18F-FDG), have been found to

be useful in various infectious diseases for detection,

assessing disease activity, staging and monitoring response

to therapy. This tracer has also been used for imaging

tuberculosis. 18F-FDG PET relies on the glucose uptake of

inflammatory cells as a result of the respiratory burst that

occurs with infection. Other PET tracers have also been

used to image different aspects of the pathology or micro-

biology of Mtb. The synthesis of the complex cell mem-

brane of the bacilli for example can be imaged with 11C-

choline or 18F-fluoroethylcholine PET/CT while the uptake

of amino acids during cell growth can be imaged by 30-
deoxy-30-[18F]fluoro-L-thymidine. PET/CT provides a

noninvasive and sensitive method of assessing histopatho-

logical information on different aspects of tuberculosis and

is already playing a role in the management of tuberculosis.

As our understanding of the pathophysiology of tubercu-

losis increases, the role of PET/CT in the management of

this disease would become more important. In this review,

we highlight the various tracers that have been used in

tuberculosis and explain the underlying mechanisms for

their use.

Keywords PET/CT � Tuberculosis � 30-Deoxy-30-
[18F]fluoro-L-thymidine � 18F-fluoroethylcholine � 68Ga-

citrate
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Tuberculosis (TB) remains a threat to humans with high
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co-infection despite the availability of relatively cheap and

effective treatment options [1–3]. TB kills 1.5 million

people annually and 9.6 million develop the disease

annually [2]. Most of these deaths are preventable and

therefore the death toll is unacceptably high [4]. It is cur-

rently the second highest infective cause of death world-

wide, only surpassed by human immunodeficiency virus

(HIV). With first cases dating back 9000 years, Mycobac-

terium tuberculosis (Mtb), the causative agent of TB, is one

of the most successful human pathogens of all time [5]. An

increasing proportion of the disease is caused by organisms

insensitive to first-line chemotherapeutic agents (mul-

tidrug-resistant TB [MDR-TB]), first- and some second-

line agents (extensively drug-resistant TB [XDR-TB]) or

even all agents (super-extensive drug-resistant TB [SXDR-

TB]) [6, 7]. This is a major health-care problem worldwide,

since treatment of MDR-TB and even worse XDR-TB is

more challenging and expensive than drug-susceptible TB

[8, 9]. In 95 % of infected individuals, the pathogen is

contained as an asymptomatic latent infection. It has been

estimated that a third of the world’s population harbors

latent TB [10]. The perilous union of TB with HIV also

represents a challenging public health priority as HIV

weakens our most effective barrier against TB, our immune

system, rendering infected individuals more susceptible to

TB [11]. HIV causes a sharp increase in the number of

LTBI patients who progress to active disease [12]. HIV co-

infection also presents diagnostic challenges, potentially

delaying diagnosis and treatment and thereby increasing

morbidity and mortality. As a consequence of this syndetic

interaction, 1.2 million patients with HIV developed TB

and 400,000 people co-infected with TB and HIV died [2].

Despite the enormous burden of TB, current diagnostic

methods are woefully inadequate to meet clinical and

research needs [13].

Pathophysiology

Mtb is an aerobic, obligate intracellular microorganism that

features an unusually complex and thick cell wall. Hall-

marks are long-chain fatty acids called mycolic acids that

surround the bacterial cytoplasmic membrane. The char-

acteristic features of the Mtb include its potential to persist

in host cells, slow growth, complex membrane and intra-

cellular pathogenesis [14]. Mtb persists in host cells in a

dormant, latent or persistent state using a specific genetic

program to respond to stress [15, 16]. This program, for-

merly referred to as Dos Regulon, now DevR activity, is

essential for regulon induction and hypoxic survival of Mtb

[17]. Latency is defined clinically by reactive tuberculin

skin test indicating delayed hypersensitivity to Mtb anti-

gens in the absence of active disease. Persistence is used to

describe to the state in which Mtb survives in host tissues

under various stress conditions. Dormancy refers to a state

in which Mtb remains quiescent within infected cells and is

the result of metabolic and replicative shutdown of the

bacillus using its DevR activity, resulting from the action

of a cell-mediated response of the host that can contain but

not eradicate the infection [18]. The generation time of

actively replicating Mtb in synthetic medium or infected

animals is about 24 and 18 h in humans [19, 20]. This

contributes to the chronic nature of the disease, imposing

lengthy treatment regimens and presenting a formidable

obstacle for researchers. The slow growth of Mtb necessi-

tates long antibiotic therapy rendering treatment suscepti-

ble to failure due to non-adherence [21]. The drugs used

involve unpleasant side effects, and travel to treatment

posts poses economic difficulties to patients. Notably,

treatment failure is the major fuel for the development of

drug resistance [22]. The mycobacterial cell wall is

impermeable to a number of compounds, a feature in part

responsible for inherent resistance to numerous drugs [23].

While mycobacteria are considered Gram positive, the

second membrane executes biological functions compara-

ble to the outer membrane of Gram-negative bacteria, such

as the uptake of small hydrophilic nutrients via special

membrane channels [24]. This protective outer membrane

plays an important role in securing the bacillus’ integrity in

the face of harsh environmental conditions [25]. This outer

compartment of the cell wall consists of both lipids and

proteins, some of which are linked to polysaccharides. The

lipid-linked polysaccharides associated with the outer cell

wall consist of lipoarabinomannan (LAM), lipomannan and

phthiocerol-containing lipids such as phthiocerol dimyco-

cerosate, dimycolyl trehalose (cord factor), sulfolipids and

the phosphatidylinositol mannosides [23]. The pathogenic

effects of some of the lipids include the following: LAM

inhibits T cell proliferation and has bactericidal action of

macrophages amidst other actions. Cord factor, another

glycolipid, inhibits phagosome–lysosome fusion, con-

tributing to the maintenance of the granuloma response. It

is toxic to macrophages, killing them on contact [26, 27].

The success of Mtb as a pathogen lies in its ability to

orchestrate its metabolic pathways to survive in a nutrient-

deficient, acidic, oxidative, nitrosative and hypoxic envi-

ronment inside granulomas or infective lesions and survive

in its host for months to decades in an asymptomatic state,

using DevR activity [28, 29]. The pathogenic potential of

Mtb also depends largely on the type VII secretion system

ESX-1, which is largely responsible for the secretion of

early secreted antigenic target (ESAT-6), culture filtrate

protein (CPF-10) and several other ESX-1 associated pro-

teins. The ESX-1 governs numerous aspects of interaction

between Mtb and the host cell. The ESX-1 system pos-

sesses membrane-damaging activity, allowing Mtb to

escape from Mycobacterium-containing vacuole into host
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cell cytosol, where it polymerizes with actin and spreads

from cell to cell, particularly in the later stage of the

infection [30–32].

Transmission and disease progression

Mtb is transmitted as aerosol generated by the respiratory

system, and in 95 % of cases in which the bacilli are

inhaled, a primary infection is established [33]. The cell-

mediated immunity of the host results in either the clearing

of the infection or the restriction of the bacilli inside

granulomas giving rise to a latent TB infection (LTBI),

defined by no visible symptoms of disease, but dormant

and yet alive bacilli in the host. The progress of TB can be

stalled at this stage in some cases by isoniazid—or other

regimens of preventive therapy [34]. This state might last

for the entire life span of the individual or progress to

active TB by reactivation of the existing infection with a

lifetime risk of 5–10 % [35]. In the presence of HIV, this

risk increases with 5 % of LTBI reactivating per year [2].

Reactivation of TB usually occurs at the upper more oxy-

genated lobe of the lung. This can be cured by treatment. In

untreated or poorly treated cases, TB lesions develop

within the lung. These lesions include caseous necrosis,

fibrosis and cavities. The development of cavities close to

airways allows shedding of bacilli into airways and sub-

sequent transmission to other people as aerosol.

Clinical symptoms and risk factors

The classic features of pulmonary TB include chronic

cough, weight loss, fever, night sweats and hemoptysis

[36]. The risk for development of active TB disease is

governed by exogenous and endogenous factors. Exoge-

nous factors accentuate the progression from exposure to

infection. Bacillary load in the sputum of the infected

person, duration and proximity to an infectious TB case are

key factors. Endogenous factors, on the other hand, lead to

the progression from infection to active TB disease [37].

Malnutrition, tobacco smoking and indoor air pollution

from solid fuel have been documented to be most important

risk factors for TB worldwide, followed by HIV infection,

diabetes and excessive alcohol intake [38]. Extrapulmonary

TB occurs in 10–42 % of patients. The occurrence of

extrapulmonary disease depends on the age, presence or

absence of underlying disease, ethnic background, immune

status of the individual and the strain or lineage of Mtb

[37]. The disease may occur in any part of the body and can

mimic a lot of clinical diseases, which potentially delays

the diagnosis. HIV co-infection with TB presents major

challenges to the diagnosis and treatment of TB. The

manifestation of TB varies depending on the immune status

of the host. Soon after HIV infection, TB presentation is

similar to HIV seronegative individuals. As the CD4 count

drops, the presentation becomes atypical, with atypical

pulmonary manifestations and a greater proportion of

patients (more than 50 % in some cases) presenting with

extrapulmonary disease. At very low CD4 counts, the

pulmonary features of disease may be completely absent

and disseminated TB may present as a nonspecific febrile

illness with high mortality, in which clinical diagnosis may

be completely missed and will only be discovered at

autopsy [39–42].

Diagnosis of tuberculosis

Robert Koch first used sputum microscopy and culture to

identify TB over 130 years ago. The diagnosis of active TB

in many parts of the world has still remained the same [43].

Although inexpensive and accessible, the technique is

operator dependent and has a poor sensitivity (45–80 %).

Sputum culture has a specificity of 98 %, but it takes

2–8 weeks for results to be available depending on culture

media and bacillary burden [44]. Furthermore, sputum is

difficult to collect from infants and children and the sensi-

tivity of microscopy of direct acid- and alcohol-fast stains is

low, often requiring multiple samples from an individual

before the diagnosis can be established [45, 46]. Sputum

culture is considered the golden standard for the diagnosis;

liquid media have largely replaced solid culture media, e.g.,

the Lowenstein–Jensen slope; liquid media have been

shown to considerably improve sensitivity and speed in

diagnosis of active TB [47]. The diagnosis of LTBI differs

from active TB. LTBI by definition refers to a clinical state

where one has Mtb infection without evidence of disease. It

is diagnosed by positive immunological response to pro-

teins of Mtb in the absence of clinical or radiological find-

ings. Traditionally, the Mantoux tuberculin skin test (TST)

has been used to assess the immunological response. This

test is conducted by injecting 0.1 ml of a tuberculin-purified

protein derivative by the intradermal route on the inner

surface of the forearm. This should produce a discrete pale

elevation of the skin of about 6–10 mm when done cor-

rectly. The test is read by measuring the diameter of the

induration of the skin produced. The test is interpreted along

with the clinical risk of the individual. While an induration

of more than 15 mm is positive, in a person with high risk

for disease such as contact with a TB patient a diameter of

10 mm is considered positive. The test has limitations of

being falsely negative in particularly immunocompromised

patients, while it gives false-positive results in other

patients with other mycobacteriosis or people who have had

previous vaccinations against TB [47].
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Imaging in response to diagnostic limitations

Plain chest radiography (and in affluent settings, also CT)

are the mainstays for diagnostic imaging of pulmonary TB,

but are often nonspecific and unable to provide a definitive

diagnosis due to the heterogeneous presentation, particu-

larly in case of HIV co-infection when CD4 counts are low

[48–50]. On radiographs, primary TB is represented by

consolidation (Ghon focus), adenopathy and pleural effu-

sion. The Ghon focus most commonly occurs in the mid

and lower lung zones. When there is hilar lym-

phadenopathy in addition to the Ghon focus, a Ghon

complex is formed. The radiological features of reactiva-

tion TB include focal patchy opacities, cavitation, fibrosis,

nodal calcification and flecks of caseous material. These

commonly occur in the posterior segments of the upper

lobes and superior segment of the lower lobes of the lungs.

These features may be completely absent in patients with

severe immune deficiency. As a result of the limitations of

traditional diagnostics, new approaches have been devel-

oped. The interferon gamma release assay (IGRA) is a

blood test measuring cellular immune response to the TB

infection similar to the traditional tuberculin skin test

(TST), with similar sensitivity and improved specificity in

BCG-vaccinated individuals [51]. However, neither IGRA

nor TST is able to distinguish latent infection and active

disease and they are both dependent on host responses,

which may be compromised in immune-deficient patients

and children [52, 53]. Other new diagnostic methods

include urine LAM testing, which detects active TB in HIV

patients with high specificity, but modest sensitivity [54].

The Xpert MTB/RIF assay rapidly detects Mtb nucleic acid

in sputum, by targeting the rpoB-gene of Mtb, and at the

same time genetic mutations predicting rifampicin resis-

tance. It has a specificity of 98 %, but variable sensitivity

depending on the sputum bacterial load [55, 56]. Albeit

being useful for rapid initial diagnosis, it only establishes

susceptibility to rifampin and is inferior to culture for

monitoring treatment [57]. During treatment, subsets of

Mtb within the bacterial population that reflect naturally

occurring drug-resistant mutants may emerge. This usually

occurs during sub-optimal treatment with inadvertent

monotherapy. Most currently used diagnostic systems

including liquid culture fail to detect such subsets at the

start of treatment. Currently used diagnostic platforms

accept that if\1 % of the bacterial population is resistant

to a particular drug at one particular drug concentration

(the so-called breakpoint) that is generally accepted to be

achieved in blood by using the standard TB dosing regi-

men, that strain of Mtb should be considered susceptible to

that drug. The idea behind accepting Mtb at that breakpoint

is the assumption that by always using a regimen con-

taining three to five active drugs, the treatment will not fail

because the\1 % Mtb resistant to a particular drug will be

covered by other components of the drug regimen. Current

breakpoints recommended by EUCAST have recently been

questioned. In vitro hollow fibber models mimicking

plasma-drug concentration and population kinetics

demonstrated that an important subset of patients might not

reach target drug concentrations over time. These indi-

viduals may fail on regimes that according to the currently

used EUCAST breakpoint would have drug-susceptible

TB. Furthermore, very few of the currently available drugs

have efficacy in slowly replicating persistent organisms

[58, 59]. PET/CT may provide an important tool in the

detection of this subset of Mtb population.

18F-FDG PET

PET/CT has the ability to associate the pharmacological,

immunologic and microbiological aspects of TB lesions

with anatomic information, allowing a holistic approach to

understanding the disease [14]. The value of imaging TB

with 2-[18F]fluoro-2-deoxyglucose (18F-FDG) PET/CT has

been well documented [60–62]. 18F-FDG PET has been

used to detect TB granulomas and assess disease activity

[63, 64] and the extent of disease [65]. Efforts to use 18F-

FDG PET to distinguish benign from malignant lesions

have been made and results have generally not been

encouraging [66, 67]. Active TB avidly takes up 18F-FDG,

both in pulmonary and extrapulmonary lesions. Thus, 18F-

FDG PET can be very useful to assess the extent of active

TB. The detection of extrapulmonary lesions is particularly

useful, as obtaining tissue or fluid for analysis may not

always be possible or may be invasive. Many studies have

been conducted to distinguish avid TB from malignancy

and other granulomatous conditions [68–71]. Since 18F-

FDG is a nonspecific tracer, it cannot reliably distinguish

tuberculomas from malignant lung lesions and frequently

gives rise to a false-positive diagnosis in patients evaluated

for malignancy [72–74]. The overlap between the stan-

dardized uptake value (SUV) in malignant and benign

lesions has led to the investigation of several

dichotomization methods, such as the use of SUV cutoff

thresholds, dual tracer imaging, dual time point imaging

(DTPI) or delayed imaging. There is, however, no con-

sensus about the use of 18F-FDG PET to differentiate TB

from malignancy or other granulomatous or other inflam-

matory lesions. In a review, Cheng et al. point out that the

increased specificity of dual-time point imaging depends

on several factors and therefore recommend the selective

use of DTPI to improve the diagnostic accuracy and

interpretation confidence only in specific situations These

situations include obese, overweight or poorly controlled

diabetic patients who have high background uptake of 18F-

FDG [75]. It is important for the interpretation of an 18F-
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FDG PET scan to have a high suspicion for TB, particu-

larly in a TB-endemic area or for an immigrant from an

endemic area now living in an area with low TB prevalence

[76]. Other studies have evaluated the use of 18F-FDG PET

in differentiating latent from active TB [77, 78]. TB has

recently been shown to be more dynamic than previously

thought [79, 80]. The infection occupies a more diverse

spectrum rather than simply latent and active disease

(Fig. 1). Thus, while high uptake in a lesion in a patient

with TB may represent active disease, it may also represent

a host immune system response that will eventually prevail

[78]. It is therefore prudent to exercise when interpreting

Fig. 1 18F-FDG PET/CT scan

before anti-TB treatment and

2 months after initiation of

treatment for interim assessment

of treatment response.

a Maximum intensity projection

(MIP) image before treatment

(PET images only), showing

extensive disease: pulmonary,

cervical, axillary, mediastinal,

abdominal, pelvic and inguinal

lymph nodes, hepatic and

skeletal metastasis to the lumbar

spine and right humerus. b MIP

image after 2 months of anti-TB

treatment (PET images only):

complete metabolic response of

the pulmonary and right

humeral lesions and the pelvic

and inguinal lymph nodes. Good

metabolic response in the

mediastinal, cervical and

axillary nodes. Active disease is

still present in the lumber spine

with progression of the hepatic

lesions. c Transverse scans

showing axillary nodes before

treatment (PET and integrated

PET/CT images). d Transverse

scans showing response of

axillary nodes after 2 month of

anti-TB therapy; nodal uptake

diminished but still present
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high 18F-FDG uptake as active TB in a patient with no

known history of active disease or symptoms of TB, but

only a positive tuberculin skin test or interferon gamma

release assay. 18F-FDG PET has also been used to evaluate

treatment response during and after therapy (Fig. 1).

Treatment of TB is a lengthy process, usually taking at

least 6 months, and resistant Mtb species are emerging. It is

important to have an early test to predict outcome early in

the course of treatment to enable timely change to appro-

priate therapy to prevent resistant species. 18F-FDG PET

has been shown to be very useful in monitoring treatment

response in this regard [81, 82]. Other studies also used
18F-FDG PET to assess response on completion of treat-

ment and some studies, in particular in the context of

MDR-TB, have shown patients remaining free of

TB months after completing treatment [83–85]. 18F-FDG

has also been evaluated and found to be useful for

assessing TB in specific organs of the body, such as

tuberculous infections of the skeleton. It has been shown to

help in distinguishing acute pyogenic from chronic tuber-

culous spondylitis [86–88]. 18F-FDG PET has, however,

not been useful in distinguishing TB from atypical TB,

sarcoidosis and HIV-associated lymphadenopathy [89–91].

An overview of original publications involving 18F-FDG

PET in more than one patient with TB is presented in

Table 1. The articles were found by entering PET/CT and

tuberculosis in medical Pubmed and all the references of

those articles were reviewed for additional references.

Publications including only one case were excluded.

Other PET tracers

Besides 18F-FDG, other PET tracers have been investigated

for imaging of TB, including 11C-choline, [18F]fluo-

roethylcholine (18F-FEC), 30-deoxy-30-[18F]fluoro-L-thy-

midine (18F-FLT), 68Ga-citrate, [18F] sodium fluoride (18F-

NaF) and radiolabeled anti-TB drugs (Table 2). The wall of

Mtb consists of many complex lipids. 11C-choline or 18F-

FEC can image the transportation and utilization of choline

in this lipid-rich envelope of Mtb. The incorporation of

thymidine into the DNA of bacteria can be imaged by the

thymidine analog 18F-FLT during the proliferation of Mtb.

The uptake of 68Ga-citrate by TB can be extrapolated from

studies with 67Ga-citrate and is dependent on specific and

nonspecific uptake mechanisms. Nonspecific mechanisms

include increased vascular permeability in areas of

inflammation, while specific factors include binding to the

siderophores the bacteria used to trap iron from hosts’

transferrin and other iron sources. 18F-NaF has a strong

binding affinity for calcium and can be used to visualize

micro-calcifications in old TB lesions. Drugs used for the

treatment of TB have also been labeled with radioisotopes

and can be used to study the biodistribution and pharma-

cokinetics of these drugs.

11C-Choline/18F-fluoroethylcholine

11C-Choline was evaluated for differentiation of lung

cancer and other lesions including active TB [66, 104,

105]. While 75 % accuracy was found when using 11C-

choline alone for this differentiation, combining 11C-cho-

line and F-FDG appeared to yield better results [105]. Both

tracers displayed a high uptake in malignant lesions. In TB,

however, 18F-FDG uptake was much higher than 11C-

choline uptake. The use of only one tracer may miss

extrapulmonary disease in areas where the tracers have a

physiologically high bio-distribution such as the brain for
18F-FDG and the liver for 18F-FEC [106]. 18F-FEC has

been suggested to be useful for evaluation of TB therapy.

30-Deoxy-30-18F-fluoro-L-thymidine

Prospective studies evaluating the diagnostic value of dual

tracer PET/CT in pulmonary lesions using 18F-FLT and
18F-FDG PET noted that 18F-FLT PET is most useful when

combined with 18F-FDG PET. This yielded more infor-

mation than either tracer used alone. Visual inspection of

images and the ratio of the maximum SUV between 18F-

FLT and 18F-FDG improved the diagnostic accuracy in

distinguishing malignant from benign lesions including

tuberculosis [107, 108].

68Ga-citrate

68Ga-citrate was shown to have good uptake in both pul-

monary and extrapulmonary TB lesions and was useful in

distinguishing active lesions from inactive lesions. How-

ever, the uptake was nonspecific, as it was unable to dis-

tinguish malignant from benign lesions [109, 110]. 68Ga-

citrate is potentially a very useful tracer to stage disease in

cases where the diagnosis is already known. Further studies

are needed to see if 68Ga-citrate will have the same use as

demonstrated by 18F-FDG (Table 1). 68Ga-citrate holds

promise particularly in middle income and or even devel-

oping economies where PET/CT may be available, because
68Ga is produced from a generator rather than from a

cyclotron. The expense and high technical demands for

running a cyclotron have been obviated and the tracer will

be readily available.

18F-sodium fluoride

A study demonstrated in a murine model of chronic TB the

usefulness of 18F-NaF in detecting micro-calcifications,
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Table 1 Original articles on the use of 18F-FDG PET in TB

Journal/year 1st author Use No. of TB

pts/pts

studied

Major finding of 18F-FDG and TB Sens (%) Spec (%)

Ann Nuc Med 1996 Ichiya et al. [63] 1, 6 8/24 Detected and assessed activity in TB lesions, but

was unable to distinguish TB from MAC*

na Na

Radiology 2000 Goo et al. [64] 1, 3 10/10 Active tuberculomas were 18F-FDG avid and

caused false positives in cancer evaluation

na Na

Chest 2003 Hara et al. [66] 1, 3,

6

14/116 TB, atypical TB and cancer were discriminated

by performing both 18F-FDG and 11C-choline

PET scans

na Na

Neoplasia 2005 Mamede et al. [67] 1, 3 10/60 Uptake correlated with inflammation of TB

lesions causing false-positive results in cancer

87–97.8 Na

Tuberculosis 2007 Hofmeyr et al.

[83]

3, 5 2/2 Was useful in TB diagnosis in high-risk patients

and in monitoring anti-TB treatment

na Na

Clin Nuc Med 2008 Park et al. [84] 5 2/2 Was useful in assessing response to anti-TB

therapy in patients with tuberculoma

na Na

EJNMMI 2008 Yen et al. [68] 3 8/96 TB was a major cause of false positives in

evaluating lymph nodes in lung cancer

73.8 88.9

EJNMMI 2008 Kim et al. [75] 4 25/25 Assessed TB activity by visual assessment and

SUV change from early to delayed scan

71.4–100 81.8–100

EJNMMI 2009 Demura et al.

[81]

1, 4,

5

25/47 Distinguished latent TB from active TB and in

monitoring anti-TB therapy response

na Na

Nuc Med Comun 2009 Castaigne et al.

[103]

1, 6 6/10 Was useful in detecting TB as a cause of fever of

unknown origin in HIV patients

na Na

Pediatr Surg Int 2009 Hadley et al. [68] 3, 6 3/18 Was a major cause of false positive for cancer in

HIV children

na Na

Spine 2009 Kim et al. [86] 5, 6 11/30 Had prognostic value in anti-TB therapy of the

spine and detected residual disease

85.7–100 68–82.6

Lung 2010 Hahm et al. [90] 1, 6 26/41 Was unable to distinguish TB from MAC na Na

World J Gastroenterol

2010

Tian et al. [70] 3 3/3 Was a cause of false positive in assessing

abdominal malignancy

na Na

Nuklearmedizin 2010 Sathekge et al.

[65]

2, 7 16/16 Detected more extensive disease when compared

to contrast-enhanced CT

na Na

Acta Radiol 2010 Tian et al. [92] 5 3/3 Was useful in assessing response to treatment in

non-pulmonary TB

na Na

S Afr Med J 2010 Sathekge et al.

[93]

3 12/30 Was not useful in differentiating benign from

malignant lesions in a TB-endemic area

87 25–100

QJNMMI 2010 Sathekge et al.

[89]

3, 6 37/83 Was not useful for assessing malignancy in lymph

nodes in TB, HIV or TB and HIV co-infection

Na Na

Nuc Med Commun

2011

Kim et al. [87] 6 8/23 Was useful in distinguishing TB spondylitis from

pyogenic spondylitis

86.6 62.9

Ann Nuc Med 2011 Li et al. [94] 3 8/96 TB caused high false positives for cancer with

PET only; accuracy improved with combined

PET/CT

96.7 75.7

Ann Thoracic Med

2011

Kumar et al. [95] 1, 3 12/35 Increased SUV cutoff improved specificity and

with acceptable sensitivity in mediastinal node

evaluation

87–93 40–70

J Korean Med Sci 2011 Lee et al. [71] 3, 6 54/54 Found low accuracy in the evaluation of lung

cancer pts with parenchymal sequelae from

previous TB

60 69.2

J Nucl Med 2011 Sathekge et al.

[82]

1, 2,

5
24/24 Was useful to predict HIV patients who would

respond to anti-TB therapy

88 81

Eur J Rad 2012 Soussan et al. [96] 2 16/16 Found 2 distinct patterns of pulm TB uptake na Na

EJNMMI 2012 Sathekge et al.

[97]

5, 7 20/20 Was useful in distinguishing lymph nodes

responding to anti-TB from those that did not

88–95 66–85
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which were not visualized by CT. This approach could

potentially be applied in humans and help distinguish acute

from chronic TB [111].

11C-radiolabeled drug tracers

Some chemotherapeutic agents for treatment of tubercu-

losis, including isoniazid, rifampicin and pyrazinamide,

have been labeled with carbon-11 (11C) and their biodis-

tribution, in particular their ability to cross the blood–brain

barrier, has been evaluated in nonhuman primates. There

have not been any corresponding human studies with these

tracers till date. The radiolabeled chemotherapeutic agents

were used to show whether the drug achieved a sufficiently

high concentration in infected sites, particularly in TB

meningitis and TB brain abscesses. This is an important

finding, as TB of the central nervous system is usually life

threatening and requires long periods of treatment (usually

a year) and may sometimes need to be continued even

when adverse effects develop. These radiolabeled drug

tracers were not assessed for detection of TB [112].

Treatment of TB

The treatment of TB depends on whether the individual has

active or LTBI. Treatment of active TB requires long-term

multidrug therapy to overcome tolerance, achieve bacterial

clearance and reduce the risk of transmission. Tolerance is

an epigenetic drug resistance widely attributed to non-

replicating bacterial subpopulations [113]. The drugs are

classified as first- and second-line agents. First-line

agents—class 1, WHO—include isoniazid and rifampicin,

Table 1 continued

Journal/year 1st author Use No. of TB

pts/pts

studied

Major finding of 18F-FDG and TB Sens (%) Spec (%)

Int J Tuberc Lung dis

2012

Martinez et al.

[98]

5 21/21 Was useful in evaluating early therapeutic

response to anti-TB

na Na

BMC Pulm Med 2013 Heysell et al. [78] 2, 4 4/4 Demonstrated the usefulness in the management

of high-risk TB pts who are sputum negative

na Na

Eur Spine J 2014 Dureja et al. [88] 5 33/33 SUVmax was found to be a quantitative marker

for response in spinal TB

na Na

Sci Trans Med 2014 Coleman et al.

[99]

5 18/18 Demonstrated usefulness of assessing the

response of anti-TB in macaques and pts with

XDR-TB

96 75

J Korean Med Sci 2014 Jeong Y-J et al.

[100]

1 63/63 Found pts with old healed lesions with high SUV

to be at risk for development of active TB

na Na

Sci Trans Med 2014 Chen et al. [85] 5 28/28 Demonstrated that changes at 2 months of anti-

TB are early predictors of the final outcome in

MDR-TB

na Na

Chest 2014 Maturu et al. [91] 6 29/117 Did not find any significant difference in the

findings in TB and sarcoidosis

na Na

Nuc Med Commun

2015

Huber et al. [101] 3, 6 122/207 Found more likely to detect cancer in the

evaluation of granulomatous lesions in

pts[ 60 years

na Na

EJNMMI 2015 Fuster D et al.

[102]

7 4/26 Recommended 18F-FDG should be considered

first line in the imaging of spondylodiscitis

83 88

When an article evaluated more than one feature of TB, then the sensitivity and specificity apply to the use indicated by the number highlighted

in italics and bold

Pts patients, MAC Mycobacterium avium complex

* Pulm pulmonary
1 To detect TB lesions and assess disease activity
2 To assess the extent of disease
3 To assess the effect of TB on cancer staging or diagnosis with 18F-FDG
4 To differentiate latent from active TB
5 To monitor treatment response
6 To assess the ability to differentiate TB from nonmalignant conditions, including atypical mycobacteria, as well as to assess the effect TB has

on 18F-FDG imaging of nonmalignant conditions
7 To compare the detection of TB by PET with other modalities
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the two most potent anti-TB agents. Resistance to these

agents defines a case of MDR-TB. Second-line agents are

divided by the WHO into four different classes (WHO

class 2–5); class 2 includes the injectables amikacin,

kanamycin and capreomycin; class 3 are the fluoro-

quinolones; class four includes less potent, more toxic oral

agents; and class 5 includes agents with as yet unknown

significance. Only if Mtb isolates are susceptible, the

treatment may last 6 months. Patients with large cavitary

lesions that have delayed sputum culture conversion, those

with M. bovis disease that is naturally nonsusceptible to

pyrazinamide, those who cannot tolerate pyrazinamide and

those with meningitis TB need treatment prolongation to

9 months. The so-called ‘‘short course’’ of 6 months for

drug-susceptible TB is a major advance, as previous ther-

apies lasted 12–18 months. Treatment is still challenging,

as adhering to a multidrug regimen for 6 months has been

shown to be difficult, especially in low-resource settings

[114]. Despite the presence of several new drugs under

investigation, attempts to shorten the treatment still remain

elusive [115]. This failure highlights the poor understand-

ing of the tolerance of Mtb. The WHO recommends iso-

niazid and rifampicin for treatment of drug-susceptible

infections. The treatment is in two phases: initiation and

continuation. The initiation phase treatment usually

contains four first-line agents including rifampicin and

isoniazid for 2 months, and the continuation phase consists

of isoniazid and rifampicin only for the last 4 months of

treatment. The current guidelines recommend the directly

observed treatment (DOTS) strategy to improve adherence.

This strategy involves patients taking medication under

supervision. Although this has greatly improved the suc-

cess of treatment, the emergence of drug resistance could

not be curbed with this strategy. There are also guidelines

for drug-susceptibility testing to rapidly diagnose and

appropriately treat MDR-TB [116]. Although the treatment

outcome of drug-susceptible TB has been fair, with suc-

cessful outcome reported by most countries at around

85 %, the outcome of MDR-TB treatment has generally

been poor, with successful outcome reported under service

conditions at around 50 % only [2]. The reported series do

slightly better at around 60 % [117] and only few national

programs attain success rates at around the target set for

drug-susceptible TB [118].

In patients with LTBI, treatment is recommended for

persons deemed to be at high risk of developing active

disease. It is important that treatment is only initiated after

active disease has been excluded by clinical and radio-

graphic means. A failure to do so will result in inadequate

treatment and development of resistant species. The

Table 2 Mechanism of PET tracer uptake in TB

Tracer Clinical or pre-clinical

(animal model used)

Mechanism of uptake Use(s)

18F-fluoro-deoxy-glucose

[60–103]

Clinical Uptake during the respiratory burst by

activated inflammatory cells as by glucose

transporters and is phosphorylated to FDG-

6-phospate and remains trapped in the cell

Assesses disease activity, staging

(especially extrapulmonary) monitoring

therapy and early prediction of

nonresponse
18F-Fluoroethylcholine or

11C-choline [104–106]

Clinical Uptake during the synthesis of the complex

lipid layer of the cell wall

Combined with FDG, helps distinguish

TB from malignancy and possible role

in therapy monitoring

30-Deoxy-30-18F-fluoro-L-

thymidine [107, 108]

Clinical Uptake during the synthesis of nucleic acids

as bacteria proliferates

Combined with FDG, helps distinguish

TB from malignancy
68Ga-citrate [109, 110] Clinical Accumulates in bacterial siderophores of Mtb

and in plasma lactoferrin similar to 67Ga-

citrate and also accumulates by nonspecific

mechanisms as increased vascular

permeability

Detects TB lesions and may be better than

CT in the detection of extrapulmonary

lesions

11F-sodium fluoride [111] Preclinical (mice) Binds to micro-calcification in chronic TB

lesions

Potentially helps to distinguish acute from

chronic TB
11C-Rifampicin [112] Preclinical (baboons) Binds to (and inhibits) Mtbs DNA-dependent

RNA polymerase

Determines whether there is adequate

accumulation of drug in the infected site
11C-Isoniazid [112] Preclinical (baboons) Binds to Mtb enzymes and generates reactive

oxygen species resulting in inhibition of

cell wall lipid synthesis and depletion of

nucleic acid pools and metabolic depression

Determines whether there is adequate

accumulation of drug in the infected site

11C-Pyrazinamide [112] Preclinical (baboons) Binds to cell membrane proteins, disrupts

membrane energetics and inhibits

membrane transport functions in Mtb

Determines whether there is adequate

accumulation of drug in the infected site
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preferred treatment is isoniazid daily for 9 months. The

WHO recently developed the guidelines for latent TB

treatment. The identification of people at risk considers

factors such as the level of income of a country, prevalence

of TB in a country, presence of other diseases, conditions

like HIV infection and use of gamma interferon. Other

guidelines combine these conditions with the size of

induration after a tuberculin skin test [2, 119, 120].

Conclusions and future perspectives

18F-FDG PET/CT is a sensitive noninvasive biomarker for

the detection, staging, assessing disease activity and mon-

itoring therapy in TB. The complex and long period

required for the treatment of TB makes 18F-FDG PET

particularly useful, as it is able to detect at an early point in

treatment drug combinations that are ineffective and lead to

a change in therapy. This is not only important to reduce

morbidity and mortality in the individual, but prevents the

even greater public health hazard of the individual devel-

oping resistant species of Mtb and transmitting the resistant

strain in the community.

PET/CT provides a unique opportunity for the in vivo

histological characterization of TB lesions. This role is

becoming more and more important as the molecular basis

of TB is elucidated. These tracers provide an ideal platform

for personalized medicine in TB treatment. PET/CT has

played and continues to play a major role in the develop-

ment of new drugs and therapeutic strategies like vaccines.

This role will hopefully expand in the future with the

development of new tracers and repurposing of existing

tracers. For example, MDR-TB and LTBI have hypoxia as

one of the main processes underlying their pathology. The

antibiotic metronidazole that is a pro-drug activated by

hypoxia has been shown to be useful in the treatment of

MDR-TB [121]. Hypoxic PET tracers already validated for

the management of cancer could potentially play a role in

the management of TB. In conclusion, PET/CT has

demonstrated its usefulness in managing different aspects

of tuberculosis disease and the development of new ther-

apeutic interventions. The role of PET/CT is likely to grow

further as we aim to eradicate TB by 2015 [2].
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