Techniques for estimating flood peak discharges for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma

By Robert L. Tortorelli and DeRoy L. Bergman

U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 84-4358

Prepared in cooperation with the OKLAHOMA DEPARTMENT OF TRANSPORTATION

Oklahoma City, Oklahoma 1985

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD P. HODEL, Secretary

GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division Room 621, Old Post Office Building 215 Dean A. McGee Avenue Oklahoma City, Oklahoma 73102

Telephone: (405) 231-4256

Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Lakewood, Colorado 80225

Telephone: (303) 236-7476

CONTENTS

	Page
Abstract	1
Introduction	3
Acknowledgments	5
Estimating procedures for flood peak discharges	6
Gaged rural unregulated sites	7
Ungaged rural unregulated sites	8
Adjustment for regulation from floodwater retarding structures	20
Accuracy and limitations	23
Application of techniques	28
Analytical procedures	33
Annual peak data	34
Station flood-frequency relations of gaged rural unregulated sites	37
Regression analysis of gaged rural unregulated sites	41
Testing of assumptions and applicability of regression analysis	44
General description of floodwater retarding structures	46
General effects of floodwater retarding structures	49
Station flood-frequency relations of gaged rural regulated sites	59
Regression analysis of gaged rural regulated sites	60
Effects of floodwater retarding structures	62
Summary	73
Selected references	74

ILLUSTRATIONS

			Page
Figure	1-2.	Maps showing:	
		1. Location of gaging stations with unregulated	
		periods of record used in study	9
		2. Mean annual precipitation for the period 1931-60	11
	3-9.	Graphs showing relation of flood peak to drainage area	
		and mean annual precipitation for:	
		3. The 2-year flood	13
		4. The 5-year flood	14
		5. The 10-year flood	15
		6. The 25-year flood	16
		7. The 50-year flood	17
		8. The 100-year flood	18
		9. The 500-year flood	19
	10-11.	Maps showing: ,	:
		10. Location of selected gaging stations regulated by	·
		floodwater retarding structures	36
		11. Generalized skew coefficients of logarithms of	
		annual maximum streamflow for Oklahoma streams	
		less than or equal to 2500 square miles in	
		drainage area	39
	12.	Sketch showing cross section of typical floodwater	•
		retarding structure	48
	13.	Diagram showing the generalized effects of runoff	
		retention on the streamflow hydrograph	50

. •

ILLUSTRATIONS--Continued

Figure	14.	Map showing the location of Fall Creek study watershed	52
	15-16.	Hydrographs of 100-year hydrograph at stream cross-	
		section located downstream from floodwater retarding	
		structure for:	
		15. Case 1	56
		16. Case 2	56
	17-21.	Graphs showing comparison of flood-frequency relations	
		before and after regulation by floodwater retarding	
		structures for:	
		17. Caney River near Elgin, Kans	63
		18. Sallisaw Creek near Sallisaw, Okla	64
		19. Fourche Maline near Red Oak, Okla	65
		20. Washita River near Cheyenne, Okla	66
		21. Rush Creek near Maysville, Okla	67
	22-26.	Graphs showing the effects of floodwater retarding	
		structures on flow duration curves for:	
		22. Caney River near Elgin, Kans	6 8
		23. Sallisaw Creek near Sallisaw, Okla	6 9
		24. Fourche Maline near Red Oak, Okla	70
		25. Washita River near Cheyenne, Okla	71
		26. Rush Creek near Maysville, Okla	72

Page

-

Table 1.	Log-Pearson Type III statistics and station flood-frequency	
	relations for selected gaged streams regulated by U.S.	
	Soil Conservation Service floodwater retarding structures	21
2.	Basin characteristics for selected gaged streams regulated by	
	U.S. Soil Conservation Service floodwater retarding	
	structures	22
3.	Accuracy of regression equations for unregulated streams	24
4.	Accuracy of regression equations adjusted for regulation from	
	floodwater retarding structures	25
5.	Computation of weighted unregulated flood-frequency curve	
	for Skeleton Creek near Lovell, Okla	30
6.	Computation of weighted regulated flood-frequency curve for	
	Rush Creek near Maysville, Okla	31
7.	Summary of drainage area distribution and average observed	
	length of record	35
8.	Parameters investigated as possible predictors of flood	
	discharge for unregulated rural streams	42
9.	Six-hour duration rainfall and resulting runoff for Fall	
	Creek study watershed	53
10.	Peak discharges at floodwater retarding structure ponds and	
	downstream cross-section	55
11.	Basin and climatic characteristics, log-Pearson Type III	
	statistics and station flood-frequency relations for	
	unregulated gaged streams	77

vi

Inch-pound units used in this report may be converted to International System of Units (SI) by the following conversion factors:

Multiply inch-pound units	Ву	To obtain SI units
inch (in.)	25.40	millimeter
foot (ft)	0.3048	meter
mile (mi)	1.609	kilometer
square mile (mi ²)	2.590	square kilometer
acre-foot (acre-ft)	1,233	cubic meter
acre-foot (acre-ft)	0.001233	cubic hectometer
cubic foot per second (ft^3/s)	0.02832	cubic meter per second
cubic foot per second	0.01093	cubic meter per second
per square mile		per square kilometer
$[(ft^{3}/s)/mi^{2}]$		

TECHNIQUES FOR ESTIMATING FLOOD PEAK DISCHARGES FOR UNREGULATED STREAMS AND STREAMS REGULATED BY SMALL FLOODWATER RETARDING STRUCTURES IN OKLAHOMA By Robert L. Tortorelli and DeRoy L. Bergman

ABSTRACT

Statewide regression relations for Oklahoma were determined for estimating peak discharge of floods for selected recurrence intervals from 2 to 500 years. The independent variables required for estimating flood discharge for rural streams are contributing drainage area and mean annual precipitation. Main-channel slope, a variable used in previous reports, was found to contribute very little to the accuracy of the relations and was not used. The regression equations are applicable for watersheds with drainage areas less than 2,500 square miles that are not significantly affected by regulation from manmade works. These relations are presented in graphical form for easy application.

Limitations on the use of the regression relations and the reliability of regression estimates for rural unregulated streams are discussed. Basin and climatic characteristics, log-Pearson Type III statistics and the flood-frequency relations for 226 gaging stations in Oklahoma and adjacent states are presented.

Regression relations are investigated for estimating flood magnitude and frequency for watersheds affected by regulation from small FRS (floodwater retarding structures) built by the U.S. Soil Conservation Service in their watershed protection and flood prevention program. Gaging-station data from nine FRS regulated sites in Oklahoma and one FRS regulated site in Kansas are used. For sites regulated by FRS, an adjustment of the statewide rural regression relations can be used to estimate flood magnitude and frequency. The statewide regression equations are used by substituting the drainage area below the FRS, or drainage area that represents the percent of the basin unregulated, in the contributing drainage area parameter to obtain floodfrequency estimates. Flood-frequency curves and flow-duration curves are presented for five gaged sites to illustrate the effects of FRS regulation on peak discharge.

INTRODUCTION

A knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees and other structures on and near streams. Flood plain management programs and flood-insurance rates also are based on flood magnitude and frequency information.

Flood peak reduction by U.S. Soil Conservation Service FRS (floodwater retarding structures) affects large areas of Oklahoma. About 2,000 FRS are present in more than 120 drainage basins in Oklahoma. About 2,500 FRS will regulate storm runoff from about 8,500 mi² (square miles), or 12-percent of the State, upon completion of the present (1984) SCS (U.S. Soil Conservation Service) watershed protection and flood prevention program. FRS are designed to decrease main-stem flood peaks and regulate the runoff recession of single storm events (Bergman and Huntzinger, 1981). Consideration of the flood peak modification capability of FRS can result in more hydraulically efficient, cost-effective culvert or bridge designs along downstream segments of FRS regulated streams.

The purpose of this report is to provide methods for estimating the peak discharge and frequency of floods for Oklahoma streams with a drainage area less than 2,500 mi² and procedures to adjust these estimates for a basin regulated by FRS. Flood-discharge records at 226 gaging stations throughout Oklahoma and bordering portions of Arkansas, Kansas, Missouri, New Mexico, and Texas were used to define the statewide flood-frequency relation. Estimates of selected frequency floods were related to basin and climatic characteristics using multiple-regression techniques. These analyses

indicated that contributing drainage area and mean annual precipitation were the most significant variables for estimating flood discharges for rural Oklahoma streams. The regression equations derived in these analyses provide a simple and reliable method for estimating the flood frequency of rural streams. These equations are also presented in a graphical form for ease of use. A technique for adjusting the regression equations for regulation by FRS is presented.

The scope of the study is limited to peak flows and does not consider the shape or volume of the flood hydrograph. This report provides techniques for estimating flood discharges for streams with drainage areas smaller than $2,500 \text{ mi}^2$ and, therefore, Sauer's report (1974a) should be used for estimating flood frequency for streams with larger drainage areas. Procedures for adjusting flood discharges for the effect of urbanizaton were not considered. The procedures outlined by Sauer (1974b), also contained in Thomas and Corley (1977), should be utilized for basins affected by urbanization.

This report should be used in preference to an earlier report by Thomas and Corley (1977) for estimating flood discharges for rural Oklahoma streams with a drainage area less than 2,500 mi² because: (1) it is based on five years of additional annual peak data and many additional gaging-station records; (2) it is simpler to use since the regression equations contain one less variable; (3) it uses a skew map developed specifically for Oklahoma in the station flood-frequency analysis; and (4) it is based on annual peak data that were carefully edited to remove all data under the influence of regulation from FRS.

The report is the result of a cooperative agreement between the Oklahoma Department of Transportation and the U.S. Geological Survey. The opinions, findings, and conclusions presented in this report are those of the U.S. Geological Survey and do not necessarily reflect the official views or policies of the Oklahoma Department of Transportation.

Acknowledgments

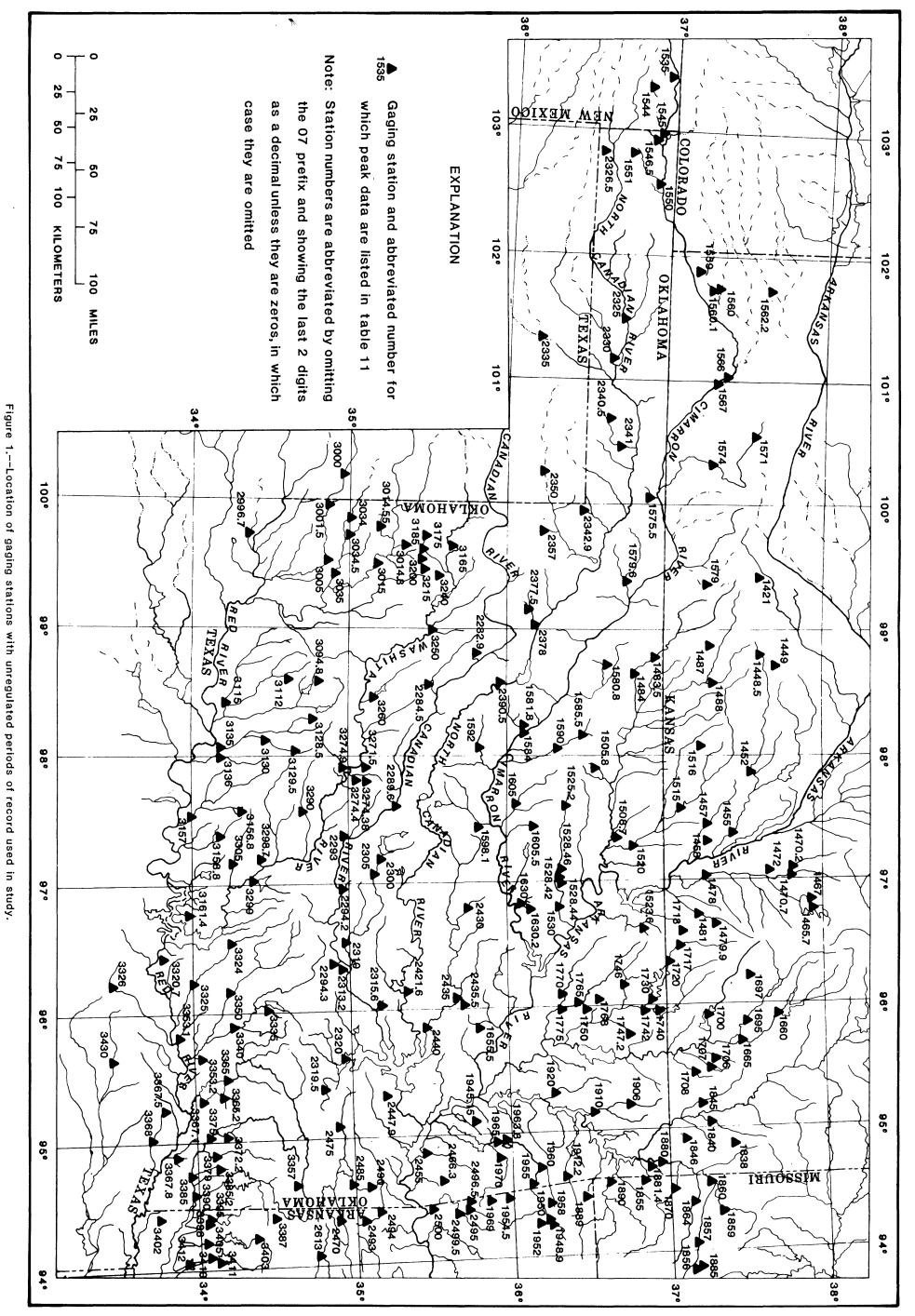
Oklahoma FRS data were obtained from R. C. Riley, State Hydrologist, U.S. Soil Conservation Service, Stillwater, Oklahoma.

Kansas FRS data were obtained from J. A. Wentz, Assistant State Conservationalist, U.S. Soil Conservation Service, Salina, Kansas.

W. O. Thomas, Jr., of the U.S. Geological Survey provided technical advice and assistance in applying the log-Pearson Type III and regression analyses.

ESTIMATING PROCEDURES FOR FLOOD PEAK DISCHARGES

This section briefly outlines the techniques to use when estimating peak discharge and frequency of floods for an unregulated rural site with a drainage area of less than 2,500 mi² in Oklahoma. A technique is presented for adjusting the flood peak discharge for regulation by small floodwater retarding structures.


A detailed discussion of the analytical procedures utilized in this report is presented in subsequent sections for the reader interested in the development of the relations.

At the present time (1984), there are no gaged urban sites in Oklahoma with sufficient record to define a flood-frequency curve for either unregulated or regulated urban sites.

Gaged rural unregulated sites

When estimating flood magnitude and frequency for gaged rural unregulated sites, it is recommended that a weighted flood discharge estimate, $Q_{x(w)}$, for recurrence interval x, be used (Thomas and Corley, 1977; Thomas, W. O., Jr., U.S. Geological Survey, written commun., 1980).

Figure 1 shows the location of the gaging stations with unregulated periods of record used in the study. Use figure 1 to obtain the station number of the station of interest. Using this station number, determine the appropriate station flood discharge value, peak discharge or $Q_{\chi(s)}$, for recurrence interval x, from table 11 (in back of report). The stations which have unregulated periods of record, but are now regulated, are noted with a dagger in table 11. If the station of interest is still unregulated, then this flood discharge value is used with the regression estimate $Q_{\chi(r)}$ in a weighting procedure that is explained and illustrated later in the report in the section "Application of Techniques".

9

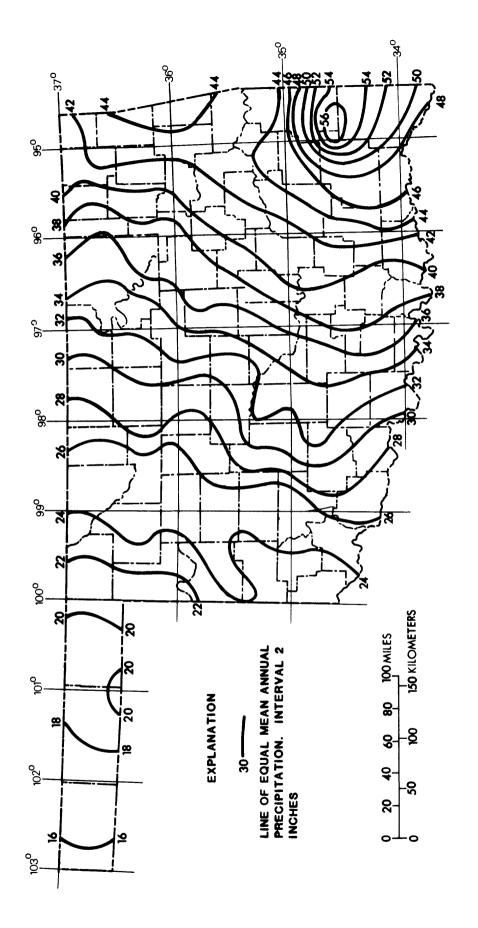
Ungaged rural unregulated sites

Multiple regression techniques were used to relate estimates of the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods (table 11) to basin and climatic parameters. Of all the parameters investigated, drainage area and mean annual precipitation were the most significant for estimating flood peaks for ungaged rural unregulated sites.

The two parameters used in the regression equations are listed in table 11 for each station used in the analysis and are defined as follows:

- Drainage area, (A) the contributing drainage area of the basin, in square miles.
- Mean annual precipitation, (P) the mean annual precipitation for the basin, in inches, during the period 1931-60.
 See figure 2.

The model used in the regression analysis has the following form:


$$Q_{x(r)} = a A^b P^c$$

where $Q_{x(r)}$ = peak discharge, in cubic feet per second for recurrence interval x,

a = regression constant,

b, and c = regression coefficients, and

A, and P = basin and climatic parameters as defined above.

The following equations were computed by regression analysis:

$$\mathbf{Q}_{2(\mathbf{r})} = 0.368 \ \mathbf{A}^{0.59} \ \mathbf{P}^{1.84}$$
(2)

$$\mathbf{Q}_{5(\mathbf{r})} = 4.00 \ \mathbf{A}^{0.58} \ \mathbf{P}^{1.39}$$
 (3)

$$\mathbf{Q}_{10(\mathbf{r})} = 13.2 \ \mathrm{A}^{0.57} \ \mathrm{P}^{1.17}$$
 (4)

$$Q_{25(r)} = 45.3 A^{0.56} P^{0.94}$$
 (5)

$$\mathbf{Q}_{50(\mathbf{r})} = 98.7 \ A^{0.56} \ \mathbf{P}^{0.80} \tag{6}$$

$$\mathbf{Q}_{100(\mathbf{r})} = 196 \ A^{0.56} \ \mathbf{P}^{0.68}$$
 (7)

$$\mathbf{Q}_{500(r)} = 751 \ \mathrm{A}^{0.55} \ \mathrm{P}^{0.44}$$
 (8)

The above equations are based on inch-pound units of measurements. Substitution of metric values for A and P will not provide correct answers. To convert the final answers of discharge from cubic feet per second to the metric equivalent of cubic meters per second, multiply by the factor, 0.02832. Equations 2 through 8 are shown graphically in figures 3 through 9 respectively.

To estimate flood magnitude and frequency for ungaged unregulated rural sites, first determine the drainage area from the best available map or field survey. The mean annual precipitation can be determined from figure 2. Next, enter figures 3-9 with drainage area along the vertical scale, then move horizonally across to the appropriate mean annual precipitation curve and downward vertically to the discharge scale to obtain $Q_{x(r)}$, the regression estimate. Use of figures 3-9 is illustrated in the section on "Application of Techniques".

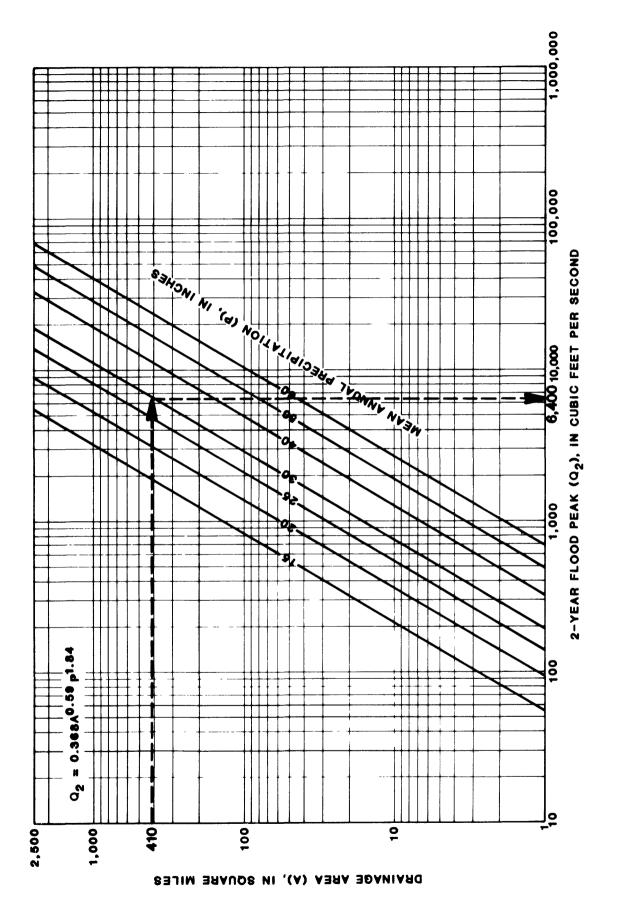


Figure 3.--Relation of 2-year flood peak to drainage area and mean annual precipitation.

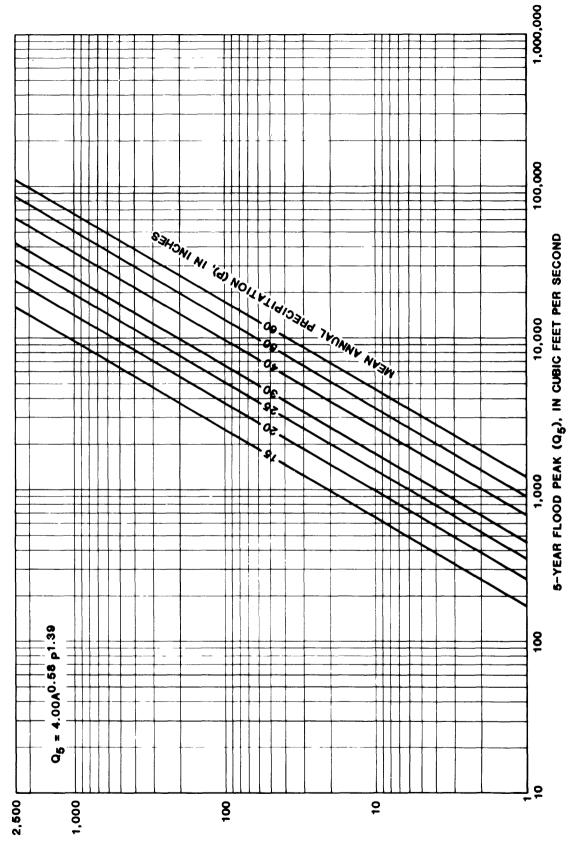
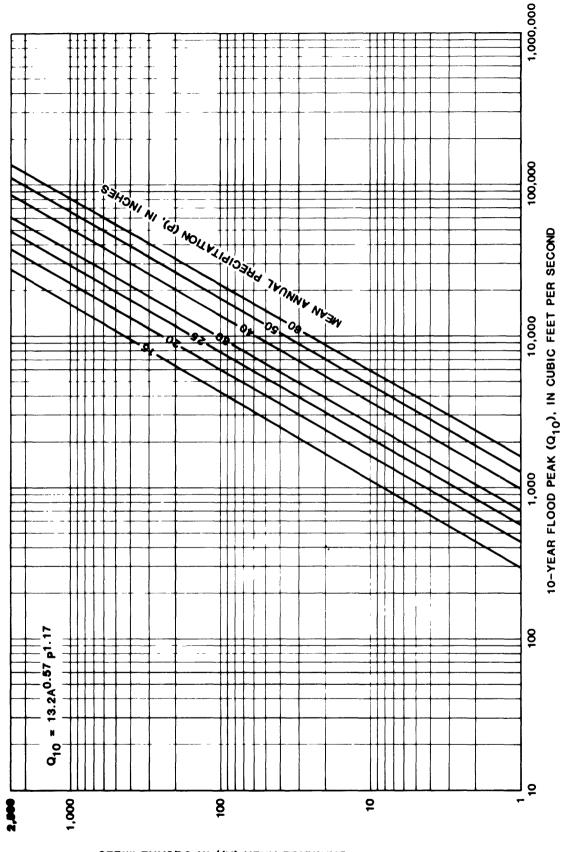



Figure 4.---Relation of 5-year flood peak to drainage area and mean amwal precipitation.

DRAINAGE AREA (A), IN SQUARE MILES

Figure 5.--Relation of 10-year flood peak to drainage area and mean annual precipitation.

,

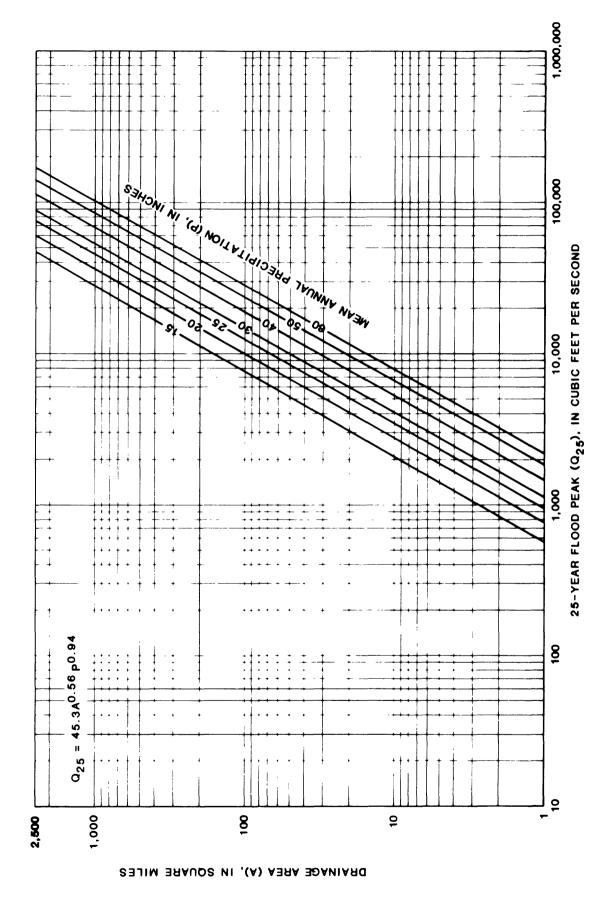
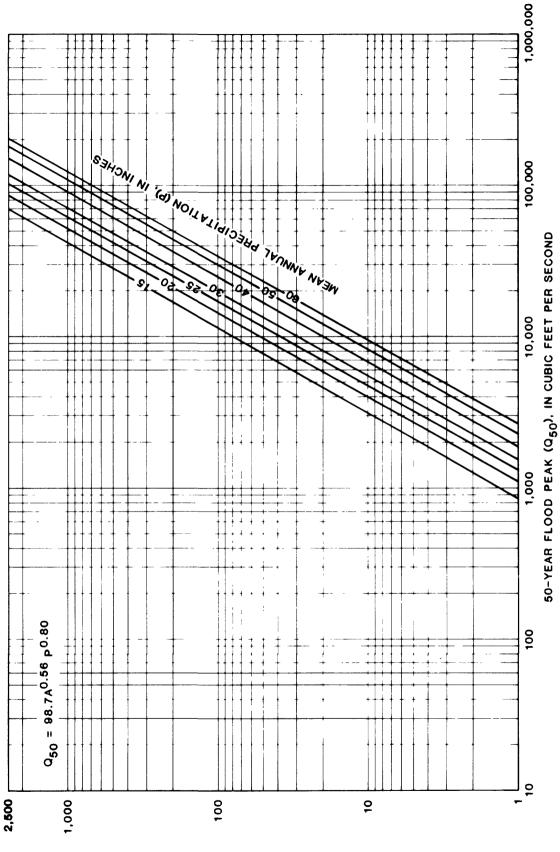



Figure 7.--Relation of 50-year flood peak to drainage area and mean annual precipitation.

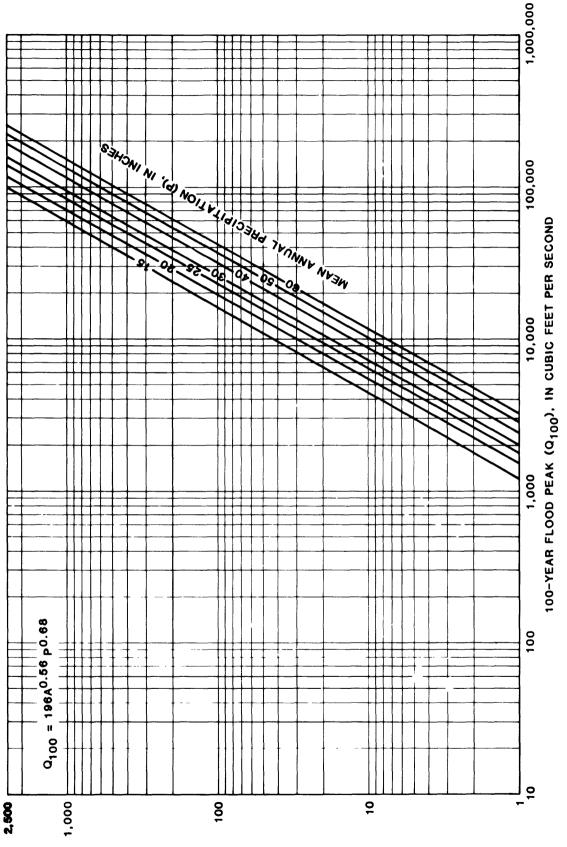


Figure 8.--Relation of 100-year flood peak to drainage area and mean annual precipitation.

DRAINAGE AREA (A), IN SQUARE MILES

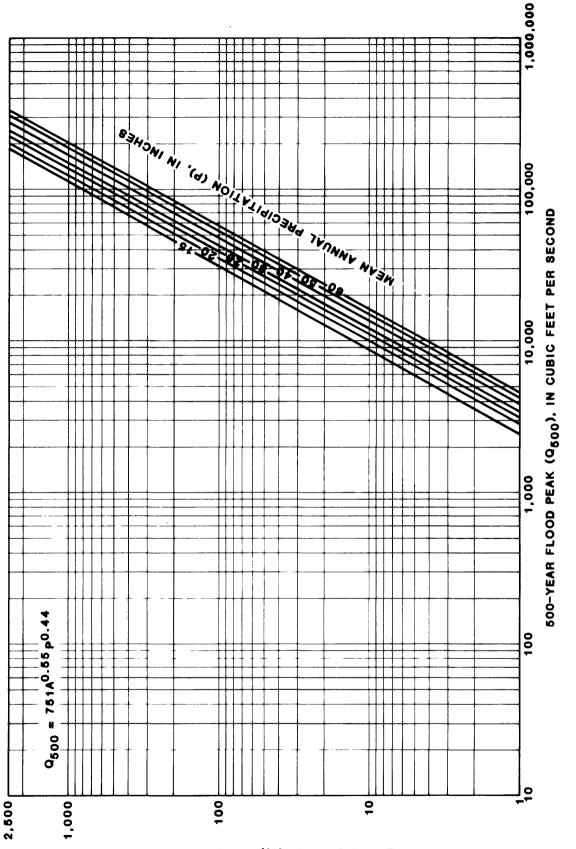


Figure 9.---Relation of 500-year flood peak to drainage area and mean annual precipitation.

DRAINAGE AREA (A), IN SQUARE MILES

Adjustment for regulation from floodwater retarding structures

When estimating flood magnitude and frequency in basins regulated by FRS, an adjustment must be made. The regulated station peak discharges, or $R_{x(s)}$, for recurrence interval x, (table 1) were compared to the discharges obtained from equations 2-8: (1) using for A the unregulated portion of the drainage area or drainage area below the FRS, A_{u} ; and (2) using for A the total drainage area and multiplying the result by the percent of the basir drainage area which is unregulated by FRS, expressed as a decimal. The best fit was obtained using for A the drainage area unregulated by FRS.

The following model will compute the adjusted regression discharge estimate using equations 2-8:

$$\mathbf{R}_{\mathbf{x}(\mathbf{r})} = \mathbf{a} \mathbf{A}_{\mathbf{u}}^{\mathbf{b}} \mathbf{P}^{\mathbf{c}}$$
(9)

where $\mathbf{R}_{\mathbf{x}(\mathbf{r})}$ = the regression peak discharge estimate adjusted for FRS, cubic feet per second, for recurrence interval x,

a = regression constant,

b, and c = regression coefficients,

 A_{u} , and P = basin and climatic characteristics defined above.

The basin and climatic characteristics for selected regulated basins are shown in table 2.

STATION NUMBER	-	PERIOD OF RECORD, IN WATER YEARS	RD, ISIU UEV,	LOG-PEARSON TYPE III	AN DEVIATION; SI ARSON TYPE III	LOID DEV, STANDARD DEVIATION; SKEW, WEIGHTED SKEW LUEFFILLENT LOG-PEARSON TYPE III STATISTICS, PEAK DISCHARG IN LOGARITHMIC UNITS FOR INDICATED	PEAL	T CUEFFILLEN!) PEAK DISCHARGES IN CUBIC FEET PER SECOND FOR INDICATED RECURRENCE INTERVAL IN YEARS	ARGES IN	4 CUBIC RENCE	FEET P	ER SECO L IN YE	ND ARS
	TOTAL	UNREGULATED	REGULATED	MEAN	sto dev	SKEW	2	5	9	25	8	1 00	500
07172000	1939-81	1939-64	1967-81	4.0938 4.0925	0.4192 0.3085	-0.79 -0.79	14100 13600	28400 22700	38300 28400	50400 34800	58800 39000	66500 42700	82200 49900
07245500	1943-76	1943-63	1966-76	4.1105 3.7857	0.4118 0.1591	0.11 -0.12	12700 6150	28500 8330	43900 9720	70200 11400	95400 12700	126000 13900	223000 16600
07247500	1939-80	1939-63	1966-80	3.8232 3.6305	0.3889 0.2831	0.09 0.15	6560 4200	14100 7350	21200 9950	32900 13800	43800 17200	56900 20900	97100 31500
07316500	1938-81	1938-60	1961-81	3.7444 3.0726	0.5304 0.4882	0.15 -0.08	5390 1200	15400 3060	27000 4940	50100 8170	75100 11300	109000 15000	233000 26700
07329500	1954-80	1954-64	1967-80	3.9875 3.7097	0.3178 0.3593	0.31 0.09	9360 5060	17800 10200	25300 14900	37700 22400	49100 29200	62800 37100	105000 60700
07174200	1959-80	1959-64	1969-80	3.8615	0.2974	-0.07	7330	13000	17400	23700	28900	34500	49200
07319500	1953-72	NONE	1953-72	2.8467	0.4132	0.25	675	1540	2430	4020	5620	7640	14500
07323000	1951-74	NONE	1951-74	3.0782	0.3700	-0.05	1210	2460	3550	5230	6720	8400	13100
07324400	1962-80	NONE	1962-80	2.9557	0.2459	0.14	991	1450	1880	2500	3020	3580	5080
07328070	1965-80	1965-66	1967-80	3.2214	0.3398	0.28	1600	3170	4630	7050	9320	12100	20700

TABLE 1.--LOG-PEARSON TYPE III STATISTICS AND STATION FLOOD-FREQUENCY RELATIONS FOR SELECTED GAGED STREAMS REGULATED BY U.S. SOIL CONSERVATION SERVICE FLOODWATER RETARDING STRUCTURES

WETCHTEN SKEW COFFETCTENT] SUFW STANDARD DEVIATION. CCTD DEV TABLE 2.--BASIN CHARACTERISTICS FOR SELECTED GAGED STREAMS REGULATED BY U.S. SOIL CONSERVATION SERVICE FLOODWATER RETARDING STRUCTURES [SQ MI, SQUARE MILES; PRECIP, PRECIPITATION; IN, INCHES; I24,2, 24-HOUR RAINFALL, 2-YEAR RECURRENCE INTERVAL; AC-FT/SQ MI, ACRE-FEET PER SQUARE MILE OF TOTAL DRAINAGE AREA]

CTATTON	CTATTOM NAME		DPATNACE ADEA	AREA	MEAN ANNITAT	DATNEALL	DE TENT L'ON	ME AN ANNITAL
NUMBER		TOTAL (SQ MI)	REGULATED (SQ MI)	UNREGULATED (PERCENT)	PRECIP (IN)	INTENSITY I24,2 (IN)	AC-FT/SQ MI)	(IN)
07172000	CANEY RIVER NEAR ELGIN, KANS.	445.0	178.0	60	38.0	3.80	161	6.5
07245500	SALLISAW CREEK NEAR SALLISAW, OKLA.	182.0	126.0	31	43.5	4.20	253	13.2
07247500	07247500 FOURCHE MALINE NEAR RED OAK, OKLA.	122.0	78.1	36	45.5	4.10	250	14.5
07316500	07316500 WASHITA RIVER NEAR CHEVENNE, OKLA.	794.0	508.0	36	22.8	3.10	100	1.3
07329500	07329500 RUSH CREEK NEAR MAYSVILLE, OKLA.	206.0	109.0	47	34.5	3.75	155	4.3
07174200	07174200 LITTLE CANEY RIVER BELOW COTTON Creek Near Copan, Okla.	502.0	223.0	56	37.0	3.80	182	7.1
07319500	07319500 SANDSTONE CREEK NEAR BERLIN, OKLA.	4.44	38.7	14	24.0	3.10	285	1.6
07323000	07323000 SANDSTONE CREEK NEAR CHEVENNE, OKLA.	87.1	65.8	25	24.0	3.10	242	1.6
0 7 32 4400	SOLDIER CREEK NEAR FOSS, OKLA. (WASHITA RIVER NEAR FOSS, OKLA.)	51.3	35.6	31	24.5	3.15	163	1.6
07328070	WINTER CREEK NEAR ALEX, OKLA.	33.0	18.5	44	33.0	3.60	183	4.1

One indication of the accuracy of a flood peak discharge estimate is the standard error of the estimate of the regression equation. The standard errors of the estimate of the regression equations 2-8 can be expressed in two ways, percent or equivalent years of record.

The accuracy in percent is the standard error of the estimate converted to a percent and is the accuracy to be expected, on the average, two-thirds of the time (Hardison, 1971; Tasker, G. D., U.S. Geological Survey, written commun., 1978). That is, the difference between the estimated and actual peak discharge for two-thirds of the estimates will be within plus or minus one standard error of the estimate.

Hardison (1969) and Thomas (U.S. Geological Survey, written commun., 1980) related the standard error of the estimate and streamflow variability to equivalent years of record. When converted to equivalent years of record, the standard error of estimate is expressed as the number of actual years of streamflow records that would be needed at an ungaged site to provide an estimate equal in accuracy to the standard error of estimate. The accuracy of the unregulated regression equations 2-8 is summarized in table 3. The accuracy of the regression equations 2-8 when adjusted for FRS regulation is summarized in table 4.

Recurrence interval in years	Standard error of estimate, in percent	Equivalent years of record
2	60	3
5	48	6
10	46	8
25	47	11
50	50	12
100	54	12
500	66	12

Table 3.--Accuracy of regression equations for unregulated streams.

.

Table 4.--Accuracy of regression equations adjusted for regulation from floodwater retarding structures.

Recurrence interval in years	Standard error of estimate, in percent	Equivalent years of record
2	63	2
5	50	4
10	50	5
25	52	6
50	58	6
100	66	6
500	80	6

A large part of standard error of estimate is the result of time sampling errors in the actual streamflow record. The increase in the standard error of estimate as the recurrence interval increases indicates that the time-sampling error is larger for the higher recurrence interval floods. Therefore, it is less reliable to estimate the larger floods than the smaller floods with a given number of years of actual streamflow record. The 12 years of equivalent record for $Q_{50(r)}$ (table 3) suggest that the regression estimate is as accurate as a $Q_{50(s)}$ estimate based on 12 years of actual streamflow record. The six years of equivalent record for $R_{50(r)}$ (table 4) suggest that the regression estimate is as accurate as an $R_{50(s)}$ estimate based on six years of actual streamflow record.

The regression equations should not be used to predict flood discharges on drainage basins larger than 2,500 mi² or those basins having values of P outside of the range of values used to define the equations, 14.0 - 59.0 in. (inches). Caution should be used when estimating peak flows from drainage areas less than one mi². Comparison of observed and predicted peak discharges from those stations less than one mi² shows that the equations may over-predict by an average of 50 percent. Equations 2-8 should not be used for those basins significantly affected by urbanization or regulation from large dams with controlled-outlet works. Estimates from equations 2-8 can be adjusted to account for the effect of regulation from small floodwater retarding structures. The adjusted equations should not be used to predict discharges on drainage basins with a total drainage area greater than 2,500 mi² and caution should be used when the unregulated drainage area is less than one mi². The adjusted equations can be used when the percent of regulated drainage area is not greater than 86 percent of the basin, which is the upper limit of the range of regulated data used to check the validity of the adjustment. The adjusted equations should only be used on those portions of a watershed regulated by SCS-built floodwater retarding structures and are not applicable to any other type of FRS. The adjusted equations are not meant to replace site-specific information when only one pond is present on the watershed immediately upstream of the point of interest. The technique should be used on watersheds when a system of two or more FRS is present.

Application of techniques

Estimates of flood magnitude and frequency for gaged rural unregulated sites should be combinations of station data and regression estimates. The estimates weighted by years of record are considered more reliable than either the regression or station data when making estimates of floodfrequency relations at gaged sites (Sauer, 1974a; Thomas and Corley, 1977). The equivalent years of record concept is used to combine station estimates with regression estimates of peak flow to obtain weighted estimates at a gaged site. This method was described by Sauer (1974a) and Thomas and Corley (1977) and is expressed in the following equation:

$$Q_{x(w)} = \frac{Q_{x(s)}(N) + Q_{x(r)}(E)}{N + E}$$
 (10)

where $Q_{x(w)}$ = the weighted estimate of peak flow, in cubic feet per second, for recurrence interval x,

 $Q_{x(s)}$ = the station estimate of peak flow, in cubic feet per second, for recurrence interval x (table 11),

 $Q_{x(r)}$ = the regression estimate of peak flow, in cubic feet per second, for recurrence interval x (equations 2-8, or figures 3-9), N = number of actual years record at the gaged site (table 11), E = equivalent years of record for recurrence interval x (table 3). The following example illustrates how a weighted estimate is calculated for a gaged rural unregulated site and how to apply figures 3-9. The example computation is for Skeleton Creek near Lovell, Okla. (07160500) and the results are presented in table 5.

The columns $Q_{x(s)}$ and N indicate the computed flood-frequency relations derived from the 33 years of record at station 07160500 (table 11). The values in the column labeled $Q_{x(r)}$ were estimated using figures 3-9 and the following basin and climatic characteristics:

$$A = 410 \text{ mi}^2$$

 $P = 29.3 \text{ in.}$

To use figures 3-9, first enter the contributing drainage area (410 mi²) along the vertical scale of each figure. Then move horizonally to the mean annual precipitation curves to 29.3 in. Move downward to the discharge scale to obtain the $Q_{x(r)}$ values which are presented in table 5. Dotted lines are plotted on figure 3 as an example. The weighted estimates, $Q_{x(w)}$, were computed from equation 10 using the appropriate values of E from table 3.

The second example illustrates how a weighted estimate is calculated for a gaged rural basin regulated by FRS. The example computation is for Rush Creek near Maysville, Okla., station number 07329500, and the results are presented in table 6.

Table 5.--Computation of a weighted unregulated flood-frequency curve for Skeleton Creek near Lovell, Okla.

Recurrence interval, x (years)	$ Q_{x(s)}^{1} $ (ft ³ /s)	N2 years	$Q_{x(r)}^{3}$ (ft ³ /s)	E 4 years	$Q_{x(w)}^{5}$ (ft ³ /s)
2	4610	33	6400	3	4760
5	11500	33	14300	6	11900
10	18800	33	21200	8	19300
25	32300	33	31500	11	32100
50	46100	33	42800	12	45200
100	63800	33	56600	12	61900
500	125000	33	90800	12	116000

[ft³/s, cubic feet per second]

¹ Station estimate of peak flow, unregulated basin, for recurrence interval x. ² Number of actual years of streamflow record at gaged site.

³ Regression estimate of peak flow, unregulated basin, for recurrence interval x.

⁴ Equivalent years of unregulated streamflow record for recurrence interval x.

⁵ Weighted estimate of peak flow, unregulated basin, for recurrence interval >

Table 6.--Computation of a weighted regulated flood-frequency curve for Rush Creek near Maysville, Okla.

Recurrence interval, x (years)	R _{x(s)} 1 (ft ³ /s)	N2 years	$\frac{R_{x(r)}^{3}}{(ft^{3}/s)}$	E 4 years	$\frac{R_{x(w)}^{5}}{(ft^{3}/s)}$
2	.5060	14	3700	2	4890
5	10200	14	7800	4	9670
10	14900	14	11300	5	14000
25	22400	14	16400	6	20600
50	29200	14	21700	6	27000
100	37100	14	28200	6	34400
500	60700	14	44200	6	55800

 $[ft^3/s, cubic feet per second]$

 $^{1}\ Station$ estimate of peak flow, regulated basin, for recurrence interval x.

 2 Number of actual years of streamflow record at a gaged site.

³ Regression estimate of peak flow, regulated basin, for recurrence interval x.

⁴ Equivalent years of regulated streamflow record for recurrence interval x.

 5 Weighted estimate of peak flow, regulated basin, for recurrence interval x.

The columns $R_{x(s)}$ and N indicate the computed regulated flood-frequency relations derived from the 14 years of regulated record at station 07329500 (table 1). The column labelled $R_{x(r)}$ was estimated using figures 3-9 and the following basin and climatic characteristics:

To obtain the regulated regression flood-frequency relations, $R_{\chi(r)}$, the application of figures 3-9 is modified by using for A the area of the drainage basin unregulated by FRS, A_u . The weighted regulated estimates, $R_{\chi(w)}$, were then computed from equation 10 using $R_{\chi(s)}$ instead of $Q_{\chi(s)}$ and $R_{\chi(r)}$ instead of $Q_{\chi(r)}$, and E_r instead of E.

For the third example, assume an estimate of the Q_{100} is needed for an ungaged FRS regulated site on Uncle John Creek in Kingfisher County. The following data are available:

The following step is required to obtain the needed peak discharge estimate:

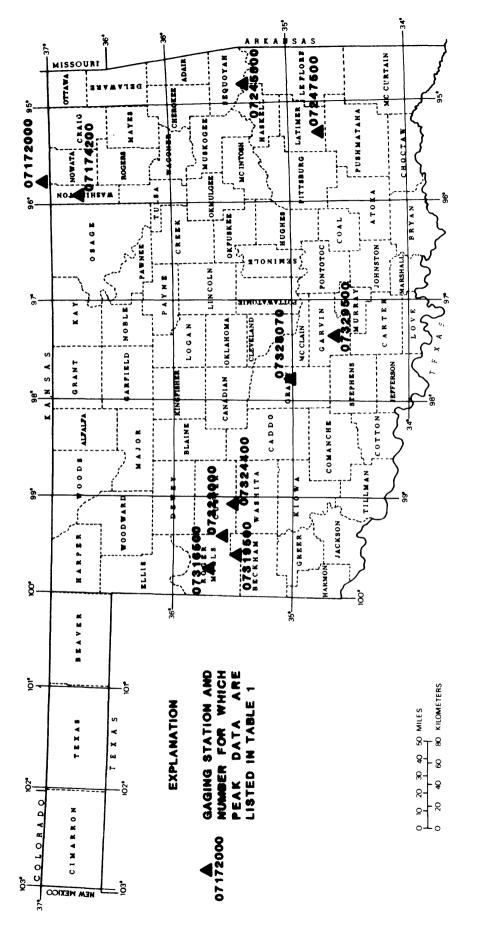
 $R_{100(r)} = 19,800 \text{ ft}^3/\text{s}$ from figure 8 or equation 7

Therefore, the estimate of the 100-year flood with 58 percent of the basin regulated by FRS is 19,800 ft^3/s .

ANALYTICAL PROCEDURES

This section of the report describes the data utilized and the procedures applied in analyzing these data. The technical details of the analysis are described including the computation of station flood-frequency relations at gaged rural unregulated sites, the regression analysis of these relations, and the testing of assumptions and applicability of the regression analysis. Included is a discussion of the adjustment analysis for regulation by FRS, the computation of station flood-frequency relations at gaged rural regulated sites, regression analysis of these relations and the effects of FRS on peak discharge at regulated sites.

Annual Peak Data


The first step in flood-frequency analysis is to collate and review all pertinent annual peak discharge data. In addition to the Oklahoma stations, the stations in the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas in the Arkansas-Red River basin were reviewed.

The flood-frequency analysis for rural unregulated streams of less than $2,500 \text{ mi}^2$ drainage area presented in this report is based on annual peak flow data collected at 226 gaging stations. The data were collected through September 30, 1980, for Missouri, New Mexico, and Oklahoma and through September 30, 1981, for Arkansas, Kansas, and Texas. The location of these gaging stations is shown in figure 1. In this analysis, only those stations with at least 10 years of flood peak data were used in the analysis (U.S. Water Resources Council, 1981). These stations are also free of significant effects from regulation by major dams or FRS and other manmade modification of streamflow. A summary of the distribution of drainage areas, and average observed length of record per station for those stations used in the regression analysis is given in table 7.

The flood-frequency analysis for rural regulated streams presented in this report is based on 10 selected gaging stations with regulated periods of record over 10 years. The location of these gaging stations is shown in figure 10. Five of these stations also have unregulated periods of record over ten years (table 1).

Drainage area Number of S (square miles)				tations				Average observed length of record		
		Okla.		Border States		Total	(years)			
			Ark.	Kans.	Mo.	Ν.	Mex.	Tex.		
Less th	nan 1	12	3	4	1				20	19
1 to	5	19	1	7	1				28	17
5 to	10	17	3	3	1				24	17
10 to	50	24	8	12	1				45	19
50 to	100	2	1	1				3	7	17
100 to	500	32	8	7	3		1	4	55	24
500 to	1000	19		6	1		1		27	25
1000 to	2500	15		3	1			1	20	31
		140	24	43	9		2	8	226	21

Table 7.--Summary of drainage area distribution and average observed length of record.

Station flood-frequency relations of gaged rural unregulated sites

The relation of flood peak magnitude to probability of exceedance, or recurrence interval, is referred to as a flood-frequency relation or curve. Probability of exceedance is the probability of a given flood magnitude being exceeded in any one year. Recurrence interval is the reciprocal of probability of exceedance times 100, and is the average number of years between exceedances. For instance, a flood having a probability of exceedance of 0.04 has a recurrence interval of 25 years. This does not imply that each 25 years this flood will be exceeded, but only that a 25-year flood will be exceeded on the average of once in 25 years over a very long time period (Thomas and Corley, 1977). In fact, it may be exceeded in successive years, or more than once in the same year. The probability of this happening is called risk. The procedures for making risk estimates are given by the U.S. Water Resources Council (1981).

Flood-frequency relations were defined for selected rural unregulated gaging stations with 10 years or more of record, following the guidelines by U.S. Water Resources Council (1981). Logarithms of annual peak discharges were fitted to the Pearson Type III distribution giving weight to historical peaks and high outliers, omitting low outliers and using a generalized skew map which was developed for Oklahoma and the bordering areas shown in figure 11. The station skew was weighted with the generalized skew map value to give a weighted skew as recommended by U.S. Water Resources Council (1981). Estimates of the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods and the log-Pearson Type III statistics for these estimates are given for each station in table 11.

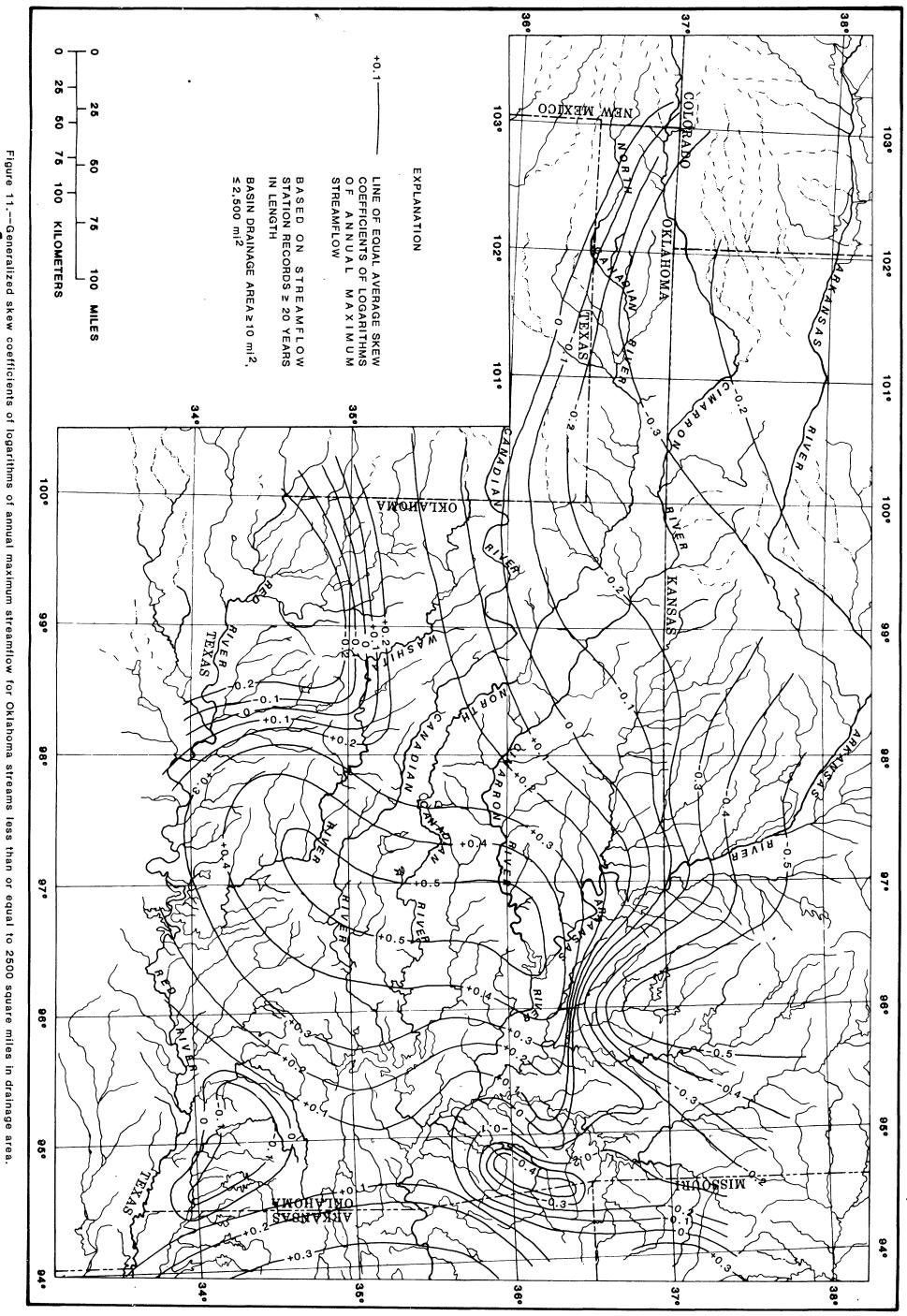


Figure 11.---Generalized skew coefficients of logarithms of annual maximum streamflow for Oklahoma streams less than or equal to 39

1-435

The generalized skew map published in U.S. Water Resources Council Bulletin No. 17B (1981) was considered inadequate for this study. Therefore, following the guidelines in that publication, an isoline skew map was developed for the area shown in figure 11. Data for stations with 20 or more years of record and drainage areas of 10 mi² or more were used. These stations are indicated with an asterisk in table 11. The average of the sum of the squared differences between the observed station skew and isoline values, mean-square error, was computed and utilized in weighting the station and generalized skew map values. This weighted skew coefficient, which was used in the final computation of the flood-frequency relations, is the skew shown in table 11.

The mean-square error, using all 226 stations, between U.S. Water Resources Council (1981) map skews and station skews was 0.251; and between the skews determined from figure 11 and station skews 0.244. The latter mean-square error was used in weighting the station and generalized skew map values. The mean-square error, using only the long term stations that were utilized to develop figure 11, between U.S. Water Resources Council (1981) map skews and station skews was 0.233; and between the skews determined from figure 11 and station skews was 0.108.

Estimates of flood magnitude and frequency commonly are needed at ungaged sites. Therefore, it is necessary to transfer flood-frequency data from gaged sites to ungaged sites. This can be achieved by defining regression relations between peak discharges of selected frequencies and basin or climatic characteristics measured from maps or taken from readily available reports (Thomas and Corley, 1977). Multiple regression techniques were used to relate estimates of the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods (given in table 11) to basin and climatic characteristics.

Many parameters were investigated in the multiple regression analysis in an attempt to find the best relations for estimating flood peak discharges. The parameters investigated as possible predictors of flood discharge are shown in table 8 and are available in a U.S. Geological Survey basin and streamflow characteristics computer file (U.S. Geological Survey, 1983). These parameters were readily available for bordering state gaging stations.

Of all the parameters investigated, the two found most significant were contributing drainage area and mean annual precipitation. A comparison was made of a two-parameter model, using drainage area and mean annual precipitation, and a three-parameter model, using drainage area, mean annual precipitation, and main-channel slope. The average difference between the residuals of the discharge estimates, expressed as a percent of observed station discharge, for all stations and frequencies was less than one-half of one percent. Therefore, the two-parameter regression model was used to define the regression equations.

> 41 (no page 40)

Parameter Code Name	Description
AREA	Total drainage area, in square miles, including non- contributing areas.
A	Drainage area, in square miles, that contributes to surface runoff.
SLOPE	Main-channel slope, in feet per mile, average of elevations at 10 and 85 percent of channel length.
LENGTH	Stream length, in miles, measured along channel from gage to basin divide.
ELEV	Mean basin elevation, in feet above mean sea level, measured from topographic maps by transparent grid sampling method (20 to 80 points in basin were sampled).
STORAGE	Area of lakes, ponds, and swamps in percent of contributing drainage area, measured by grid sampling method.
FOREST	Forested area, in percent of contributing drainage area, measured by grid sampling method.
LAT GAGE	Latitude of stream-gaging station in decimal degrees.
LNG GAGE	Longitude of stream-gaging station in decimal degrees.
Р	Mean annual precipitation, in inches, from U.S. Weather Bureau series, "Climates of States".
I24 , 2	Precipitation intensity; 24-hour rainfall, in inches, expected on the average of once each 2 years. (Estimated from U.S. Weather Bureau Technical Paper 40).

Table 8.--Parameters investigated as possible predicators of flood discharge for unregulated rural streams.

The results of a correlation analysis of the possible predictor parameters provided some insight as to why the two parameters used give a good prediction. In Oklahoma, the drainage area is highly correlated with stream length and the mean annual precipitation is highly correlated with mean basin elevation, forested area, longitude of stream-gaging station and precipitation intensity. Main-channel slope is not highly correlated with any of the parameters.

Testing assumptions and applicability of regression equations

Plots of the residuals, the difference between the observed and predicted values of the dependent value in the regression $(\mathbf{Q}_{\mathbf{x}(\mathbf{s})} - \mathbf{Q}_{\mathbf{x}(\mathbf{r})})$, were used to check the linearity of the regression relations (Thomas and Corley, 1977). Flood peak discharge residuals for all seven frequencies were plotted against contributing drainage area, mean annual precipitation and years of record. These plots indicated no trend throughout the range of variables used in the analysis. The residuals were also plotted against main-channel slope and also indicated no trend. Therefore, the hypothesis of linearity of the regression relations was accepted.

The regression relations were checked for a possible regionalization effect. The residuals from equations 2-8 were plotted on computer-generated maps to check for regional bias. These computer plots did not indicate any significant regional trends. As an additional check for regional trends, the study area was divided into four regions according to the following range of mean annual precipitation values:

Region	1				<=	24	in.
Region	2	>	24	in.,	<=	33	in.
Region	3	>	33	in.,	<=	44	in.
Region	4	>	44	in.			

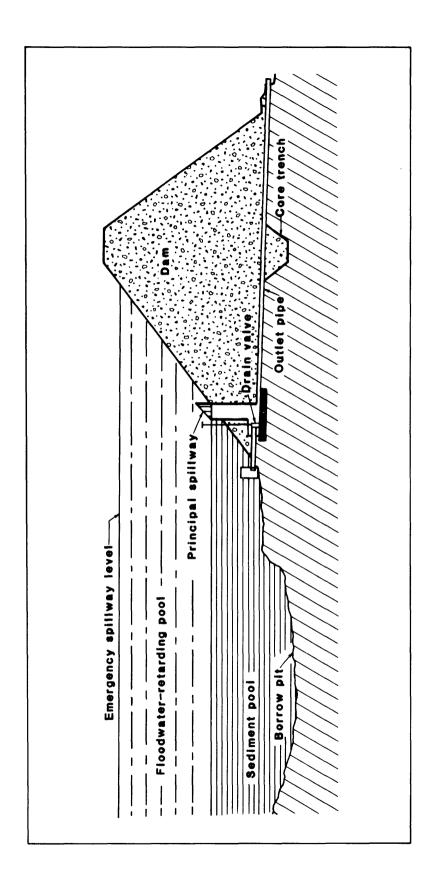
Within each region, the Q_{100} residuals, expressed as a percent of the observed station 100-year peak discharge, $Q_{100(s)}$, were sorted by gage latitude. This listing also did not indicate any regional trends. Therefore, equations 2-8 are considered applicable statewide for Oklahoma within the limitations given in an earlier section of this report.

Comparisons were made of the estimates from equations 2-8 with the estimates made by Thomas and Corley (1977). The comparisons of the percent residuals indicate that regression estimates from this study average about 10 percent higher, when averaged through all frequencies, than Thomas and Corley (1977) estimates. A comparison of percent residuals by each frequency shows no difference between the regression estimates of Q_2 , with the differences indicated at all the other frequency floods.

A comparison was made of the percent residuals of the discharge estimates from equations 2-8 and from equations 2-8 developed by Thomas and Corley (1977) sorted by drainage area distribution shown in table 7. These comparisons indicate there is little difference when the drainage area is greater than 500 mi², with most of the differences when the drainage area is less than 500 mi². These differences apparently result because of a greater areal sampling of gaging stations (figure 1) and because most of the stations removed from the analysis in this study due to poor or suspect record were less than 500 mi². Also the rainfall-runoff modeling results used by Thomas and Corley (1977) probably account for some of the difference because the synthetic frequency curves tended to have flatter slopes than the observed frequency curves causing the higher interval floods to be underestimated (Thomas, W. 0., Jr., U.S. Geological Survey, written commun., 1984).

General description of floodwater retarding structures

This report includes results of a study of the effects of small structures on peak flow. These structures are FRS built by the SCS and used in their watershed protection and flood prevention program.

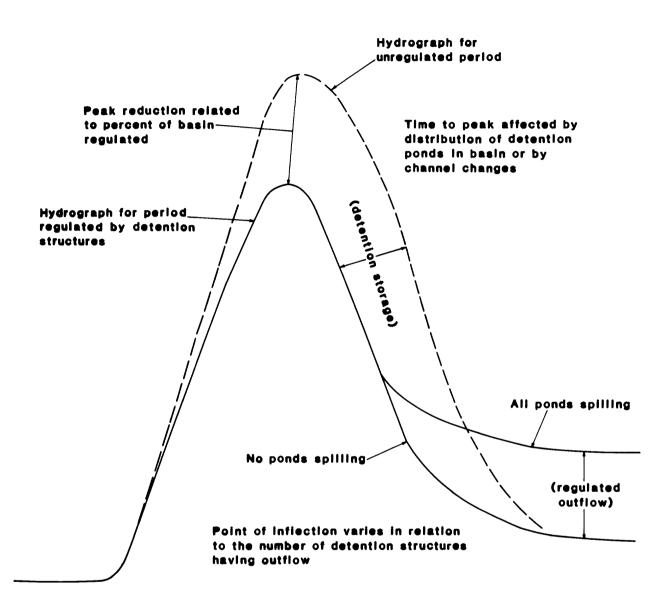

A typical FRS consists of an earth dam, a valved drain pipe, a dropinlet principal spillway and an open-channel earthen emergency spillway. The principal spillway is ungated and automatically limits the rate at which water can flow from the reservoir. Most of the structures built in Oklahoma have release rates of 10 to 15 $(ft^3/s)/mi^2$ (cubic feet per second per square mile). The space in the reservoir between the elevation of the principal spillway crest and that of the emergency spillway crest is used for floodwater detention. Structures are designed so that the emergency spillway does not operate on an average of more than once in 25 years to once in 100 years. (See Moore, 1969).

In Oklahoma, most FRS are designed to draw down the floodwater-retarding pool in 10 days or less. The 10-day drawdown requirement serves two principal purposes. First, most vegetation in the floodwater-retarding pool will survive up to 10 days of inundation without destroying the viability of the stand. Secondly, a 10-day drawdown period will significantly reduce the impact from repetitive storms. (Riley, R. C., U.S. Soil Conservation Service, written commun., 1984).

These dams are of small to medium size, with embankment heights ranging generally from 20 to 60 ft (feet) and their drainage areas ranging generally from 1 to 20 mi². Their storage capacity is limited to 12,500 acre-ft (acre-feet) for floodwater detention and 25,000 acre-ft total for combined uses, including recreation, municipal and industrial water, and others. (See Moore, 1969).

A cross section of a typical upstream FRS is shown in figure 12.

Emergency spillway design, including storage above the emergency crest and capacity of the emergency spillway, varies depending upon watershed location and size of the FRS. Details of design may be found in the SCS National Engineering Handbook, Section 4 (U.S. Soil Conservation Service, 1972).



General effects of floodwater retarding structures

The generalized effects of a system of upstream FRS on a watershed stream flow hydrograph at a point downstream from the FRS is shown in figure 13.

The flood peak discharge is reduced and this reduction is related to the percent of the basin regulated. The slope of the recession segment of the hydrograph will decrease as the number of FRS where the principal spillway is flowing increases. (Coskun and Moore, 1969; DeCoursey, 1975; Hartman and others, 1967; Moore, 1969; Schoof and others, 1980).

Several factors significantly influence the effectiveness of the FRS in reducing peak flow on the main stem downstream from the FRS. Those factors include rainfall distribution over the watershed, contents of the reservoirs before the storm, and distribution of FRS in the watershed. For example, rainfall occurring only on the basin area controlled by FRS will generally result in greater peak reduction. If the structures are empty before the storm, they are more effective in reducing the flood peak. Structures located in the upper end of an elongated basin are less effective than those in a fan-shaped watershed. (Coskun and Moore, 1969; Hartman and others, 1967; Moore, 1969; Schoof and others, 1980).

An example of a small watershed regulated by three FRS is presented to illustrate the general effects of FRS. In Case 1 the pond water surface was at the principal spillway elevation at the beginning of rainfall, whereas in Case 2 the pond water surface was at half the floodwater-detention-storagecapacity pool elevation at the beginning of rainfall.

The study basin is located on Fall Creek (U.S. Soil Conservation Service, 1957). The regulated drainage area totals 7.94 mi² or 74 percent of the watershed, whereas the unregulated drainage area is 2.80 mi² or 26 percent of the watershed (figure 14).

The floodwater-detention-storage capacity of each FRS was set equal to the runoff from the 25-year, 6-hour duration rainfall as determined from National Weather Service Technical Paper No. 40 (Hersfield, 1961). This constraint is synonymous with the "worst possible case," because many FRS actually have larger floodwater-detention-storage capacities available and also have part of the sediment-pool-storage capacity available for flood detention.

Four rainfall recurrence intervals for the 6-hour duration rainfall were run for the design storms: (1) 25-year, (2) 50-year, (3) 100-year, and (4) 500-year (table 9). The first three frequency rainfalls were taken from National Weather Service Technical Paper No. 40 (Hersfield, 1961), and the 500-year frequency rainfall was obtained graphically from an extrapolation of a plot of the 25-, 50-, and 100-year frequency rainfalls on log-probability paper. The SCS emergency spillway design storm distribution was used as the temporal storm pattern for all frequencies (U.S. Soil Conservation Service, 1972).

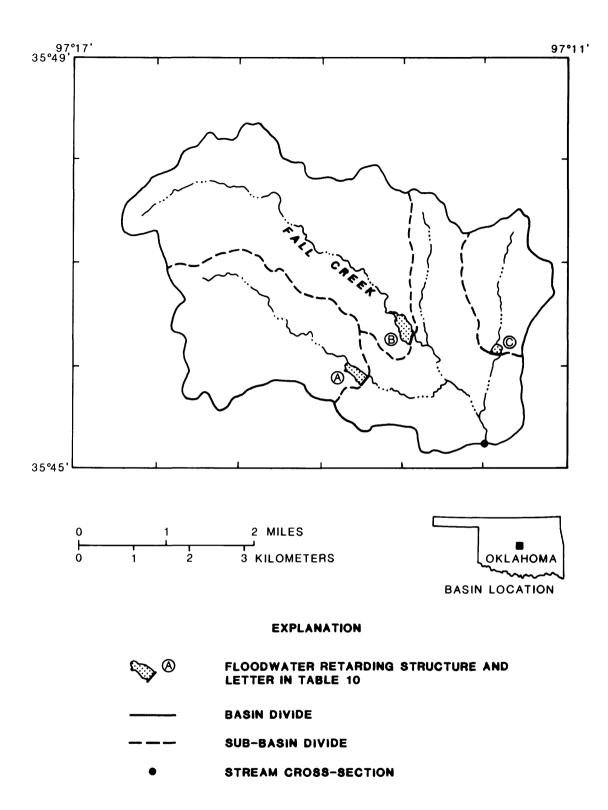


Figure 14.--Location of Fail Creek study watershed (modified from U.S. Soil Conservation Service, 1957).

	Rainfall and runoff in inches for indicated recurrence interval in years.						
	25 50		100	500			
Rainfall	5.10	5.80	6.25	7.20			
Runoff	4.07	4.75	5.19	6.12			

Table 9.--Six-hour duration rainfall and resulting runoff for Fall Creek study watershed.

.

The SCS hydrologic computer program Technical Release No. 20 (U.S. Soil Conservation Service, 1965) was used to compute and route runoff hydrographs through the three FRS and to the downstream cross-section. The inflow peak discharges used for the FRS were equal to those that would be computed by using equations 5 through 8. Also the peak discharges used for the unregulated sub-basin were equal to those that would be computed by using equations 5 through 8. The resulting peak discharges below the FRS ponds A through C and at the downstream cross-section in the Fall Creek study watershed are shown in Table 10.

The 100-year hydrograph is typical of the general effects in both cases, except in the Case 1, 25-year hydrograph where the emergency spillways of the FRS did not flow.

The 100-year hydrograph at the stream cross-section, Case 1, is illustrated in figure 15. The unregulated sub-basin contributes practically all of the major peak. A smaller peak occurs later and is a composite of the regulated outflow and the unregulated sub-basin discharge. At all frequencies, the major peaks are the peak discharges of the unregulated sub-basin increased by the FRS principal spillway outflows.

Table 10.--Peak discharges at floodwater retarding structure ponds and downstream cross-section

[FRS, floodwater retarding structure]

LOCATION	Drainage Area Square	Peak Discharge in Cubic Feet per Second For Indicated Recurrence Interval in Years				
	Miles	25	50	100	500	
FRS POND A	1.00					
Inflow		1210	1630	2100	3430	
Outflow-Case 1 ^a		7	133	210	360	
Outflow-Case 2 ^b		290	380	450	660	
FRS POND B	4.27					
Inflow		2720	3640	4780	7830	
Outflow-Case 1 ^a		30	340	600	10 9 0	
Outflow-Case 2b		930	1260	1480	1920	
FRS POND C	2.67					
Inflow		2130	2 79 0	3680	6010	
Outflow-Case 1ª		19	180	340	640	
Outflow-Case 2 ^b		580	760	890	1180	
TOTAL REGULATED OUTFLOW	7.94					
Case 1ª		56	580	1060	2000	
Case 2 ^b		1680	22 9 0	2720	3610	
UNREGULATED SUB-BASIN	2.80	2150	29 20	3740	6200	
TOTAL AT CROSS-SECTION	10.74					
Case 1 ^a		2210	2970	3790	6250	
Case 2 ^b		2400	31 9 0	4070	6830	

^a Case 1 - Pond water surface at principal spillway elevation at beginning of rainfall.

^b Case 2 - Pond water surface at half floodwater-detention-storage-capacity pool elevation at beginning of rainfall.

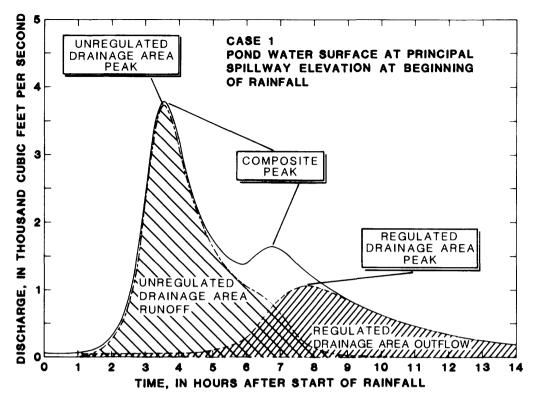


Figure 15.--100-year hydrograph at stream cross-section located downstream from floodwater retarding structures for Case 1.

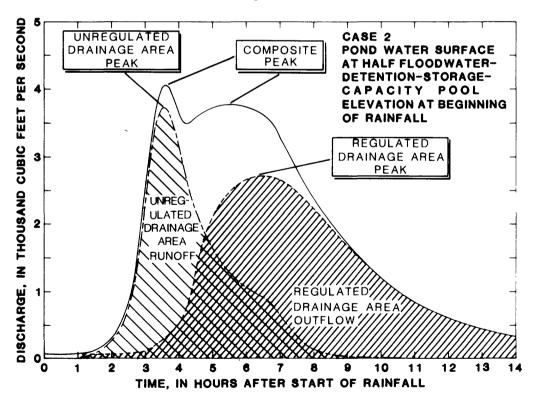


Figure 16.--100-year hydrograph at stream cross-section located downstream from floodwater retarding structures for Case 2.

The 100-year hydrograph at the stream cross-section, Case 2, is illustrated in figure 16. The unregulated sub-basin contributes about 90 percent of the first peak, as compared to about 98 percent in Case 1, because the FRS emergency spillways have started to discharge. The second peak is a composite of the regulated sub-basin outflows and the unregulated sub-basin discharge. The second-peak discharge is approximately the same magnitude as the first-peak discharge in the 25- and 50-year hydrographs, but it is smaller than the first-peak discharges in the 100- and 500-year hydrographs. At all frequencies, the peak discharges of the unregulated sub-basin are increased by about 10 percent -- an amount that is well within the accuracy of the regression equations (table 4).

Therefore, structures in a FRS regulated watershed are effective in reducing the peak flow of the total drainage area to essentially the same magnitude of unregulated portion of the watershed. The flow contribution of the regulated portion of the basin is "retarded" or "lagged" by the FRS. In larger FRS regulated basins, the impact of a large rainfall is further decreased by greater distance, or time of travel, between structures; more channel miles to provide greater channel storage; and an unequal distribution of rainfall.

These examples are a "worst case". Class "a" structures are designed to flow through the emergency spillway an average of once in 25 years. Over 95 percent of all FRS built to date in Oklahoma have been class "a" structures. In Oklahoma, the SCS has recorded an emergency spillway flow on the average of once for every 134 structure-years of record. The principal reasons why emergency spillways have not functioned as often as anticipated are (Riley, R. C., U.S. Soil Conservation Service, written commun., 1984):

- The water level in the reservoir prior to the storm was below the principal spillway.
- Antecedent moisture conditions prior to major storms have been more often dry rather than wet.
- 3. Soil profile storage in the floodwater retarding pool is not counted but may be quite significant for some sites and for certain soils.
- 4. Additional detention storage is often added where it is relatively economical or where poor emergency spillway conditions exist. Therefore, many class "a" structures have more than 25-year detention storage.

Station flood-frequency relations of gaged regulated sites

Flood-frequency relations were defined for the 10 selected rural gages regulated by FRS. The procedures used to define these relations were the same as utilized in the previous section on unregulated sites. Estimates of the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods and log-Pearson statistics for these estimates are given for each station in table 1.

The frequency relations for the FRS regulated sites were computed using weighted skew values, utilizing the regional skew values based on the unregulated sites. This method was used since several of the regulated station skew values were close to the same value as the unregulated station skew or the regionalized skew (for stations with no unregulated record 10 years or greater). The FRS regulated data analysis shows that as the regulated period of record increases, the regulated station skew approaches the value of the unregulated station skew.

Five of these sites also include unregulated periods of record of 10 years or more in length and these data are also listed in table 11. The years missing from the end of the unregulated period to the beginning of the regulated period represent the period during which most of the FRS were constructed on the watershed upstream from the gage. Data from station 07324400, Washita River near Foss, Okla., was used as Soldier Creek near Foss, Okla., because during the period of record 1962-80, all storm runoff flowing by that gage was contributed entirely by Soldier Creek.

Regression analysis of gaged rural regulated sites

Regression relations were defined between peak discharges of selected frequencies and basin and climatic characteristics. The parameters investigated included all those in table 8 except FOREST and STORAGE. A was defined as the drainage area below the influence of the FRS and represents the unregulated portion of the basin. In addition three more parameters were investigated:

PERCUNR percent of the drainage area in the basin unregulated by FRS,

DETSTOR actual detention storage of the FRS, in acre-feet per square mile of the total drainage basin,

MDETSTOR estimated detention storage, in inches

= (I24,2)(100-PERCUNR)

At least three parameters are required to obtain reasonable accuracy. Three different sets of three parameters produced equivalent accuracy: (1) AREA, P, and PERCUNR; (2) A, P, and DETSTOR; and (3) AREA, P, and MDETSTOR.

The following three sets of regression relations on the 10 regulated station data set were run: (1) all regulated data; (2) regulated data from those basins that had unregulated periods of record; and (3) regulated data from those basins with regulated periods of record only. Covariance analysis on a 2-variable model using A and P indicated that both sets of regulated data, (2) and (3), were not significantly different and could be pooled together.

Since there was a scarcity of data to define regulated regression relations, it was decided to check if a modification of the unregulated regression relations, which had a large data base, would give a reasonable comparison to the regulated station flood-frequency curves defined by the 10 station records. The station flood-frequency relations were compared to: (1) using the unregulated portion of the drainage area, A_{μ} , as A in equations 2-8 (Livingston, 1981); and (2) using the entire drainage area in equations 2-8 and multiplying the result by the percent drainage area unregulated, PERCUNR, expressed as a decimal. The residuals between the observed station peak discharges and the estimates obtained by both modifications of the statewide unregulated regression equations were used to compute standard The method of using the unregulated area as the contributing drainerrors. age area had a much smaller standard error at each flood frequency. Therefore, that method is the best adjustment for regulation from FRS.

Effects of floodwater retarding structures

Using the data from the five sites that had both unregulated and regulated periods of record of 10 years or more, the effects of FRS on peak discharge and flow duration curves of these particular sites were investigated. The effect of FRS on peak flood discharge is especially noticeable when the flood-frequency from before and after FRS construction periods is plotted on the same graph (fig. 17-21). In each case, flood peaks are reduced for all recurrence intervals.

The structures should start to lose their flood peak reduction effectiveness at a recurrence interval greater than the 500-year frequency and the regulated frequency curve should start to converge toward the unregulated frequency curve. However, this hypothesis is not supported by the data because there is insufficient length of record at FRS regulated sites.

Flow duration curves for these five stations with the before and after periods plotted on the same graph also indicate a significant effect in that mean daily discharges are reduced at the higher discharges (fig. 22-26).

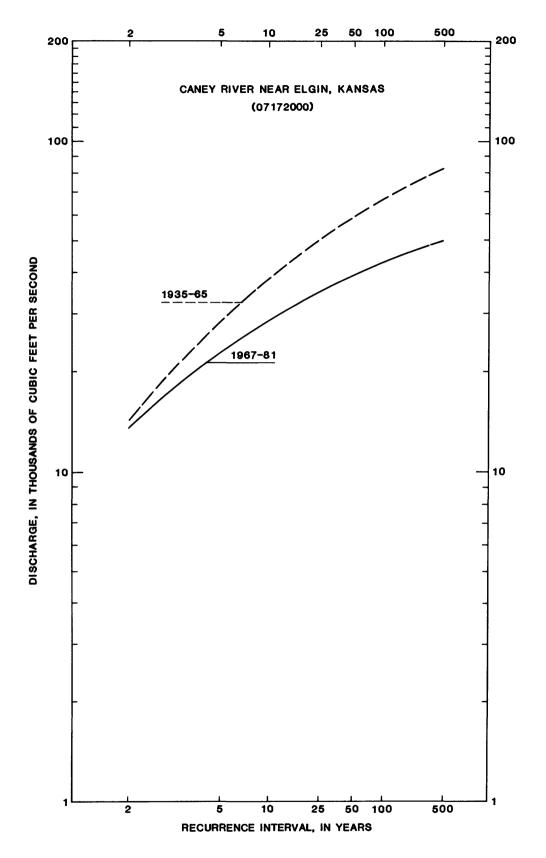


Figure 17.--Comparison of flood-frequency relations before and after regulation by floodwater retarding structures for Caney River near Eigin, Kans.

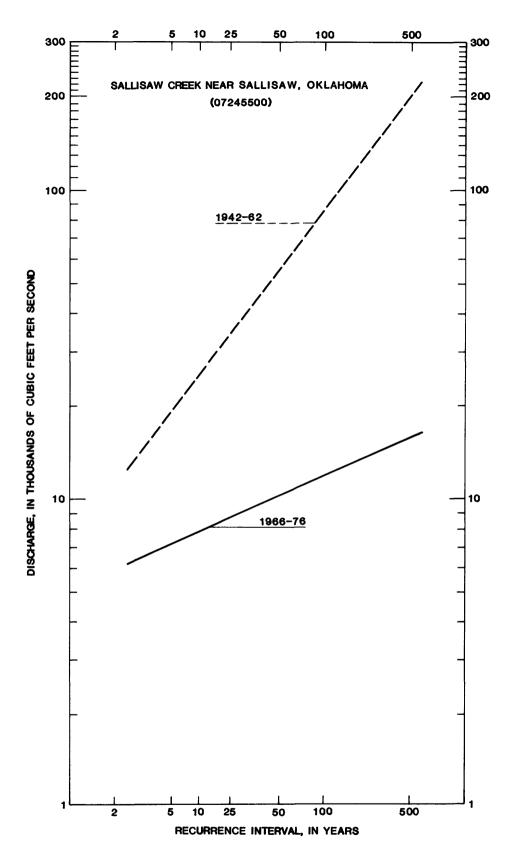


Figure 18.--Comparison of flood-frequency relations before and after regulation by floodwater retarding structures for Sallisaw Creek near Sallisaw, Okla.

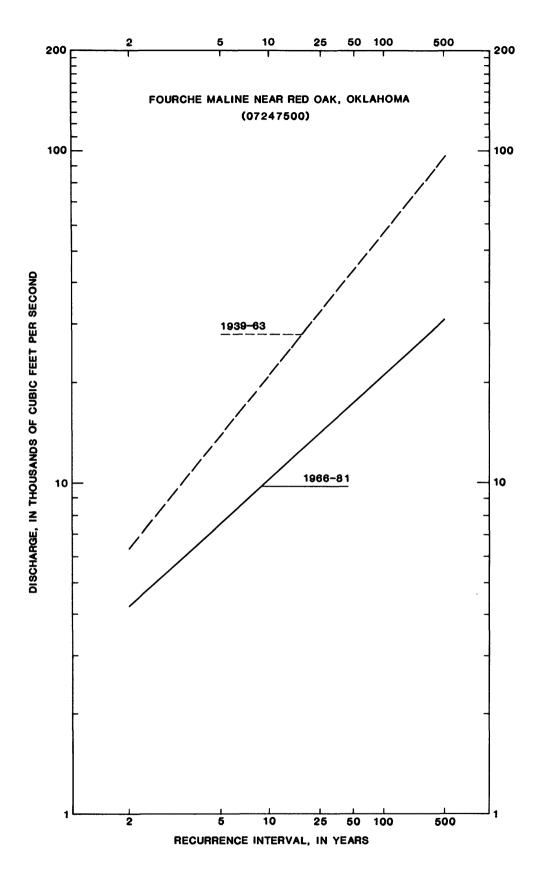


Figure 19.--Comparison of flood-frequency relations before and after regulation by floodwater retarding structures for Fourche Mailne near Red Oak, Okla.

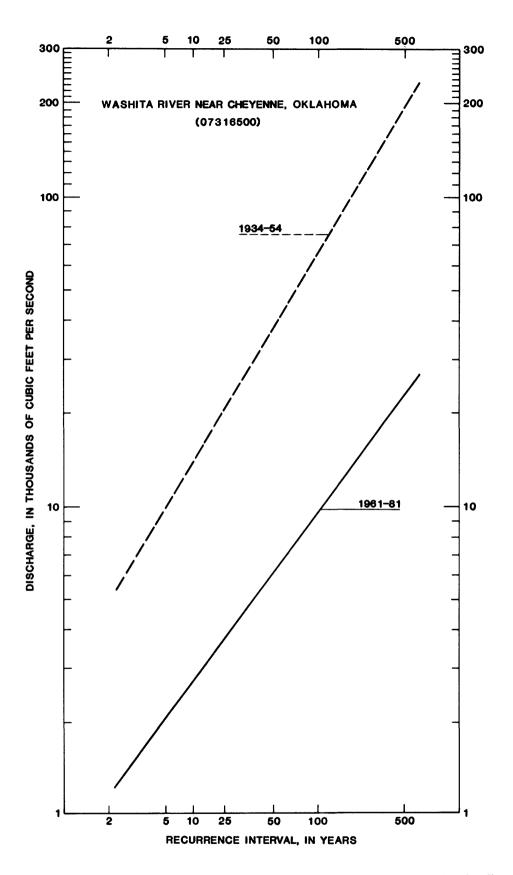


Figure 20.--Comparison of flood-frequency relations before and after regulation by floodwater retarding structures for Washita River near Cheyenne, Okia.

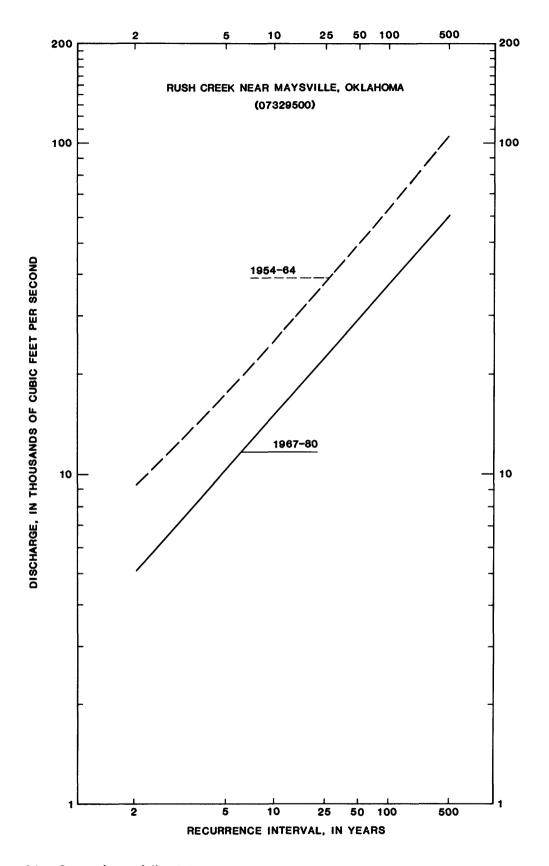


Figure 21.—Comparison of flood-frequency relations before and after regulation by floodwater retarding structures for Rush Creek near Maysville, Okia.

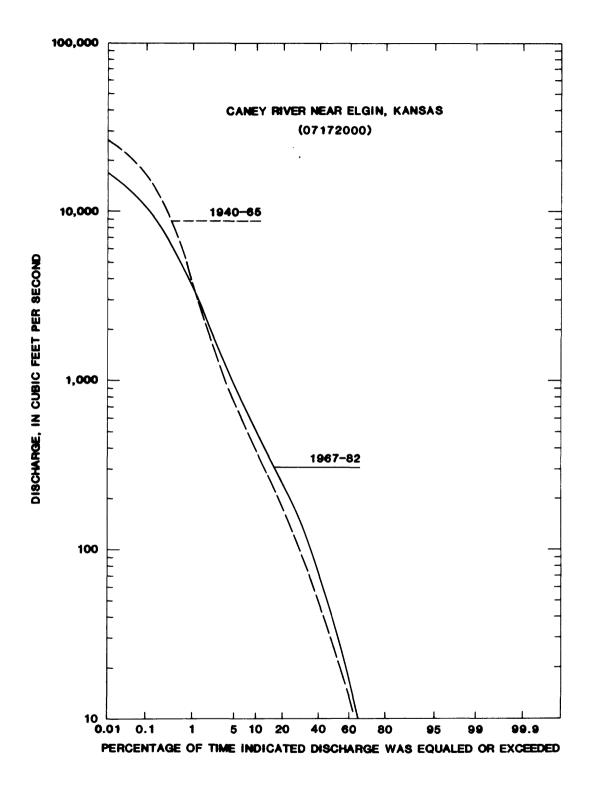


Figure 22.—Flow duration curves for Caney River near Eigin, Kans. showing the effects of floodwater retarding structures on time distribution of streamflow.

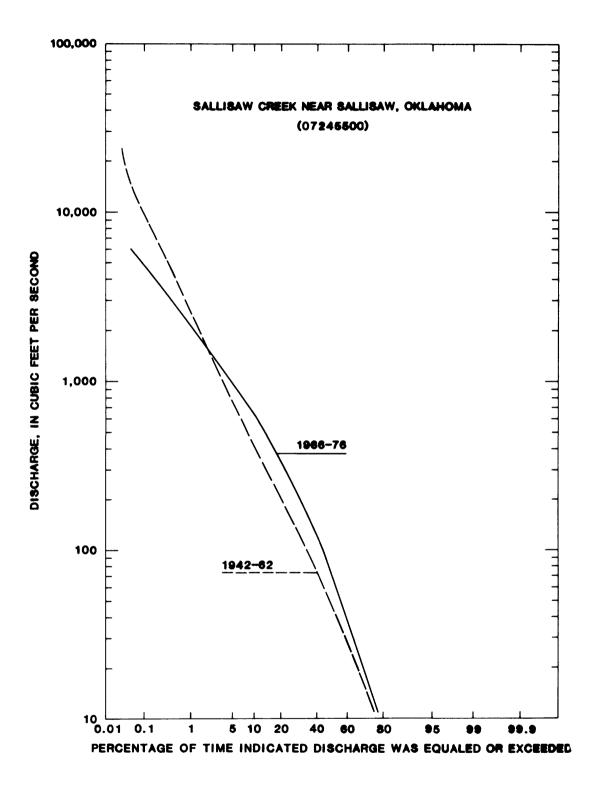


Figure 23.--Flow duration curves for Sallisaw Creek near Sallisaw, Okla. showing the effects of floodwater retarding structures on time distribution of streamflow.

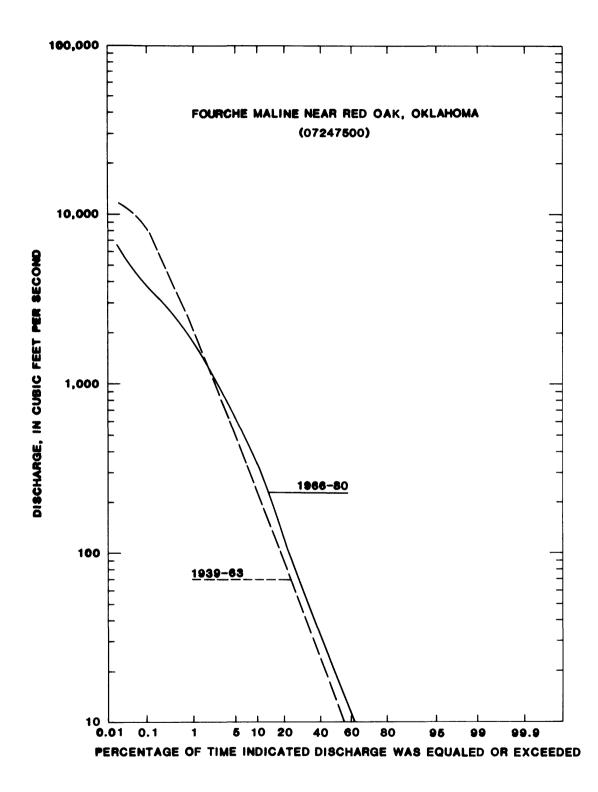


Figure 24.—Flow duration curves for Fourche Maline near Red Oak, Okla. showing the effects of floodwater retarding structures on time distribution of streamflow.

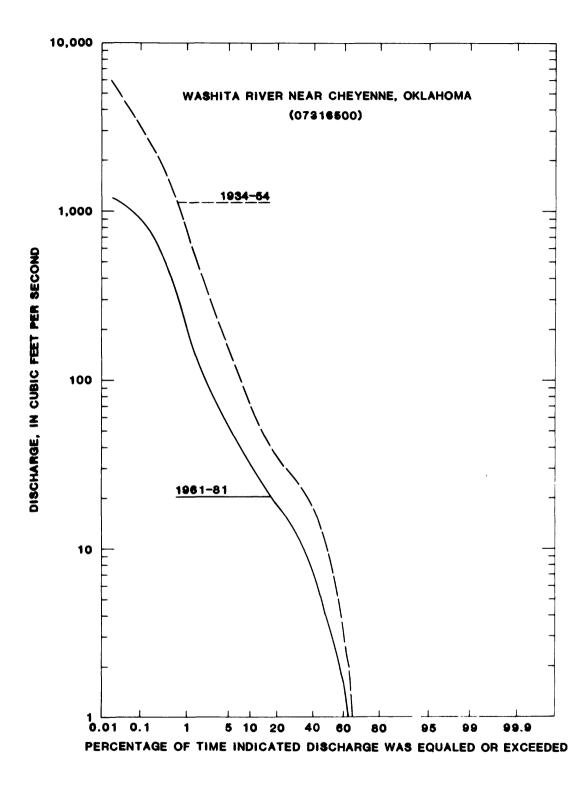


Figure 25.—Flow duration curves for Washita River near Cheyenne, Okia. showing the effects of floodwater retarding structures on time distribution of streamflow.

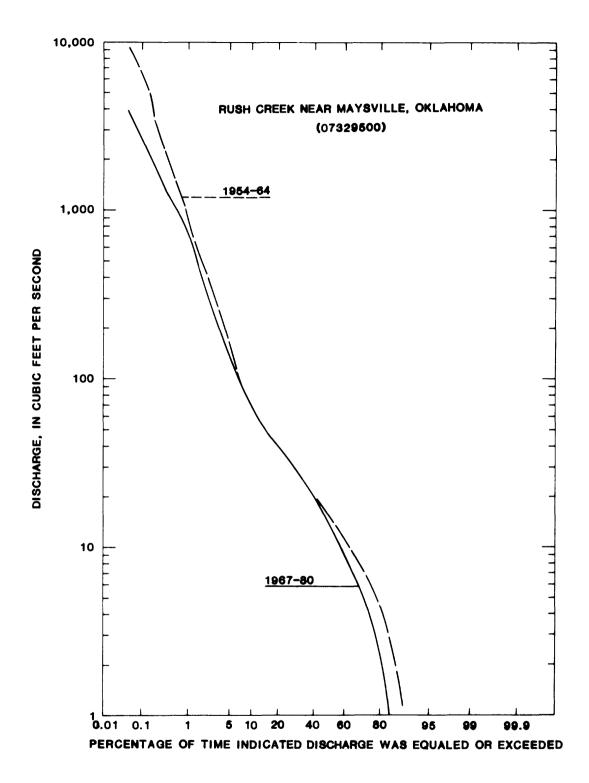


Figure 26.--Flow duration curves for Rush Creek near Maysville, Okia. showing the effects of floodwater retarding structures on time distribution of streamflow.

SUMMARY

Observed flood peak data at 226 unregulated rural sites in Oklahoma and adjacent States were used to compute regression equations defining floodfrequency relations for sites draining less than 2,500 mi². A new generalized skew map for Oklahoma was developed for the flood-frequency relations utilized in the regression analysis. These equations are not applicable to basins significantly affected by regulation. Methods for estimating flood discharges for urban areas in Okahoma were not analyzed due to insufficient data. The methods in Sauer (1974b) and Thomas and Corley (1977) should be used for urban areas.

The flood-frequency relations of 10 selected sites regulated by small floodwater retarding structures (FRS) built by U.S. Soil Conservation Service were compared with modifications of the unregulated regression equations. Comparisons indicate that the magnitude and frequency of flooding at ungaged sites where flow is regulated by FRS can best be determined by replacing total drainage area with the unregulated portion of the drainage area (area below the FRS) in the statewide regression equation. The effects of FRS on flood-frequency relations and flow duration curves were shown for five regulated sites that had both unregulated and regulated periods of record.

73

SELECTED REFERENCES

- Beard, L. R., and Chang, Shin, 1979, Flood control effects of headwater reservoirs, Trinity River, Texas: Center for Research in Water Resources Technical Report CRWR-165, University of Texas, Austin, Tex., 50 p.
- Beard, L. R., and Moore, W. L., 1976, Downstream effects of floodwaterretarding structures: Center for Research in Water Resources Technical Report CRWR-132, University of Texas, Austin, Tex.
- Bergman, D. L., and Huntzinger, T. L., 1981, Rainfall-runoff hydrograph and basin characteristics data for small streams in Oklahoma: U.S. Geological Survey Open-File Report 81-824, 324 p.
- Coskun, Erdal, and Moore, W. L., 1969, Numerical simulation of a watershed as a means to evaluate some effects of floodwater-retarding structures on runoff: Center for Research in Water Resources Technical Report CRWR-45, University of Texas, Austin, Tex., 69 p.
- DeCoursey, D. G., 1975, Implications of floodwater-retarding structures: Transactions of the American Society of Agricultural Engineers, v. 18, no. 5, Sept.-Oct. 1975, p. 897-904.
- Gilbert, C. R., and Sauer, S. P., 1970, Hydrologic effects of floodwater retarding structures on Garza Little Elm Reservoir, Texas: U.S. Geological Survey Water-Supply Paper 1984, 126 p.
- Hadley, R. F., 1980, The role of small reservoirs in hydrologic and geomorphic studies: Proceedings of the Symposium on Surface Water Impoundments, American Society of Civil Engineers, June 2-5, 1980, Minneapolis, Minn., Paper no. 4-8, p. 234-242.
- Hardison, C. H., 1969, Accuracy of streamflow characteristics: U.S. Geological Survey Professional Paper 650-D, p. D210-D214.
- ----- 1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites: U.S. Geological Survey Professional Paper 750-C, p. C228-C236.
- Hartman, M. A., Ree, W. O., Schoof, R. R., and Blanchard, B. J., 1967, Hydrologic influences of a flood control program: American Society of Civil Engineers, Journal Hydraulics Division, v. 93, HY3, May 1967, p. 17-25.
- Hershfield, D. M., 1961, Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years: U.S. National Weather Service Technical Paper No. 40.

- Kennon, F. W., 1966, Hydrologic effects of small reservoirs in Sandstone Creek watershed, Beckham and Roger Mills Counties, Western Oklahoma: U.S. Geological Survey Water-Supply Paper 1839-C, 39 p.
- Livingston, R. K., 1981, Rainfall-runoff modeling and preliminary regional flood characteristics of small rural watersheds in the Arkansas River Basin in Colorado: U.S. Geological Survey Water-Resources Investigations 80-112, 43 p.
- Moore, C. M., 1959, Performance of flood prevention works during 1957 floods: American Society of Civil Engineers, Journal Hydraulics Division, v. 85, HY10, Oct. 1959, p. 37-51.
- National Weather Service Office for State Climatology, 1971, Climatography of Oklahoma - A climatic guide for Oklahoma: Oklahoma City, Okla., 20 p.
- Sauer, V. B., 1974a, Flood characteristics of Oklahoma streams: U.S. Geological Survey Water-Resources Investigations Report 52-73, 301 p.
- ----- 1974b, An approach to estimating flood frequency for urban areas in Oklahoma: U.S. Geological Survey Water-Resources Investigations Report 23-74, 10 p.
- Schoof, R. R., Naney, J. W., and Boxley, W. M., 1978, Hydrologic effects of the Tonkawa Creek flood abatement program: Water Resources Bulletin, v. 14, no. 3, June 1978, p. 629-639.
- Schoof, R. R., Thomas, W. O., Jr., Boxley, W. M., 1980, Hydrologic effects of the flood abatement program in southwestern Oklahoma: Water Resources Bulletin, v. 16, no. 2, Apr. 1980, p. 348-352.
- Texas Society of Professional Engineers and the Texas Section of the American Society of Civil Engineers, 1974, The effects of ponds and small reservoirs on the water resources of Texas: Water Committee of the Texas Society of Professional Engineers and Water Resources Committee of the Texas Section of the Amercian Society of Civil Engineers Report, 34 p.
- Thomas, W. O., Jr. and Corley, R. K., 1977, Techniques for estimating flood discharges for Oklahoma streams: U.S. Geological Survey Water-Resources Investigations Report 77-54, 170 p.
- U.S. Geological Survey, 1983, WATSTORE User's Guide: U.S. Geological Survey Open-File Report 75-426, v. 4, chap. 11, streamflow/basin characteristics (SBC) file.

- U.S. Soil Conservation Service, 1957, Work plan for watershed protection, and flood prevention Bear, Fall, and Coon Creek Watershed: Stilwater, Okla., 49 p.
 - 1960, Work plan for watershed protection and flood prevention -Fourche Maline Creek Watershed: Stillwater, Okla., 47 p.
- ----- 1965, Computer program for project formulation hydrology: Technical Release No. 20, Washington, D.C.
- U.S. Water Resources Council, 1981, Guidelines for determining flood flow frequency: Water Resources Council Bulletin No. 17B.

P	
TABLE 11BASIN AND CLIMATIC CHARACTERISTICS, LOG-PEARSON TYPE III STATISTICS AND	ED STREAMS
ON TYPE	ATED CAGE
LOC-PEARS	R UNREGUL.
ACTERISTICS,	STATION FLOOD-FREQUENCY RELATIONS FOR UNREGULATED CAGED STREAMS
ATIC CHAR	FREQUENCY
AND CLIM	ON FLOOD-
1BASIN	STATI
TABLE 1	

[STD DEV, STANDARD DEVIATION: SKEW, WEIGHTED SKEW COEFFICIENT; YR, YEARS; SQ ML, SQUARE MILES; PRECIP, PRECIPITATION; IN, INCHES]

1770 51600 1230 15300 4640 6180 5060 256000 33500 80900 838 36300 9700 14700 50300 99200 8960 19800 11400 38500 95800 187000 124000 170000 871 500 FOR INDICATED RECURRENCE INTERVAL IN YEARS PEAK DISCHARGES IN CUBIC FEET PER SECOND 98800 7460 2710 2910 149000 37300 25600 21600 6810 8500 68700 39100 3180 6480 19200 10500 6840 1370 55200 898 125000 601 66000 65400 603 8 115000 14700 75200 34600 5170 2040 2210 52700 102000 2340 5460 31500 45800 20700 16600 6350 51700 7580 5280 1190 5690 53900 766 507 495 3 81300 3420 1460 41200 10900 25900 16300 12/100 4640 4510 37900 30200 1690 1640 4480 85900 3930 1010 37300 641 55300 5200 417 42500 393 22 6970 56600 34100 1760 1030 27700 3230 55400 18900 27200 11100 7780 28500 485 2560 23700 844 2470 305 3360 24600 1060 2820 770 267 9 40100 21400 715 2330 36900 7610 4990 2450 18700 4600 13800 20200 19000 372 1450 15500 931 486 1580 225 20200 664 15E 581 181 ŝ 20200 14100 8450 7400 2130 7210 11600 3560 2080 1310 7900 7080 8560 152 369 290 1180 649 318 79 222 434 260 **4**43 121 ~ LOG-PEARSON TYPE III STATISTICS, -0.13 -0.19 -0.14 -0.14 0.06 -0.19 -0.42 0.03 -0.28 -0.39 0.12 0.13 -0.50 -0.24 -0.25 -0.46 -0.50 -0.09 -0.43 SKEW -0.32 -0.33 0.07 0.21 0.71 -0.16 IN LOGARITHMIC UNITS DEV 0.3170 0.3759 0.3832 0.3914 0.2839 0.3318 0.2701 0.3601 0.1869 0.6782 0.6423 0.4259 0.4699 0.3530 0.4063 0.3307 0.4599 0.4625 0.4921 0.6672 0.3927 0.4827 0.4292 0.6754 0.3390 STD 2.1372 3.9212 2.4740 2.3928 3.0460 4.2473 3.3364 3.5354 2.0706 3.3084 1.8612 3.8568 2.3426 4.2974 2.5900 3.8636 2.6044 2.7993 4.0681 3.1079 4.1497 2.4644 3.9067 2.6103 3.8382 MEAN MEAN ANNUAL PRECIP 35.0 34.5 35.0 35.0 24.2 25.0 25.5 29.0 27.5 27.5 28.5 34.2 23.0 24.0 25.0 26.0 27.0 30.5 32.5 35.0 33.5 33.5 33.5 24.0 29.5 (NI) DRAINAGE 18.20 11.00 0.00 2.41 856.00 5.31 2.04 2.35 794.00 12.00 10.30 21.00 1.48 154.00 0.41 30.00 0.17 872.00 170.00 009.00 7.21 859.00 543.00 1785.00 426.00 (IM 0S) AREA LENGTH (YR) RECORD 25 5 12 52 19 25 31 26 22 25 19 21 19 20 21 47 21 22 21 16 21 5 12 17 22 07145500++ 07147800*+ 07151600* 07147070* 07148350* 07151500* 07152000* 07145200* 07145700* 07146700* 07148100* 07142100* 07147200 07148700 07148800 07150870 07152360 07145800 07146570 07147020 07148400 07150580 07144850 07147990 07144900 STATION NUMBER

(50 M.I) (10) $\mathbf{FE}\mathbf{M}$ STD DEV SKEW 2 5 10 0.97 29.8 2.0027 0.6112 0.09 92 323 619 329 0.12 32.3 2.1262 0.3011 0.14 112 238 329 0.14 32.3 1.3695 0.4244 0.01 23 33 82 0.14 32.3 1.3695 0.4399 0.4999 0.4999 0.4999 0.007 69 133 82 756.00 15.4 3.4576 0.4391 0.27 69 133 90 1400 1000 1 11030.00 14.0 3.4576 0.4391 0.27 2810 21800 3140 300 1300	STATION NUMBER	RECORD LENGTH	_	MEAN ANNUAL	LOG-PEARSON TYPE III IN LOGARITHMIC	ARSON TYPE III STATI IN LOGARITHMIC UNITS	STATISTICS, UNITS	PEAI FOR	K DISCH	ARGES I ED RECUI	PEAK DISCHARGES IN CUBIC FEET PER SECOND FOR INDICATED RECURRENCE INTERVAL IN YEARS	FEET P INTERVA	ER SECC	ND CARS
12 0.97 29.4 2.0027 0.6112 0.09 32.3 519 329 519 329 519 329 519 329 529 3299 3299		(YR)	(IM 0S)	(NI)	MEAN		SKEW	2	2	10	25	50	100	200
22 0.32 32.3 2.1365 0.4999 0.4999 0.01 23 53 82 25 0.01 32.3 1.3695 0.4999 0.4999 0.07 69 183 307 7 20 576.00 33.5 3.4456 0.4999 0.4999 0.4999 0.601 23 82 300 730 11200 1200 1 31 545.00 15.0 3.4678 0.4931 0.2746 0.35 6720 19000 1 1000 1000 1 1000 1000 1 1000 1000 1 1000 1000 1 1000 1100 1000 1100 1000 1000 1 10000 1000 1000	07152520	12	0.97	29.8	2.0027	0.6112	0.09	66	327	619	1230	1940	2910	6730
25 0.03 32.3 1.3693 0.4244 0.01 23 53 </td <td>07152842</td> <td>22</td> <td>0.32</td> <td>32.3</td> <td>2.1262</td> <td>0.3011</td> <td>0.14</td> <td>132</td> <td>238</td> <td>328</td> <td>465</td> <td>584</td> <td>719</td> <td>1100</td>	07152842	22	0.32	32.3	2.1262	0.3011	0.14	132	238	328	465	584	719	1100
25 0.14 32.3 0.499 0.499 0.497 0.2746 0.35 6720 11700 16000 2 31 545.00 31.5 3.4678 0.4431 0.27 2810 6720 1900 1000 1000 1000 1000 11200 1100 11200 11200 11200 11200 1100 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 <td< td=""><td>07152844</td><td>25</td><td>0.03</td><td>32.3</td><td>1,3695</td><td>0.4244</td><td>0.01</td><td>23</td><td>53</td><td>82</td><td>130</td><td>175</td><td>228</td><td>393</td></td<>	07152844	25	0.03	32.3	1,3695	0.4244	0.01	23	53	82	130	175	228	393
1 20 576.00 31.5 3.46476 02746 0276 6720 1700 6000 2 31 545.00 15.0 15.4 04576 04351 027 2810 6720 10900 1 27 111.00 15.4 0.4576 04739 -0.28 3030 73900 11200 11100 1100 1100 1100 1100 1100 1100 1100 1100 1100	07152846	25	0.14	32.3	0.4999	0.4999	0.07	69	183	307	538	776	1080	2130
33 545.00 16.0 3.4678 0.4351 0.27 2810 6720 19000 11200 73 111.00 15.4 3.4595 0.4738 -0.28 3030 7300 11200 71 111.00 15.4 3.8212 0.44931 -0.28 3030 7300 11200 71 25.40 15.5 3.2627 0.4391 -0.21 8600 24000 24400 3 17 25.40 15.5 3.2627 0.4391 -0.21 8600 16000 2400 360 2400 360 2400 360 2400 360 2400 360 2400 360 2400 370 311 1010 312 311 1010 312 311 1010 314 321 311 1010 314 321 311 1010 312 311 311 311 311 311 311 311 311 311 311 311 311	07153000*†	20	576.00	33.5	3.8436	0.2746	0.35	6720	11700	16000	22700	28700	35600	56300
27 111.00 15.4 3.4596 0.4738 -0.28 3030 7300 11200 11200 30 1038.00 14.0 3.8212 0.4464 -0.11 6750 15800 24400 24 17 25.40 15.5 3.2627 0.4391 -0.35 1940 6400 24 13 1979.00 16.5 3.9232 0.3307 -0.21 8600 16000 21800 24 17 11.00 15.8 1.5032 1.5032 0.3307 -0.21 8600 16000 21900 24 25 10.00 18.0 15.00 11.5032 0.1307 -0.21 8600 16000 21900 24 21 58.90 18.0 15.00 11.5032 0.24892 0.216 206 1240 2060 21 58.90 18.0 15.0 2.8575 0.6233 -0.19 745 2410 2400 25 8.00 17.6 2.8972 0.6897 -0.26 959 146 2710 25 8.00 17.5 2.9410 0.5982 -0.29 959 1680 2710 25 8.00 18.5 2.4402 0.5982 -0.29 959 264 2710 25 8.00 18.5 2.4402 0.5982 -0.29 959 264 2710 25 $4.44.00$ 20.0 2.52522 0.5932 0.593 277 2802 </td <td>07153500*</td> <td>33</td> <td>545.00</td> <td>16.0</td> <td>3.4678</td> <td>0.4351</td> <td>0.27</td> <td>2810</td> <td>6720</td> <td>10900</td> <td>18500</td> <td>26500</td> <td>36700</td> <td>72800</td>	07153500*	33	545.00	16.0	3.4678	0.4351	0.27	2810	6720	10900	18500	26500	36700	72800
30 1038.00 14.0 3.8212 0.4464 -0.11 6750 15800 24400 2 17 25.40 15.5 3.2627 0.4391 -0.35 1940 6400 21800 2 13 1879.00 16.5 3.2627 0.4391 -0.21 8600 16000 21800 3 17 11.00 15.8 1.5039 1.1944 -0.22 331 1010 25 10.00 18.0 2.8872 0.4839 -0.16 206 1240 3600 21 58.90 18.0 2.8910 0.6233 -0.19 745 2410 4940 10 463.00 17.6 2.8910 0.6387 -0.26 958 3520 6680 1 15 835.00 17.6 2.9510 0.6387 -0.26 953 3520 6680 1 25 4.00 20.0 2.8420 0.5982 -0.93 20.76 956 3710 25 4.40 20.0 2.8420 0.5987 -0.26 959 364 25 4.40 20.0 2.8420 0.5987 -0.26 959 364 25 4.40 20.0 2.913 0.199 2710 950 2710 26 8.00 18.6 2.7132 0.5937 0.256 953 964 25 4.40 20.0 2.4402 2.926 2.926 1900 2710 <t< td=""><td>07154400*</td><td>27</td><td>111.00</td><td>15.4</td><td>3.4596</td><td>0.4738</td><td>-0.28</td><td>3030</td><td>7300</td><td>11200</td><td>17400</td><td>22900</td><td>29100</td><td>46100</td></t<>	07154400*	27	111.00	15.4	3.4596	0.4738	-0.28	3030	7300	11200	17400	22900	29100	46100
17 25.40 15.5 3.2627 0.4391 -0.35 1940 4340 6400 13 1879.00 16.5 3.9232 0.3307 -0.21 8600 16000 21800 3 17 11.00 15.8 1.5039 1.1944 -0.22 35 331 1010 25 10.00 18.0 2.8832 0.9489 -0.16 206 1240 3060 21 58.90 18.0 2.8310 0.6647 0.19 745 2410 4950 1 10 463.00 17.6 2.89310 0.66847 0.19 647 2420 4950 1 10 463.00 17.6 2.8910 0.6987 -0.25 952 6680 1 10 463.00 17.6 2.9310 0.6987 -0.25 953 6680 1 10 463.00 18.6 2.9310 0.6987 -0.25 952 6690 1 25 8.00 18.6 2.9310 0.6987 -0.25 953 6680 1 25 8.00 18.6 2.9402 0.5922 -0.25 0.799 970 970 25 44.00 20.0 $2.0.3$ 2.9463 -0.25 1710 370 864 25 44.00 20.0 2.9420 2.920 2.712 990 2710 25 44.00 20.0 2.9420 0.792 0.920 2710 </td <td>07154500*</td> <td>30</td> <td>1038.00</td> <td>14.0</td> <td>3.8212</td> <td>0.4464</td> <td>-0.11</td> <td>6750</td> <td>15800</td> <td>24400</td> <td>38500</td> <td>51500</td> <td>66700</td> <td>112000</td>	07154500*	30	1038.00	14.0	3.8212	0.4464	-0.11	6750	15800	24400	38500	51500	66700	112000
13 1879.00 16.5 3.9232 0.3307 -0.21 8600 16000 21800 21800 21800 21800 21800 21800 21800 21800 21800 21800 21800 21800 21832 0.2489 -0.12 331 1010 25 10.00 18.0 2.8852 0.6233 -0.19 226 2410 4340 21 58.90 17.6 2.8310 0.6647 0.18 2410 4340 10 463.00 17.6 2.8310 0.6647 0.18 2410 4340 15 835.00 17.6 2.8310 0.6637 -0.25 2640 3570 6680 1010 25 8.00 18.5 2.7182 0.5932 -0.25 593 864 25 2.411 19.0 2.693 0.5132 0.19 377 385 564 25 4.400	07154650	17	25.40	15.5	3.2627	0.4391	-0.35	1940	4340	6400	9450	12000	14800	21900
17 11.00 15.8 1.5039 1.1944 -0.22 35 331 1010 25 10.00 18.0 2.2882 0.9489 -0.16 206 1240 3060 21 58.90 18.0 2.8525 0.6647 0.19 745 2410 4340 10 463.00 17.6 2.8310 0.6987 -0.26 958 3520 6680 1 15 835.00 17.5 2.9510 0.6987 -0.26 958 3520 6680 1 25 8.00 18.5 2.9710 2.9510 0.5923 -0.25 958 3570 6680 1 25 2.411 19.0 2.7122 0.3982 -0.03 2.717 595 864 25 44.00 20.0 2.9420 0.5122 -0.19 777 595 864 25 44.00 20.0 2.6492 0.5122 -0.19 772 1890 3070 25 44.00 20.0 2.9420 0.5122 -0.19 1710 3510 25 44.00 20.0 2.1130 0.5000 -0.19 1391 1710 3510 25 44.00 23.0 2.1130 0.5000 -0.19 135 533 145 533 269 44.0 2.1130 2.0463 0.5463 -0.21 499 1390 2320 25 498.00 23.0 2.1320 2.132	07155000	13	1879.00	16.5	3.9232	0.3307	-0.21	8600	16000	21800	30100	36800	43900	62000
25 10.00 18.0 2.2882 0.9489 -0.16 206 1240 3060 21 58.90 18.0 2.8525 0.6233 -0.19 745 2410 4340 10 463.00 17.6 2.8525 0.6637 0.18 647 2420 4950 1 15 835.00 17.5 2.8310 0.6647 0.18 647 2420 4950 1 25 8.00 17.5 2.9310 0.6647 0.18 647 2420 4950 1 25 8.00 18.5 2.7192 0.5923 -0.26 958 3570 6680 1 25 2.411 19.0 2.7192 0.5923 -0.25 9592 364 3700 25 444.00 20.0 2.4402 0.3882 -0.03 777 585 864 25 444.00 20.0 2.1130 0.5000 -0.19 722 1890 3700 25 444.00 20.0 2.5152 0.7981 -0.30 717 585 864 25 444.00 20.0 2.24420 0.5122 -0.19 722 1890 3700 25 444.00 20.0 2.24402 0.5923 -0.264 710 370 345 553 25 444.00 20.0 2.24402 0.5900 -0.19 1390 2320 25 445.0 20.3 2.2453 0.5463	07155100	17	11.00	15.8	1.5039	1.1944	-0.22	35	331	1010	3180	6520	12300	42200
21 58.90 18.0 2.8525 0.6647 0.19 745 2410 4340 10 463.00 17.6 2.8310 0.6647 0.18 647 2420 4950 15 835.00 17.5 2.9510 0.6687 0.18 647 2420 4950 25 8.00 17.5 2.9510 0.6987 -0.26 958 3520 6680 25 8.00 18.5 2.7182 0.5923 -0.25 592 1680 2710 25 2.41 19.0 2.7182 0.5923 -0.25 592 1680 2710 25 44.00 20.0 2.8420 0.5122 -0.19 277 565 864 25 44.00 20.0 2.9422 0.5122 -0.19 772 1890 3070 25 6.57 22.5522 0.7981 -0.20 391 1710 3510 16 4.22 20.3 2.1130 0.5000 -0.19 1390 2320 16 $4.08.00$ 23.0 2.1322 0.7981 -0.21 499 1390 2320 16 $4.08.00$ 23.0 2.1320 0.6975 -0.21 499 1390 2320 17 408.00 23.0 2.1322 0.4383 -0.21 499 1390 2320 17 408.00 23.0 2.1322 0.4383 -0.21 495 9570 485 1	07155900*	25	10.00	18.0	2.2882	0.9489	-0.16	206	1240	3060	7840	14200	24000	67700
10 463.00 17.6 2.9310 0.6647 0.18 647 2420 4950 15 835.00 17.5 2.9510 0.6987 -0.26 958 3520 6680 25 8.00 18.5 2.9510 0.6987 -0.26 958 3520 6680 25 2.41 19.0 2.7192 0.5923 -0.55 592 1680 2710 25 2.41 19.0 2.4402 0.5122 -0.03 2777 585 864 25 44.00 20.0 2.6420 0.5122 -0.19 722 1890 3070 26 6.57 22.5 2.5322 0.5781 0.5900 -0.19 722 1890 3070 26 4.22 20.3 2.1130 0.5000 -0.19 1710 3510 3510 27 $4.08.00$ 23.3 2.1130 0.59463 -0.21 499 1390 2320 28 39.000 23.3 2.6795 0.6975 -0.21 499 1390 2320 29 1.61 24.6 2.1322 0.4383 -0.21 499 1390 2320 29 1.61 $2.9.230$ 0.6975 0.6975 -0.21 499 1390 2320 21 1.61 $2.9.230$ 0.6975 0.6975 -0.21 495 533 485 21 1.61 2.8530 0.5778 0.047 706 2190 2190 2190	07156000*	21	58.90	18.0	2.8525	0.6233	-0.19	745	2410	4340	0662	11700	16400	32000
15 835.00 17.5 2.9510 0.6987 -0.26 958 3520 6690 25 8.00 18.5 2.7182 0.5923 -0.55 592 1680 2710 25 2.44 19.0 2.4402 0.3882 -0.03 277 585 864 25 $4.4.00$ 20.0 2.4402 0.5122 -0.19 722 1890 3070 25 $4.4.00$ 20.0 2.8420 0.5122 -0.19 722 1890 3070 26 4.22 20.3 2.1130 0.5000 -0.19 722 1890 3070 26 4.22 20.3 2.5132 0.5463 -0.21 1391 1710 3510 25 39.000 23.3 2.1130 0.5000 -0.19 135 345 553 26 39.000 23.3 2.6795 0.5463 -0.21 499 1390 2320 15 408.00 23.0 3.0965 0.6975 -0.07 1270 4950 2320 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 9.23 0.5778 0.6975 0.07 1270 4950 270 12 186.00 26.0 2.1322 0.24183 -0.17 140 1990 12 196.00 26.0 0.2718 0.04 706 2180 950 12 196.00 26.0 2.215	07156010	10	463.00	17.6	2.8310	0.6647	0.18	647	2420	4950	10800	18200	29200	77900
25 8.00 18.5 2.7182 0.5923 -0.55 592 1680 2710 25 2.41 19.0 2.4402 0.3882 -0.03 277 585 864 25 44.00 20.0 2.84420 0.5122 -0.19 722 1890 3070 25 444.00 20.0 2.84420 0.5122 -0.19 722 1890 3070 26 6.57 22.55 0.7981 -0.30 391 1710 3510 16 4.22 20.3 2.1130 0.5000 -0.19 135 345 553 16 4.22 20.3 0.5463 -0.21 499 1390 2320 15 408.00 23.0 3.0695 0.6975 -0.07 1270 4850 9670 2 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 9.23 2.953 0.4383	07156220	15	835.00	17.5	2.9510	0.6987	-0.26	958	3520	6680	12900	19400	27700	55400
25 2.41 19.0 2.4402 0.3882 -0.03 277 585 864 25 44.00 20.0 2.8420 0.5122 -0.19 722 1890 3070 25 6.57 22.55 2.5522 0.7981 -0.30 391 1710 3510 16 4.22 20.3 2.1130 0.5000 -0.19 135 345 553 15 408.00 23.1 2.6575 0.5463 -0.21 499 1390 2320 12 1.61 24.6 0.5005 -0.07 1270 4850 9670 2 12 1.61 24.6 0.4383 -0.17 140 319 465 12 9.23 25.8 0.5478 0.04 706 2180 350 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 465 12 9.23 25.33 0.5778 0.04 <td< td=""><td>07156600</td><td>25</td><td>8.00</td><td>18.5</td><td>2.7182</td><td>0.5923</td><td>-0.55</td><td>592</td><td>1680</td><td>2710</td><td>4310</td><td>5670</td><td>7130</td><td>10800</td></td<>	07156600	25	8.00	18.5	2.7182	0.5923	-0.55	592	1680	2710	4310	5670	7130	10800
25 44.00 20.0 2.8420 0.5122 -0.19 722 1890 3070 25 6.57 22.5 2.5522 0.7981 -0.30 391 1710 3510 16 4.22 20.3 2.1130 0.5000 -0.19 135 345 553 25 39.00 23.3 2.1130 0.5000 -0.19 135 345 553 15 408.00 23.0 3.0695 0.5463 -0.21 499 1390 2320 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 9.23 25.8 0.5453 0.217 0.04 300 3950 12 196.00 26.0 3.6691 0.215 0.217 4560 7110 9990 1	07156700	25	2.41	19.0	2.4402	0.3882	-0.03	277	585	864	1310	1700	2160	3490
25 6.57 22.5 2.5522 0.7981 -0.30 391 1710 3510 16 4.22 20.3 2.1130 0.5000 -0.19 135 345 553 25 39.00 23.3 2.1130 0.5000 -0.19 135 345 553 15 4.08.00 23.3 2.6795 0.5463 -0.21 499 1390 2320 15 4.08.00 23.0 3.0965 0.6975 -0.07 1270 4850 9670 2 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 9.23 25.8 0.5578 0.04 706 2180 3950 12 196.00 26.0 3.6691 0.215 0.277 4560 7110 9090 1	07157100*	25	4 14 .00	20.0	2.8420	0.5122	-0.19	722	1890	3070	5050	6910	9110	15700
16 4.22 20.3 2.1130 0.5000 -0.19 135 345 553 25 39.00 23.3 2.6795 0.5463 -0.21 499 1390 2320 15 408.00 23.0 3.0965 0.6975 -0.07 1270 4850 9670 2 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 9.23 25.8 0.5778 0.04 706 2180 3950 12 196.00 26.0 3.6691 0.2215 0.277 4560 7110 9090 1	07157400	25	6.57	22.5	2.5522	0.7981	-0.30	391	1710	3510	7290	11400	16900	36100
25 39.00 23.3 2.6795 0.5463 -0.21 499 1390 2320 15 408.00 23.0 3.0965 0.6975 -0.07 1270 4850 9670 2 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 9.23 25.8 2.9530 0.5778 0.04 706 2180 3950 12 196.00 26.0 3.6691 0.2215 0.27 4560 7110 9090 1	07157550	16	4.22	20.3	2.1130	0.5000	-0.19	135	345	553	006	1220	1600	2720
15 408.00 23.0 3.0965 0.6975 -0.07 1270 4950 9670 12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 9.23 25.8 2.8530 0.5778 0.04 706 2180 3950 12 196.00 26.0 3.6691 0.2215 0.27 4560 7110 9090	07157900*	25	39.00	23.3	2.6795	0.5463	-0.21	66†	1390	2320	3940	5490	7340	13000
12 1.61 24.6 2.1322 0.4383 -0.17 140 319 485 12 9.23 25.8 2.8530 0.5778 0.04 706 2180 3950 12 196.00 26.0 3.6691 0.2215 0.27 4560 7110 9090	07157960	15	408.00	23.0	3.0965	0.6975	-0.07	1270	4850	9670	20000	31900	48300	111000
12 9.23 25.8 2.8530 0.5778 0.04 706 2180 3950 12 196.00 26.0 3.6691 0.2215 0.27 4560 7110 9090	07158080	12	1.61	24.6	2.1322	0.4383	-0.17	140	319	485	747	981	1250	2010
12 196.00 26.0 3.6691 0.2215 0.27 4560 7110 9090	07158180	12	9.23	25.8	2.8530	0.5778	0.04	706	2180	3950	7470	11300	16400	35200
	07158400	12	196.00	26.0	3.6691	0.2215	0.27	4560	7110	0606	11900	14300	16900	24000

STATION NUMBER	RECORD LENGTH	DRAINAGE AREA	MEAN ANNUAL PRECIP	LOG-PEARSON TYPE III IN LOGARITHMIC	ARSON TYPE III IN LOGARITHMIC	STATISTICS, UNITS	PEAL FOR	C DISCH	PEAK DISCHARGES IN CUBIC FEET PER SECOND FOR INDICATED RECURRENCE INTERVAL IN YEARS	4 CUBIC RENCE	FEET P	ER SECO L IN YE	ND ARS
	(YR)	(1M ÔS)	(NT)	MEAN	STD DEV	SKEW	2	5	10	25	50	100	500
07158550	17	5.08	26.0	2.5523	0.5796	-0.01	357	1100	1970	3680	5500	7890	16400
07159000*	28	248,00	28.8	3.4233	0.5164	0.02	2640	7200	12200	21400	30900	43000	83900
07159200	14	157.00	27.8	3.4231	0.5978	0.08	2600	8390	15600	30700	47600	70900	160000
07159810	14	0.15	32.4	1.4962	0.4918	0.15	90	81	136	241	352	497	1010
07160500*	33	410.00	29.3	3.6766	0.4604	0.17	4610	11500	18800	32300	46100	63800	125000
07160550	17	13.90	30.6	2.9885	0.3831	0.04	968	2040	3030	4620	6070	7780	12900
07163000*	48	31.00	33.2	3.3416	0.3754	0.66	2000	4360	6940	11900	17300	24600	52700
07163020	12	2.89	36.5	2.7774	0.2197	0.18	590	912	1160	1500	1780	2070	2870
07165550	15	50.00	38.0	3.5272	0.2853	0.18	3300	5810	7900	11100	1 800	16900	25700
07166000*†	20	747.00	37.0	4.2581	0.4485	-0.26	18900	43700	65900	100000	131000	164000	256000
07166500*†	. 21	1138.00	37.5	4.2094	0.3663	-0.27	16800	33200	00494	65400	80800	97300	97300 139000
07169500	13	827.00	36.5	4.1721	0.3118	-0.39	15600	27500	36000	47200	55600	64000	83700
07169700	21	1.84	36.5	2.7084	0°3460	-0.12	519	1000	1400	1990	2490	3040	4500
07170000*	33	575.00	36.5	4.1033	0.4698	-0.54	14000	32100	46900	67900	84500	102000	142000
07170600	21	15.00	38.0	3, 3844	0.3345	0.05	2410	4630	6530	9450	12000	14900	23200
07170700	23	37,00	38.5	3.5668	6055.0	0.21	3590	6930	9920	14700	19100	24300	39900
07170800	25	4.22	38.5	3.0578	0.2980	0.12	1130	2030	2780	3910	4890	6000	9120
07171700	25	3.10	35.0	2.7997	0.5527	-0.70	731	1880	2840	4190	5230	6270	8610
07171800	25	0.60	35.0	1.9927	0.4961	-0.60	110	262	388	565	703	845	1180
07172000+†	. 26	445.00	35.0	4.0938	0.4192	-0.79	14100	28400	38300	50400	58800	66500	82200
07173000 +	. 14	736.00	38.0	4.1492	0.3025	-0.48	14900	25600	32900	42200	48900	55500	70100
07174000	15	424.00	38.1	4.0089	0.3434	-0.47	10900	20100	26800	35600	42200	48800	64000
07174200*†	. 21	502.00	38.0	4.0943	0.2571	0.05	12400	20400	26600	35400	42600	50300	70700
07174600*	21	139.00	36.4	3.8400	0.2256	-0.24	7060	10800	13300	16400	18800	21100	26600
07174720	16	0.94	38.0	2.5128	0.2260	-0.45	339	509	616	744	833	918	1100

τ
ē.
- H
ē
Ē
نذ
5
~~
Ÿ
- 1
_
Ξ
-
7
-de

STATION NUMBER	RECORD LENGTH	DRAINAGE AREA	MEAN ANNUAL PRECIP	LOG-PEARSON TYPE III IN LOGARITHMIC		STATISTICS, UNITS	PEA	(DISCH	PEAK DISCHARGES IN CUBIC FEET PER SECOND FOR INDICATED RECURRENCE INTERVAL IN YEARS	A CUBIC	FEET PI INTERVAI	ER SECO	4D ARS
	(YR)	(TW 0S)	(NT)	MEAN	STD DEV	SKEW	2	\$	10	25	50	100	500
07175000	14	2.39	36.6	2.9587	0.4947	-0.46	991	2410	3660	5520	7080	8740	13000
07176500*†	32	364.00	35.0	4.0878	0.2376	-0.31	12600	19500	24200	30000	34300	38500	48100
07176800	11	30.60	36.4	3.6996	0.2403	-0.38	5190	8040	9910	12200	13900	15500	19200
07177000*†	38	340.00	36.2	3.9359	0.2128	0.52	8270	12800	16500	22100	26900	32400	48100
07177500*	42	905.00	37.0	4.2015	0.2853	0.58	14900	26900	38000	56700	74500	96500	168000
07183800*	25	12.00	40.5	3.4187	0.4105	-0.31	2750	5870	8500	12400	15600	19000	28000
07184000*	31	197.00	40.5	3.7626	0.3400	0.00	5790	11200	15800	22800	28900	35800	55300
07184500*	29	211.00	39.0	3.8899	0.2571	-0.28	7980	12900	16200	20600	23900	27200	34900
07184600*	21	27.00	40.0	3.6079	0.5118	-0.17	4190	11000	17900	29700	40900	54200	00 11 6
07185500	26	3.86	42.0	2.8250	0.2426	-0*06	672	1070	1360	1760	2070	2390	3200
07185600	27	0.94	42.0	2.3164	0.3376	0.29	200	393	573	871	1150	1490	2560
07185700*	23	306.00	40.0	3.7519	0.3436	0.33	5410	10800	15900	24600	32900	43000	75600
07185900	23	9.67	40.0	3.0630	0.2441	-0.27	1190	1870	2330	2930	3380	3820	4860
07186000*	58	1164.00	40.0	4.2296	0.3005	-0.23	17400	30600	40400	53800	64400	75400	103000
07186400	18	232.00	41.0	3.7112	0.3515	0.23	4980	10100	14800	22600	29900	38700	66300
07187000*	57	427.00	40.0	3.8784	0, 3898	-0.07	7630	16100	23700	35600	46200	58300	92900
07188000*	42	2510.00	41.5	4.5139	0.2897	-0.29	33700	57700	75000	98000	116000	134000	177000
07188140	16	4.90	41.8	2.9724	0.2848	0.03	936	1630	2180	2980	3640	4370	6330
07188500*	29	42.00	42.5	2.9425	0.6558	0.07	860	3110	6140	12800	20600	31800	77100
07188900	21	0.96	46.0	1.9685	0.5887	-0.51	104	297	483	775	1030	1300	2030
07189000*	41	872.00	0.44	4.2807	0.3806	-0.15	19500	40100	57800	84500	107000	133000	203000
07190600	15	71.10	40.9	3.6682	0.3068	-0*0-	4710	8460	11400	15700	19200	23000	33000
07191000*	41	450.00	40.9	4.1896	0.3142	-0.11	15700	28500	38800	53400	65500	78600	113000
07191220*	21	133.00	0.44	3.4085	0.5494	-0.44	3320	8930	14200	22600	29900	37900	59200
07192000*	21	229.00	40.8	3.7089	0.4215	0.19	4960	11500	18100	29800	41400	56000	105000

STATION NUMBER	RECORD LENGTH	DRAINAGE AREA	MEAN ANNUAL PRECIP	LOG-PEARSON TYPE III IN LOGARITHMIC		STAFISTICS, UNITS	PEAN FOR	(DISCHA	RGES IN	I CUBIC	PEAK DISCHARGES IN CUBIC FEET PER SECOND FOR INDICATED RECURRENCE INTERVAL IN YEARS	ER SECO	4D RRS
		(114 73)	(NT)	MEAN	STD DEV	SKEW	2	2	6	25	20	100	500
07194515	16	2.57	42.8	2.7173	0.3150	0.09	516	957	1330	1900	2400	2960	4570
07194890	19	40.40	45.0	3.1282	0.5251	-0.11	1370	3740	6230	10600	14900	20200	36800
07195000*	30	130.00	45.0	3.6745	0.3788	-0.07	4770	9870	14400	21300	27500	34400	54100
07195200	21	0.37	41.0	1.7883	0.5030	-0.17	63	164	265	436	596	787	1360
07195450	19	14.60	0.04	3.1320	0.5053	-0.47	1480	3670	5610	8520	10900	13600	20200
07195500*	25	635.00	44.5	4.2205	0,3693	-0.45	17700	34400	47000	64000	77100	00406	122000
07195800*	21	14.20	41.0	2.8190	0.6252	-0.01	660	2220	4170	8170	12600	18600	41100
07196000*	23	110.00	43.8	3.5750	0.5277	-0.28	3980	10600	17100	27900	37800	49200	82000
07196380	11	3.59	43.3	2.7062	0.6355	-0.23	538	1770	3180	5830	8510	11900	22700
07196500*	48	929.00	44.3	4.2740	0.3921	-0.10	19100	40400	59200	88400	114000	143000	226000
07196900*	23	46.00	46.0	3.7533	0.4586	-0.48	6170	14000	20500	29900	37400	45200	64500
07197000*	*	307.00	44.5	4.1346	0.2949	-0.55	14500	24400	31000	39000	44700	50100	61700
07228290	16	10.40	25.7	3.0040	0.4270	-0.08	1020	2320	3530	5500	7300	9400	15600
07228450	12	2.31	27.8	2.4973	0.2848	0.32	303	539	742	1060	1350	1680	2680
07228960	11	3.32	31.3	2.8595	0.2538	0.10	717	1180	1540	2050	2480	2940	4160
07229300	15	202.00	34.5	3.9163	0.2505	0.36	0262	13200	17600	24200	30100	36700	55900
07229420	17	2.28	37.7	2.6773	0.3106	0.38	455	854	1220	1820	2380	3060	5190
07229430	11	2.26	40.6	2.8389	0.2965	0.39	660	1210	1690	2490	3220	0604	6800
07230000	+ 13	257.00	34.0	3.7236	0.2410	0.72	4950	8190	11100	15800	20200	25600	42600
07230500*†	t 22	456.00	35.0	3.9911	0.2837	0.85	8940	16200	23500	36300	49400	66200	126000
07231000	† 19	865.00	36.0	4.1924	0.2857	0.03	15500	27100	36300	49600	60700	72900	106000
07231320	17	0.72	41.0	2.5380	0.3361	0.30	332	653	951	1440	1910	2470	4250
07231560	11	7.40	42.0	3.2332	0.3023	0.26	1660	3040	4250	6150	7860	9860	15800
07231950	17	66.6	47.0	3.6761	0.3035	0.12	4680	8500	11700	16600	20900	25700	39400
07232000*	21	588,00	0.44	4.1126	0.3137	0.49	12200	23300	33700	51400	68500	89500	159000

STATION NUMBER	RECORD LENGTH	DRAINAGE AREA	MEAN ANNUAL PRECIP	LOG-PEARSON TYPE III IN LOGARITHMIC		STATISTICS, UNITS	PEA FOR	K DISCH INDICAT	PEAK DISCHARGES IN CUBIC FEET PER SECOND FOR INDICATED RECURRENCE INTERVAL IN YEARS	N CUBIC RRENCE	FEET F	ER SECC	ND ARS
		TH ACI	(NT)	MEAN	std dev	SKEW	2	5	10	25	50	100	500
07232500*	\$	1175.00	17.0	3.7640	0.5577	-0.39	6310	17400	28300	45900	61600	79400	128000
07232650	12	31.00	15.6	2.1116	0.8743	-0.15	136	713	1650	3950	6860	11200	29500
07233000*	26	767.00	20.0	3.4105	0.5471	-0.26	2720	7520	12400	20800	28700	37900	65400
07233500*	36	440.00	20.5	3,3917	0.5061	0.18	2380	6500	11200	20300	30100	43100	90500
07234050	17	4.22	19.7	1.6031	0.9167	-0.26	41	242	561	1320	2250	3590	8890
07234100	14	170.00	19.8	3.1675	0.7069	-0.19	1550	5860	11400	22700	35000	51300	109000
07234290	14	8.57	21.0	2.5126	0.4718	-0.10	331	816	1290	2100	2860	3770	6530
07235000*	27	475.00	20.5	3.4610	0.5024	-0.27	3050	7750	12300	19600	26200	33700	55100
07235700	11	17.60	21.6	2.6879	0.5407	0.03	484	1390	2410	4360	64 10	9060	18300
07237750	17	11.80	24.6	2.6101	0.4408	-0.19	421	965	1460	2250	2950	3740	5990
07237800	14	139.00	24.5	3.5429	0.2497	-0.12	3530	5680	7240	9330	11000	12700	16800
07239050	12	0.52	27.7	2.0894	0.3957	0.17	120	262	401	639	868	1150	2050
07242160	13	16.50	40.6	3.3819	0.1841	0.15	2380	3430	4170	5170	5950	6760	8810
07243000	25	69.00	35.0	3.5494	0.2837	0.39	3390	6040	8370	12100	15500	19500	31800
07243500+1	t 23	2018.00	36.2	4.0820	0.4392	0.17	11700	28000	006+++	75200	106000	144000	274000
07243550	16	5.90	38.5	3.0486	0.3621	-0.10	1130	2270	3220	4670	5910	7300	11100
07244000	19	2307.00	37.5	4.1165	0.4077	0.10	12900	28700	000	69800	94400	124000 , 218000	218000
07244790	11	5.66	0.44	3.2686	0.3120	-0.06	1870	3400	4640	6430	7940	9570	14000
07245500*†	t 22	182.00	43.5	4.1105	0.4118	0.11	12700	28500	43900	70200	95400	126000	223000
07246630	17	5.32	43.5	2.9788	0.2677	-0.36	988	1610	2040	2590	2990	3390	4310
07247000*†	+ 35	203.00	45.0	4.0419	0.2992	-0.11	11200	19700	26400	35800	43500	51800	73100
07247500*†	† 26	122.00	45.5	3.8232	0.3889	0.09	6560	14100	21200	32900	43800	56900	97100
07248500	+ 11	00. £66	48.0	4.4392	0.3627	0.03	27400	55400	80400	120000	155000	196000	315000
07249000	14	1240.00	48.0	4.3575	0.3657	0.11	22400	46000	67600	103000	135000	173000	2880 00
07249300	19	44.00	42.0	3.6931	0.3867	0.20	4790	10300	15700	24900	33800	44600	79700

STATION NUMBER	RECORD LENGTH	DRAINAGE AREA	MEAN ANNUAL PRECIP	LOG-PEARSON TYPE III IN LOGARITHMIC	ARSON TYPE III IN LOGARITHMIC	STATISTICS, UNITS	PEA FOR	K DISCH	PEAK DISCHARGES IN CUBIC FEET PER SECOND FOR INDICATED RECURRENCE INTERVAL IN YEARS	4 CUBIC RRENCE	FEET P	ER SECOI	4D ARS
			(NT)	MEAN	std dev	SKEW	2	s.	6	25	20	100	500
07249400*	23	147.00	43.0	3.7929	0.3221	0.24	6020	11500	16300	24200	31300	39800	65500
07249500*	31	35.30	0.84	3.7021	0.3532	0.19	4910	0066	.14500	22000	29000	37400	63100
07249650	20	8.15	43.0	3.0922	0.3512	-0.15	1260	2450	3440	4880	6100	7430	11000
07249950	20	0.34	42.0	1.4760	0.6525	0.06	29	105	207	429	690	1060	2540
07250000*	38	426.00	47.0	4.3960	0.2881	0.06	24700	43400	58500	80600	99400	120000	177000
07261300	22	2.33	46.0	2.6171	0.4546	0.32	392	979	1630	2890	4240	0409	12700
01299670*	20	303.00	24.0	3.2581	0.4748	0.10	1780	4520	7440	12800	18200	25100	48400
00000620	15	1013.00	21.5	4.2758	0.4782	0.22	18100	47000	79200	140000	205000	291000	600000
07300150	17	7.24	23.0	2.8962	0.4107	-0.15	807	1760	2600	3920	5080	6380	10000
07300500*	43	1357.00	22.5	4.1727	0.3328	-0*07	15000	28400	39500	55800	69600	84900	126000
07301455	13	19.80	23.8	3.0698	0.3333	-0.18	1200	2250	3090	4280	5260	6310	9030
07301480	16	9.12	23.8	2.7151	0.3231	0.35	497	955	1380	2080	2740	3540	6090
07301500*	36	1938.00	23.0	3.8478	0.3561	0.23	6820	13900	20500	31500	42000	54500	94200
07303400*	20	416.00	23.2	3.7513	0.3026	0.08	5590	10100	13900	19500	24300	29800	45000
07303450	12	27.80	23.0	2.9677	0.3006	-0*06	938	1670	2240	3050	3720	4430	6310
07303500*	28	838.00	23.2	3.8967	0.3594	-0.26	9170	16000	22200	31100	38400	46100	00099
07309480	11	3.35	31.0	2.8989	0.4659	-0.51	868	1990	2910	4230	5290	6380	9030
07311200	16	24.60	29.6	3.0763	0.4680	-0.16	1230	2970	4650	7410	9950	12900	21600
07311500*	31	617.00	28.1	3.7496	0.3829	-0.15	5750	11900	17100	25100	31900	39500	60300
07312850	17	6.29	29.9	2.8953	0.4455	-0.19	811	1880	2860	4420	5820	7420	11900
07312950	12	35.40	32.7	2.9313	0.4511	0.27	814	2010	3320	5780	8370	11800	24000
07313000	15	158.00	32.5	4.0219	0.5301	-0-04	10600	29400	50000	87700	126000	174000	334000
07313500*†	t 24	563.00	31.7	3.6665	0.4969	0.41	4290	11800	20900	40000	62000	93300	221000
07313600 +	t 12	193.00	31.6	3.3657	0.4731	0.06	2300	5790	0440	16000	22500	30700	57900
07315680	17	1.74	33.4	2.6365	0.4340	0.12	424	799	1580	2600	3600	4850	8940

.

STATION NUMBER	RECORD LENGTH	w	MEAN ANNUAL PRECIP	LOG-PEARSON TYPE III IN LOGARITHMIC		STATISTICS, UNITS	FOR	K DISCH INDICAT	PEAK DISCHARGES IN CUBIC FEET PER SECOND FOR INDICATED RECURRENCE INTERVAL IN YEARS	RENCE	FEET P		ARS
	(YR)	(IM OS)	(II)	MEAN	STD DEV	SKEW	2	5	10	25	50	100	500
07315700*	20	572.00	33.0	3.6465	0.4185	0.38	4170	9750	15700	26900	38700	54200	110000
07315880	10	5.74	34.8	3.2752	0.0718	-0-03	1890	2170	2330	2510	2640	2760	3020
07316140	16	12.00	35.5	3.4373	0.2588	-0.12	2770	4530	5830	7570	8950	10400	13900
07316500*†	22	794.00	22.8	3.7444	0.5304	0.15	5390	15400	27000	50100	75100	109000	233000
07317500	21	5.16	24.0	2.6590	0.4425	0.27	436	1060	1730	2970	4270	5960	12000
07318500	12	1.02	24.0	2.4518	0.4245	0.03	281	643	994	1590	2150	2820	4920
07320000	19	2.87	24.0	2.8573	0.2681	-0.11	728	1210	1580	2070	2470	2880	3920
07321500	14	0.62	24.0	2.5543	0.3676	0.12	352	727	1070	1630	2150	2770	4650
07324000	17	5.33	24.0	3.0099	0.4456	-0.04	1030	2430	3790	6080	8230	10800	18700
07325000*†	20	1977.00	24.2	3.8876	0.4081	0.26	7410	16800	26300	43400	60500	82200	156000
07326000	15	313.00	28.0	3.6915	0.4244	0.44	4570	10900	17800	31300	45700	65200	139000
07327150	11	23.76	32.0	2.8715	0.4147	0.19	722	1650	2570	4200	5820	7820	14500
07327438	12	0.04	32.2	0.9676	0.5207	0.03	6	25	43	1	111	155	305
07327440 +	. 10	35.20	32.2	3.2484	0.2773	-0.00	1770	3030	4020	5420	6570	7820	11100
07327490*†	50	208.00	32.0	3.4927	0.3686	0.52	2890	6170	9570	15800	22300	30700	61100
07329000	15	145.00	33.0	4.0163	0.2339	0.35	10100	16100	21100	28400	34700	41700	61700
07329870	16	18.70	37.3	3.2570	0.3598	0.07	1790	3620	5260	7870	10200	13000	21100
07329900 +	. 11	138.00	38.3	3.6811	0.4156	0.33	4550	10500	16800	28400	40300	55800	110000
07330500	14	298.00	38.0	3.9207	0.3233	-0.02	8350	15600	21600	30500	38100	46600	69700
07332070	10	0.72	40.0	2.6082	0.2731	0.33	392	680	926	1310	1650	2040	3200
07332400	15	203.00	39.5	3.9675	0.2817	-0.08	9360	16100	21200	28400	34200	40400	56400
07332500*	4	476.00	39.5	3.9652	0.2920	0.19	9030	16100	22100	31300	39300	48500	74800
07332600*	20	72.00	43.5	3.8880	0.2482	-0.65	8220	12600	15300	18300	20300	22100	25800
07333500	19	32.70	44.5	3.8771	0.1884	0.09	7490	10800	13200	16300	18700	21300	27500
07334000*†	+ 22	1087.00	42.0	4.3385	0.2168	0.29	21300	32900	41900	54800	65500	77300	77300 109000

, +				THE CORVER HILLING ONLY			FUN TNUTCATED RECURRENCE INTERVAL IN TEANS						
07335000*†			(NT)	MEAN	std dev	SKEW	2	2	10	25	50	100	500
	20	720.00	40.5	4.1559	0.3615	0.13	14100	28700	42100	63800	83800	107000	179000
07335310	16	0.94	44.8	2.4047	0.2872	-0.27	262	44 6	580	759	896	1040	1380
07335320	11	16.60	45.4	3.5048	0.2398	-0.26	3270	5120	6380	7990	9190	10400	13200
07335700	15	40.10	54.0	3.8762	0.2327	-0.20	7660	11900	14800	18500	21300	24100	30800
07336500*	47	1423.00	49.0	4.5337	0.1894	-0.12	34500	49400	59400	72000	81300	90906	112000
07336520	16	19.40	49.0	3.4193	0.2772	-0.02	2630	4500	5940	7990	9670	11500	16200
07336710	11	3.39	46.5	2.8988	0.2009	0.06	789	1170	1440	1800	2080	2370	3100
07336750	11	75.40	46.0	3.7212	0.3386	-0.15	5360	10200	14100	19800	24500	29600	43200
07336780	10	7.53	50.0	3.3505	0.1563	0.29	2200	3020	3590	4360	4960	5590	7190
07336800	17	100.00	46.0	3.5844	0.3516	-0.25	3970	7650	10600	14700	18100	21700	30900
07337220	11	1.99	51.0	2.6359	0.3571	-0.01	433	864	1240	1820	2330	2920	4580
07337500*†	26	645.00	52.0	4.4822	0.2542	-0.04	30500	49700	64100	83800	99600	116000	158000
1337900*†	20	315.00	52.0	4.4542	0.2884	0.10	28100	49600	67100	93100	115000	140000	209000
07338500*	96	1226.00	52.0	4.4386	0.2686	+0.0-	27600	46300	60500	80400	96500	114000	158000
07338520	17	9.10	51.5	3.1942	0.2933	-0.25	1610	2780	3640	4810	5720	6650	8930
07338700	19	16.10	49.0	3.2926	0.2927	0.32	1890	3410	4750	6860	8770	11000	17800
07339000*†	40	787.00	55.0	4.5916	0.2624	-0.29	40200	65400	82900	106000	123000	140000	180000
07339500*†	26	181.00	52.0	4.2065	0.3458	0.29	15500	31000	45600	70000	93200	121000	211000
07339800	21	6.43	48.0	2.8778	0.4636	-0.11	770	1860	2920	4690	6340	8280	14100
07340200	20	10.60	46.0	3.1607	0.2778	-0.27	1490	2500	3220	4170	4900	5640	. 7410
07340300	13	89.40	59.0	4.2181	0.3481	-0.28	17200	32700	44900	62100	75800	90300	127000
07340500*†	37	361.00	54.0	4.4566	0.2599	0.19	28100	47100	62300	84700	104000	125000	183000
07341000*†	34	124.00	54.0	3.9889	0.3316	0.09	9640	18500	26100	38000	48500	60600	95400
07341100	21	9.48	51.0	3, 3409	0.3104	0.03	2180	4000	5490	7720	9620	11700	17600
07341200	10	260.00	53.0	4.2059	0.3942	0.30	15400	33900	52700	86100	119000	162000	305000
07343000*	¥	276.00	45.0	4.5244	0.1541	-0.47	34400	45300	51600	58600	63200	67400	76100

t Stations which have unregulated periods of record, but are now regulated.

* Stations used in developing generalized skew map.