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CONVERSION FACTORS

Inch-pound units used in this report may be converted to International

System of Units (SI) by the following conversion factors:

Multiply inch-pound units By

inch (in.) 25.40
foot (ft) 0.3048
mile (mi) 1.609
square mile (mi2) 2.590
acre-foot (acre-ft) 1,233
acre-foot (acre-ft) 0.001233
cubic foot per second (ft3/s) 0.02832
cubic foot per second 0.01093

per square mile

[(Ft3/s)/mi2]

To obtain SI units

millimeter

meter

kilometer

square kilometer

cubic meter

cubic hectometer

cubic meter per second
cubic meter per second

per square kilometer



TECHNIQUES FOR ESTIMATING FLOOD PEAK DISCHARGES FOR UNREGULATED STREAMS
AND STREAMS REGULATED BY SMALL FLOODWATER RETARDING STRUCTURES IN OKLAHOMA

By Robert L. Tortorelli and DeRoy L. Bergman

ABSTRACT

Statewide regression relations for Oklahoma were determined for estima-
ting peak discharge of floods for selected recurrence intervals from 2 to 500
years. The independent variables required for estimating flood discharge for
rural streams are contributing drainage area and mean annual precipitation.
Main-channel slope, a variable used in previous reports, was found to con-
tribute very little to the accuracy of the relations and was not used. The
regression equations are applicable for watersheds with drainage areas less
than 2,500 square miles that are not significantly affected by regulation
from manmade works. These relations are presented in graphical form for easy
application.

Limitations on the use of the regression relations and the reliability
of regression estimates for rural unregulated streams are discussed. Basin
and climatic characteristics, log-Pearson Type III statistics and the
flood-frequency relations for 226 gaging stations in Oklahoma and adjacent

states are presented.



Regression relations are investigated for estimating flood magnitude and
frequency for watersheds affected by regulation from small FRS (floodwater
retarding structures) built by the U.S. Soil Conservation Service in their
watershed protection and flood prevention program. Gaging-station data from
nine FRS regulated sites in Oklahoma and one FRS regulated site in Kansas are
used. For sites regulated by FRS, an adjustment of the statewide rural re-
gression relations can be used to estimate flood magnitude and frequency.
The statewide regression equations are used by substituting the drainage area
below the FRS, or drainage area that represents the percent of the basin un-
regulated, in the contributing drainage area parameter to obtain flood-
frequency estimates. Flood-frequency curves and flow-duration curves are
presented for five gaged sites to illustrate the effects of FRS regulation on

peak discharge.



INTRODUCTION

A knowledge of the magnitude and frequency of floods is required for the
safe and economical design of highway bridges, culverts, dams, levees and
other structures on and near streams. Flood plain management programs and
flood-insurance rates also are based on flood magnitude and frequency
information.

Flood peak reduction by U.S. Soil Conservation Service FRS (floodwater
retarding structures) affects large areas of Oklahoma. About 2,000 FRS are
present in more than 120 drainage basins in Oklahoma. About 2,500 FRS will
regulate storm runoff from about 8,500 mi2 (square miles), or 12-percent of
the State, upon completion of the present (1984) SCS (U.S. Soil Conservation
Service) watershed protection and flood prevention program. FRS are designed
to decrease main-stem flood peaks and regulate the runoff recession of single
storm events (Bergman and Huntzinger, 1981). Consideration of the flood peak
modification capability of FRS can result in more hydraulically efficient,
cost-effective culvert or bridge designs along downstream segments of FRS
regulated streams.

The purpose of this report is to provide methods for estimating the peak
discharge and frequency of floods for Oklahoma streams with a drainage area
less than 2,500 mi2 and procedures to adjust these estimates for a basin
regulated by FRS. Flood-discharge records at 226 gaging stations throughout
Oklahoma and bordering portions of Arkansas, Kansas, Missouri, New Mexico,
and Texas were used to define the statewide flood-frequency relation.
Estimates of selected frequency floods were related to basin and climatic

characteristics wusing multiple-regression techniques. These analyses



indicated that contributing drainage area and mean annual precipitation were
the most significant variables for estimating flood discharges for rural
Oklahoma streams. The regression equations derived in these analyses provide
a simple and reliable method for estimating the flood frequency of rural
streams. These equations are also presented in a graphical form for ease of
use. A technique for adjusting the regression equations for regulation by
FRS is presented.

The scope of the study is limited to peak flows and does not consider
the shape or volume of the flood hydrograph. This report provides techniques
for estimating flood discharges for streams with drainage areas smaller than
2,500 mi2 and, therefore, Sauer's report (1974a) should be used for estima-
ting flood frequency for streams with larger drainage areas. Procedures for
adjusting flood discharges for the effect of urbanizaton were not consid-
ered. The procedures outlined by Sauer (1974b), also contained in Thomas and
Corley (1977), should be utilized for basins affected by urbanization.

This report should be used in preference to an earlier report by Thomas
and Corley (1977) for estimating flood discharges for rural Oklahoma streams
with a drainage area less than 2,500 mi2 because: (1) it is based on five
years of additional annual peak data and many additional gaging-station
records; (2) it is simpler to use since the regression equations contain one
less variable; (3) it uses a skew map developed specifically for Oklahoma in
the station flood-frequency analysis; and (4) it is based on annual peak data
that were carefully edited to remove all data under the influence of

regulation from FRS.
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ESTIMATING PROCEDURES FOR FLOOD PEAK DISCHARGES

This section briefly outlines the techniques to use when estimating peak
discharge and frequency of floods for an unregulated rural site with a drain-
age area of less than 2,500 mi2 in Oklahoma. A technique is presented for
adjusting the flood peak discharge for regulation by small floodwater retar-
ding structures.

A detailed discussion of the analytical procedures utilized in this re-
port is presented in subsequent sections for the reader interested in the
development of the relations.

At the present time (1984), there are no gaged urban sites in Oklahoma
with sufficient record to define a flood-frequency curve for either unrequ-

lated or regulated urban sites.



Gaged rural unregulated sites

When estimating flood magnitude and frequency for gaged rural
unregulated sites, it 1is recommended that a weighted flood discharge
estimate, Qx(w)’ for recurrence interval x, be used (Thomas and Corley, 1977;
Thomas, W. 0., Jr., U.S. Geological Survey, written commun., 1980).

Figure 1 shows the location of the gaging stations with unregulated
periods of record used in the study. Use figure 1 to obtain the station
number of the station of interest. Using this station number, determine the
appropriate station flood discharge value, peak discharge or Qx(s)’ for
recurrence interval x, from table 11 (in back of report). The stations which
have unregulated periods of record, but are now regulated, are noted with a
dagger in table 11. If the station of interest is still unregulated, then
this flood discharge value is used with the regression estimate Qx(r) in a
weighting procedure that is explained and illustrated later in the report in

the section "Application of Techniques".
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Ungaged rural unregulated sites

Multiple regression techniques were used to relate estimates of the 2-,
5-, 10-, 25-, 50-, 100-, and 500-year floods (table 11) to basin and climatic
parameters. Of all the parameters investigated, drainage area and mean
annual precipitation were the most significant for estimating flood peaks for
ungaged rural unregulated sites.
The two parameters used in the regression equations are listed in table
11 for each station used in the analysis and are defined as follows:
1. Drainage area, (A) - the contributing drainage area of the
basin, in square miles.
2. Mean annual precipitation, (P) - the mean annual precipitation
for the basin, in inches, during the period 1931-60.
See figure 2.
The model used in the regression analysis has the following form:
0y =2 A P°
where Qx(r) = peak discharge, in cubic feet per second for
recurrence interval x,
a = regression constant,

b, and ¢ = regression coefficients, and

A, and P

1}

basin and climatic parameters as defined above.
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The following equations were computed by regression analysis:
0.59 P1.84

0,y = 0.368 A (2)
Q) = 400 A0-58 p1-3? 3)
Qo) = 132 0-37 pl.17 (4)
Qs oy = 5.3 A58 £0. 9t )
Oy = 56.7 4056 §0-60 (@)
Qoo = 196 A0-56 §0-68 -
Qg0 = 751 K055 #0-4 )

The above equations are based on Iinch-pound units of measurements.
Substitution of metric values for A and P will not provide correct answers.
To convert the final answers of discharge from cubic feet per second to the
metric equivalent of cubic meters per second, multiply by the factor,
0.02832. Equations 2 through 8 are shown graphically in figures 3 through 9
respectively.

To estimate flood magnitude and frequency for ungaged unregulated rural
sites, first determine the drainage area from the best available map or field
survey. The mean annual precipitation can be determined from figure 2.
Next, enter figures 3-9 with drainage area along the vertical scale, then
move horizonally across to the appropriate mean annual precipitation curve
and downward vertically to the discharge scale to obtain Qx(r)’ the
regression estimate. Use of figures 3-9 is illustrated in the section on

"Application of Techniques".
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Adjustment for regulation from floodwater retarding structures

When estimating flood magnitude and frequency in basiﬁs regulated by
FRS, an adjustment must be made. The regulated station peak discharges, or

R

e (s)’ for recurrence interval x, (table 1) were compared to the discharges

obtained from equations 2-8: (1) using for A the unregulated portion of the
drainage area or drainage area below the FRS, Au; and (2) using for A the
total drainage area and multiplying the result by the percent of the basir
drainage area which is unregulated by FRS, expressed as a decimal. The best
fit was obtained using for A the drainage area unregulated by FRS.

The following model will compute the adjusted regression discharge
estimate using equations 2-8:

Rer) =3 A P (%)

where R

e(r) = the regression peak discharge estimate adjusted for FRS,

cubic feet per second, for recurrence interval x,

a = regression constant,

b, and ¢ = regression coefficients,

Au, and P = basin and climatic characteristics defined above.

The basin and climatic characteristics for selected regulated basins are

shown in table 2.
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Accuracy and limitations

One indication of the accuracy of a flood peak discharge estimate is the
standard error of the estimate of the regression equation. The standard
errors of the estimate of the regression equations 2-8 can be expressed in
two ways, percent or equivalent years of record.

The accuracy in percent is the standard error of the estimate converted
to a percent and is the accuracy to be expected, on the average, two-thirds
of the time (Hardison, 1971; Tasker, G. D., U.S. Geological Survey, written
commun., 1978), That is, the difference between the estimated and actual
peak discharge for two-thirds of the estimates will be within plus or minus
one standard error of the estimate.

Hardison (1969) and Thomas (U.S. Geological Survey, written commun.,
1980) related the standard error of the estimate and streamflow variability
to equivalent years of record. When converted to equivalent years of record,
the standard error of estimate is expressed as the number of actual years of
streamflow records that would be needed at an ungaged site to provide an
estimate equal in accuracy to the standard error of estimate., The accuracy
of the unregulated regression equations 2-8 is summarized in table 3. The
accuracy of the regression equations 2-8 when adjusted for FRS reqgulation is

summarized in table 4.
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Table 3.--Accuracy of regression equations for unreqgulated streams.

Recurrence interval Standard error of Equivalent years
in years estimate, in percent of record
2 60 3
5 48 6
10 46 8
25 47 1
50 50 12
100 54 12
500 66 12
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Table 4.--Accuracy of regression equations adjusted
for reqgulation from floodwater retarding structures.

Recurrence interval Standard error of Equivalent years
in years estimate, in percent of record

2 63 2

5 50 4

10 50 5

25 52 6

50 58 6

100 66 6

500 80 3
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A large part of standard error of estimate is the result of time sam-
pling errors in the actual streamflow record. The increase in the standard
error of estimate as the recurrence interval Iincreases indicates that the
time-sampling error is larger for the higher recurrence interval floods.
Therefore, it is less reliable to estimate the larger floods than the smaller
floods with a given number of years of actual streamflow record. The 12
years of equivalent record for QSO(r) (table 3) suggest that the regression
estimate is as accurate as a QSO(s) estimate based on 12 years of actual
streamflow record. The six years of equivalent record for RSO(r) (table 4)
suggest that the regression estimate is as accurate as an RSO(s) estimate
based on six years of actual streamflow record.

The regression equations should not be used to predict flood discharges
on drainage basins larger than 2,500 mi? or those basins having values of P
outside of the range of values used to define the equations, 14.0 - 59.0 in.
(inches). Caution should be used when estimating peak flows from drainage
areas less than one miZ. Comparison of observed and predicted peak dis-
charges from those stations less than one mi? shows that the equations may
over-predict by an average of 50 percent. Equations 2-8 should not be used
for those basins significantly affected by urbanization or regulation from

large dams with controlled-outlet works.
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Estimates from equations 2-8 can be adjusted to account for the effect
of regulation from small floodwater retarding structures. The adjusted equa-
tions should not be used to predict discharges on drainage basins with a
total drainage area greater than 2,500 mi2 and caution should be used when
the unregulated drainage area is less than one mi2. The adjusted equations
can be used when the percent of regulated drainage area is not greater than
86 percent of the basin, which is the upper limit of the range of regulated
data used to check the validity of the adjustment. The adjusted equations
should only be used on those portions of a watershed regulated by SCS-built
floodwater retarding structures and are not applicable to any other type of
FRS. The adjusted equations are not meant to replace site-specific informa-
tion when only one pond is present on the watershed immediately upstream of
the point of interest. The technique should be used on watersheds when a

system of two or more FRS is present.
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Application of techniques

Estimates of flood magnitude and frequency for gaged rural unregulated
sites should be combinations of station data and regression estimates. The
estimates weighted by years of record are considered more reliable than
either the regression or station data when making estimates of flood-
frequency relations at gaged sites (Sauer, 1974a; Thomas and Corley, 1977).
The equivalent years of record concept is used to combine station estimates
with regression estimates of peak flow to obtain weighted estimates at a
gaged site. This method was described by Sauer (1974a) and Thomas and Corley

(1977) and is expressed in the following equation:

0 ) QX(S) (N) + Qx(r) (E) (10)
x(w) ~
N+ E
where Q = the weighted estimate of peak flow, in cubic feet per
x(w)

second, for recurrence interval x,

Qx(s) = the station estimate of peak flow, in cubic feet per second,
for recurrence interval x (table 11),

Qx(r) = the regression estimate of peak flow, in cubic feet per second,
for recurrence interval x (equations 2-8, or figures 3-9),

N = number of actual years record at the gaged site (table 11),

E

[}

equivalent years of record for recurrence interval x (table 3).
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The following example illustrates how a weighted estimate is calculated
for a gaged rural unregulated site and how to apply figures 3-9. The example
computation is for Skeleton Creek near Lovell, Okla. (07160500) and the
results are presented in table 5.

The columns Qx(s) and N indicate the computed flood-frequency relations
derived from the 33 years of record at station 07160500 (table 11). The
values in the column labeled Qx(r) were estimated using figures 3-9 and the
following basin and climatic characteristics:

A = 410 mi

P

29.3 in.

To use figures 3-9, first enter the contributing drainage area (410 mi2)
along the vertical scale of each figure. Then move horizonally to the mean
annual precipitation curves to 29.3 in. Move downward to the discharge scale
to obtain the Qx(r) values which are presented in table 5. Dotted lines are
plotted on figure 3 as an example. The weighted estimates, Qx(w)’ were
computed from equation 10 using the appropriate values of E from table 3.

The second example illustrates how a weighted estimate is calculated for
a gaged rural basin regulated by FRS. The example computation is for Rush
Creek near Maysville, Okla., station number 07329500, and the results are

presented in table 6.
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Table 5.--Computation of a weighted unregulated flood-frequency curve for
Skeleton Creek near Lovell, Okla.

[ft3/s, cubic feet per second]

?ecurrence Qx(s)1 N2 Qx(r)3 E4 Qx(w)s
nterval, x years years

(years) (ft3/s) (Ft3/s) (Ft3/s)

2 4610 33 6400 3 4760

5 11500 33 14300 6 11900

10 18800 33 21200 8 19300

25 32300 33 31500 11 32100

50 46100 33 42800 12 45200

100 63800 33 56600 12 61900

500 125000 33 90800 12 116000

1 Station estimate of peak flow, unregulated basin, for recurrence interval x.
2 Number of actual years of streamflow record at gaged site.

3 Regression estimate of peak flow, unregulated basin, for recurrence
interval x.

& Equivalent years of unregulated streamflow record for recurrence interval x.

5 Weighted estimate of peak flow, unregulated basin, for recurrence interval >
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Table 6.--Computation of a weighted regulated flood-frequency curve for
Rush Creek near Maysville, Okla.

[ft3/s, cubic feet per second]

pross eI TC P 11 M S
(years) (ft3/s) (ft3/s) (ft3/s)

2 5060 14 3700 2 4890

5 10200 14 7800 4 9670

10 14900 14 11300 5 14000

25 22400 14 16400 6 20600

50 29200 14 21700 6 27000

100 37100 14 28200 6 34400
500 60700 14 44200 6 55800

1 Station estimate of peak flow, reqgulated basin, for recurrence interval x.
2 Number of actual years of streamflow record at a gaged site.

3 Regression estimate of peak flow, regulated basin, for recurrence
interval x.

& Equivalent years of regulated streamflow record for recurrence interval x.

5 Weighted estimate of peak flow, regulated basin, for recurrence interval x.
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The columns Rx(s) and N indicate the computed regulated flood-frequency
relations derived from the 14 years of regulated record at station 07329500
(table 1). The column labelled Rx(r) was estimated using figures 3-9 and the

following basin and climatic characteristics:

A = 206 mi?
A = 97.0 mi?
u

P = 34.5 in.

To obtain the pegulated regression flood-frequency relations, Rx(r)’ the
application of figures 3-9 is modified by using for A the area of the drain-
age basin unregulated by FRS, AU’ The weighted regulated estimates, Rx(w)’
were then computed from equation 10 using Rx(s) instead of Qx(s) and Rx(r)
instead of Qx(r)’ and Er instead of E.

For the third example, assume an estimate of the 0100 is needed for an

ungaged FRS regulated site on Uncle John Creek in Kingfisher County. The
following data are available:
A = 155 mi?

A 65.1 mi2
u

P = 28.5 in.

The following step is required to obtain the needed peak discharge
estimate:
~ 3
R100(r) = 19,800 ft”/s from figure 8 or equation 7
Therefore, the estimate of the 100-year flood with 58 percent of the

basin regulated by FRS is 19,800 fe3/s.
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ANALYTICAL PROCEDURES

This section of the report describes the data utilized and the proce-
dures applied in analyzing these data. The technical details of the analysis
are described including the computation of station flood-frequency relations
at gaged rural unregulated sites, the regression analysis of these relations,
and the testing of assumptions and applicability of the regression analysis.
Included is a discussion of the adjustment analysis for reqgulation by FRS,
the computation of station flood-frequency relations at gaged rural regulated
sites, regression analysis of these relations and the effects of FRS on peak

discharge at regulated sites.
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Annual Peak Data

The first step in flood-frequency analysis is to collate and review all
pertinent annual peak discharge data. In addition to the Oklahoma stations,
the stations in the bordering states of Arkansas, Kansas, Missouri, New
Mexico, and Texas in the Arkansas-Red River basin were reviewed.

The flood-frequency analysis for rural unregulated streams of less than
2,500 mi2 drainage area presented in this report is based on annual peak flow
data collected at 226 gaging stations. The data were collected through
September 30, 1980, for Missouri, New Mexico, and Oklahoma and through
September 30, 1981, for Arkansas, Kansas, and Texas. The location of these
gaging stations is shown in figure 1. In this analysis, only those stations
with at least 10 years of flood peak data were used in the analysis (U.S.
Water Resources Council, 1981). These stations are also free of significant
effects from regulation by major dams or FRS and other manmade modification
of streamflow. A summary of the distribution of drainage areas, and average
observed length of record per station for those stations used in the regres-
sion analysis is given in table 7.

The flood-frequency analysis for rural regulated streams presented in
this report is based on 10 selected gaging stations with regulated periods of
record over 10 years. The location of these gaging stations is shown in
figure 10. Five of these stations also have unregulated periods of record

over ten years (table 1).
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Table 7.--Summary of drainage area distribution and
average observed length of record.

Drainage area Number of Stations Average observed
(square miles) length of record
(years)
Okla. Border States Total

Ark. Kans. Mo, N. Mex. Tex.

Less than 1 12 3 4 1 20 19
1 to 5 19 1 7 1 28 17
5to 10 17 3 3 1 24 17

10 to 50 24 8 12 1 45 19
50 to 100 2 1 1 3 7 17
100 to 500 32 8 7 3 1 4 55 24
500 to 1000 19 6 1 1 27 25
1000 to 2500 15 3 1 1 20 31
140 24 43 9 2 8 226 21
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Station flood-frequency relations of gaged rural unregulated sites

The relation of flood peak magnitude to probability of exceedance, or
recurrence interval, is referred to as a flood-frequency relation or curve.
Probability of exceedance 1s the probability of a given flood magnitude being
exceeded in any one year. Recurrence interval is the reciprocal of probabil-
ity of exceedance times 100, and is the average number of years between ex-
ceedances. For instance, a flood having a probability of exceedance of 0.04
has a recurrence interval of 25 years. This does not imply that each 25
years this flood will be exceeded, but only that a 25-year flood will be ex-
ceeded on the average of once in 25 years over a very long time period
(Thomas and Corley, 1977). In fact, it may be exceeded in successive years,
or more than once in the same year. The probability of this happening is
called risk. The procedures for making risk estimates are given by the U.S.
Water Resources Council (1981).

Flood-frequency relations were defined for selected rural unregulated
gaging stations with 10 years or more of record, following the guidelines by
U.S. Water Resources Council (1981). Logarithms of annual peak discharges
were fitted to the Pearson Type III distribution giving weight to historical
peaks and high outliers, omitting low outliers and using a generalized skew
map which was developed for Oklahoma and the bordering areas shown in figure
11. The station skew was weighted with the generalized skew map value to
give a weighted skew as recommended by U.S. Water Resources Council (1981).
Estimates of the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods and the
log-Pearson Type III statistics for these estimates are given for each sta-

tion in table 11.
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The generalized skew map published in U.S. Water Resources Council
Bulletin No. 17B (1981) was considered inadequate for this study. Therefore,
following the guidelines in that publication, an isoline skew map was devel-
oped for the area shown in figure 11. Data for stations with 20 or more
years of record and drainage areas of 10 mi2 or more were used. These sta-
tions are indicated with an asterisk in table 11. The average of the sum of
the squared differences between the observed station skew and isoline values,
mean-square error, was computed and utilized in weighting the station and
generalized skew map values. This weighted skew coefficient, which was used
in the final computation of the flood-frequency relations, is the skew shown
in table 11.

The mean-square error, using all 226 stations, between U.S. Water
Resources Council (1981) map skews and station skews was 0.251; and between
the skews determined from figure 11 and station skews 0.244, The latter
mean-square error was used in weighting the station and generalized skew map
values. The mean-square error, using only the long term stations that were
utilized to develop figure 11, between U.S. Water Resources Council (1981)
map skews and station skews was 0.233; and between the skews determined from

figure 11 and station skews was 0.108.
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Regression analysis of gaged rural unregulated sites

Estimates of flood magnitude and frequency commonly are needed at un-
gaged sites. Therefore, it 1s necessary to transfer flood-frequency data
from gaged sites to ungaged sites. This can be achieved by defining regres-
sion relations between peak discharges of selected frequencies and basin or
climatic characteristics measured from maps or taken from readily available
reports (Thomas and Corley, 1977). Multiple regression techniques were used
to relate estimates of the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods
(given in table 11) to basin and climatic characteristics.

Many parameters were investigated in the multiple regression analysis in
an attempt to find the best relations for estimating flood peak discharges.
The parameters Iinvestigated as possible predictors of flood discharge are
shown in table 8 and are available in a U.S. Geological Survey basin and
streamflow characteristics computer file (U.S. Geological Survey, 1983).
These parameters were readily available for bordering state gaging stations.

Of all the parameters investigated, the two found most significant were
contributing drainage area and mean annual precipitation. A comparison was
made of a two-parameter model, using drainage area and mean annual precipita-
tion, and a three-parameter model, using drainage area, mean annual
precipitation, and main-channel slope. The average difference between the
residuals of the discharge estimates, expressed as a percent of observed sta-
tion discharge, for all stations and frequencies was less than one-half of
one percent, Therefore, the two-parameter regression model was used to

define the regression equations.
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Table 8.--Parameters investigated as possible predicators of
flood discharge for unregulated rural streams.,

Parameter Code

Name Description
AREA Total drainage area, in square miles, including non-
contributing areas.
A Drainage area, in square miles, that contributes to surface
runoff.
SLOPE Main-channel slope, in feet per mile, average of elevations

at 10 and 85 percent of channel length.

LENGTH Stream length, in miles, measured along channel from gage
to basin divide.

ELEV Mean basin elevation, in feet above mean sea level, measured
from topographic maps by transparent grid sampling method
(20 to 80 points in basin were sampled).

STORAGE Area of lakes, ponds, and swamps in percent of contributing
drainage area, measured by grid sampling method.

FOREST Forested area, in percent of contributing drainage area,
measured by grid sampling method.

LAT GAGE Latitude of stream-gaging station in decimal degrees.
LNG GAGE Longitude of stream-gaging station in decimal degrees.
P Mean annual precipitation, in inches, from U.S. Weather

Bureau series, "Climates of States".
124,2 Precipitation intensity; 24-hour rainfall, in inches,

expected on the average of once each 2 years. (Estimated
from U.S. Weather Bureau Technical Paper 40).
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The results of a correlation analysis of the possible predictor param-
eters provided some insight as to why the two parameters used give a good
prediction. In Oklahoma, the dralnage area is highly correlated with stream
length and the mean annual precipitation 1s highly correlated with mean basin
elevation, forested area, longitude of stream-gaging station and precipita-
tion intensity. Main-channel slope is not highly correlated with any of the

parameters.
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Testing assumptions and applicability of regression equations

Plots of the residuals, the difference between the observed and pre-
dicted values of the dependent value in the regression (ox(s)- ox(r))’ were
used to check the linearity of the regression relations (Thomas and Corley,
1977). Flood peak discharge residuals for all seven frequencies were plotted
against contributing drainage area, mean annual precipitation and years of
record. These plots indicated no trend throughout the range of variables
used in the analysis. The residuals were also plotted against main-channel
slope and also indicated no trend. Therefore, the hypothesis of linearity of
the regression relations was accepted.

The regression relations were checked for a possible regionalization
effect. The residuals from equations 2-8 were plotted on computer-generated
maps to check for regional bias. These computer plots did not indicate any
significant regional trends. As an additional check for regional trends, the
study area was divided into four regions according to the following range of

mean annual precipitation values:

A\
it

Region 1 24 in.
Region 2 > 24 in., <= 33 in.
Region 3 > 33 in., <= 44 in,

Region 4 > 44 in.
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Within each region, the 0100 residuals, expressed as a percent of the
observed station 100-year peak discharge, 0100(5), were sorted by gage lati-
tude. This listing also did not indicate any regional trends. Therefore,
equations 2-8 are considered applicable statewide for Oklahoma within the
limitations given in an earlier section of this report.

Comparisons were made of the estimates from equations 2-8 with the esti-
mates made by Thomas and Corley (1977). The comparisons of the percent re-
siduals indicate that regression estimates from this study average about 10
percent higher, when averaged through all frequencies, than Thomas and Corley
(1977) estimates. A comparison of percent residuals by each frequency shows
no difference between the regression estimates of 02, with the differences
indicated at all the other frequency floods.

A comparison was made of the percent residuals of the discharge esti-
mates from equations 2-8 and from equations 2-8 developed by Thomas and
Corley (1977) sorted by drainage area distribution shown in table 7. These
comparisons indicate there 1is little difference when the drainage area is
greater than 500 miz, with most of the differences when the drainage area is
less than 500 mi2. These differences apparently result because.of a greater
areal sampling of gaging stations (figure 1) and because most of the stations
removed from the analysis in this study due to poor or suspect record were
less than 500 mi2. Also the rainfall-runoff modeling results used by Thomas
and Corley (1977) probably account for some of the difference because the
synthetic frequency curves tended to have flatter slopes than the observed
frequency curves causing the higher interval floods to be underestimated

(Thomas, W. 0., JIr., U.S. Geological Survey, written commun., 1984),
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General description of floodwater retarding structures

This report includes results of a study of the effects of small struc-
tures on peak flow. These structures are FRS built by the SCS and used in
their watershed protection and flood prevention program.

A typical FRS consists of an earth dam, a valved drain pipe, a drop-
inlet principal spillway and an open-channel earthen emergency spillway. The
principal spillway 1is ungated and automatically limits the rate at which
water can flow froh the reservoir. Most of the structures built in Oklahoma
have release rates of 10 to 15 (ft3/s)/mi2 (cubic feet per second per square
mile). The space in the reservoir between the elevation of the principal
spillway crest and that of the emergency spillway crest is used for flood-
water detention. Structures are designed so that the emergency spillway does
not operate on an average of more than once in 25 years to once in 100
years. (See Moore, 1969).

In Oklahoma, most FRS are designed to draw down the floodwater-retarding
pool in 10 days or less. The 10-day drawdown requirement serves two princi-
pal purposes. First, most vegetation in the floodwater-retarding pool will
survive up to 10 days of inundation without destroying the viability of the
stand. Secondly, a 10-day drawdown period will significantly reduce the
impact from repetitive storms. (Riley, R. C., U.S. Soil Conservation

Service, written commun., 1984).
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These dams are of small to medium size, with embankment heights ranging
generally from 20 to 60 ft (feet) and their drainage areas ranging generally
from 1 to 20 mi2. Their storage capacity is limited to 12,500 acre-ft (acre-
feet) for floodwater detention and 25,000 acre-ft total for combined uses,
including recreation, municipal and industrial water, and others. (See
Moore, 1969).

A cross section of a typical upstream FRS is shown in figure 12.

Emergency spillway design, including storage above the emergency crest
and capacity of the emergency spillway, varies depending upon watershed loca-
tion and size of the FRS. Details of design may be found in the SCS National

Engineering Handbook, Section 4 (U.S. Soil Conservation Service, 1972).
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General effects of floodwater retarding structures

The generalized effects of a system of upstream FRS on a watershed
stream flow hydrograph at a point downstream from the FRS is shown in figure
13.

The flood peak discharge is reduced and this reduction is related to the
percent of the basin regulated. The slope of the recession segment of the
hydrograph will decrease as the number of FRS where the principal spillway is
flowing increases. (Coskun and Moore, 1969; DeCoursey, 1975; Hartman and
others, 1967; Moore, 1969; Schoof and others, 1980).

Several factors significantly influence the effectiveness of the FRS in
reducing peak flow on the main stem downstream from the FRS. Those factors
include rainfall distribution over the watershed, contents of the reservoirs
before the storm, and distribution of FRS in the watershed. For example,
rainfall occurring only on the basin area controlled by FRS will generally
result in greater peak reduction. If the structures are empty before the
storm, they are more effective in reducing the flood peak. Structures loca-
ted in the upper end of an elongated basin are less effective than those in a
fan-shaped watershed. (Coskun and Moore, 1969; Hartman and others, 1967;

Moore, 1969; Schoof and others, 1980).
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Figure 13.--The generalized etfects of runoff retention on the streamflow hydrograph.
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An example of a small watershed regulated by three FRS is presented to
i1lustrate the general effects of FRS. In Case 1 the pond water surface was
at the principal spillway elevation at the beginning of rainfall, whereas in
Case 2 the pond water surface was at half the floodwater-detention-storage-
capacity pool elevation at the beginning of rainfall.

The study basin is located on Fall Creek (U.S. Soil Conservation
Service, 1957). The regulated drainage area totals 7.94 mi or 74 percent of
the watershed, whereas the unregulated drainage area is 2.80 mi2 or 26
percent of the watershed (figure 14).

The floodwater-detention-storage capacity of each FRS was set equal to
the runoff from the 25-year, 6-hour duration rainfall as determined from
National Weather Service Technical Paper No. 40 (Hersfield, 1961). This
constraint is synonymous with the "worst possible case," because many FRS
actually have larger floodwater-detention-storage capacities available and
also have part of the sediment-pool-storage capacity available for flood
detention.

Four rainfall recurrence intervals for the 6-hour duration rainfall were
run for the design storms: (1) 25-year, (2) 50-year, (3) 100-year, and (&)
500-year (table 9). The first three frequency rainfalls were taken from
National Weather Service Technical Paper No. 40 (Hersfield, 1961), and the
500-year frequency rainfall was obtained graphically from an extrapolation of
a plot of the 25-, 50-, and 100-year frequency rainfalls on log-probability
paper. The SCS emergency spillway design storm distribution was used as the
temporal storm pattern for all frequencies (U.S. Soil Conservation Service,

1972).
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Table 9.--Six-hour duration rainfall and resulting
runoff for Fall Creek study watershed.

Rainfall and runoff in inches
for indicated recurrence interval in years.

25 50 100 500
Rainfall 5.10 5.80 6.25 7.20
Runoff 4,07 4.75 5.19 6.12
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The SCS hydrologic computer program Technical Release No. 20 (U.S. Soil
Conservation Service, 1965) was used to compute and route runoff hydrographs
through the three FRS and to the downstream cross-section. The inflow peak
discharges used for the FRS were equal to those that would be computed by
using equations 5 through 8. Also the peak discharges used for the
unregulated sub-basin were equal to those that would be computed by using
equation§ 5 through 8. The resulting peak discharges below the FRS ponds A
through C and at the downstream cross-section in the Fall Creek study
watershed are shown in Table 10.

The 100-year hydrograph is typical of the general effects in both cases,
except in the Case 1, 25-year hydrograph where the emergency spillways of the
FRS did not flow.

The 100-year hydrograph at the stream cross-section, Case 1, 1is
illustrated in figure 15. The unregulated sub-basin contributes practically
all of the major peak. A smaller peak occurs later and is a composite of the
regulated outflow and the wunregulated sub-basin discharge. At all
frequencies, the major peaks are the peak discharges of the unregulated

sub-basin increased by the FRS principal spillway outflows.
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Table 10.--Peak discharges at floodwater retarding
structure ponds and downstream cross-section

[FRS, floodwater retarding structure]

Drainage Peak Discharge in Cubic Feet per Second

LOCATION Area For Indicated Recurrence Interval in Years
Square
Miles 25 50 100 500
FRS POND A 1.00
Inflow 1210 1630 2100 3430
Outflow-Case 19 7 133 210 360
Outflow-Case 2P 290 380 450 660
FRS POND B 4,27
Inflow 2720 3640 4780 7830
Outflow-Case 14 30 340 600 1090
Outflow-Case 2b 930 1260 1480 1920
FRS POND C 2,67
Inflow 2130 2790 3680 6010
Outflow-Case 12 19 180 340 640
Outflow-Case 2P 580 760 890 1180

TOTAL REGULATED OUTFLOW 7.94

Case 14 56 580 1060 2000
Case 2b 1680 2290 2720 3610
UNREGULATED SUB-BASIN 2.80 2150 2920 3740 6200

TOTAL AT CROSS-SECTION 10.74
Case 14 2210 2970 3790 6250
Case 2b 2400 3190 4070 6830

4 Case 1 - Pond water surface at principal spillway elevation at beginning of
rainfall,

b Ccase 2 - Pond water surface at half floodwater-detention-storage-capacity
pool elevation at beginning of rainfall.
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The 100-year hydrograph at the stream cross-section, Case 2, is illus-
trated in figure 16. The unregulated sub-basin contributes about 90 percent
of the first peak, as compared to about 98 percent in Case 1, because the FRS
emergency spillways have started to discharge. The second peak is a compos-
ite of the regulated sub-basin outflows and the unregulated sub-basin dis-
charge. The second-peak discharge is approximately the same magnitude as the
first-peak discharge in the 25- and 50-year hydrographs, but it is smaller
than the first-peak discharges in the 100- and 500-year hydrographs. At all
frequencies, the peak discharges of the unregulated sub-basin are increased
by about 10 percent -- an amount that is well within the accuracy of the
regression equations (table 4).

Therefore, structures in a FRS regulated watershed are effective in re-
ducing the peak flow of the total drainage area to essentially the same mag-
nitude of unregulated portion of the watershed. The flow contribution of the
reqgulated portion of the basin is "retarded" or "lagged" by the FRS. In
larger FRS requlated basins, the impact of a large rainfall is further de-
creased by greater distance, or time of travel, between structures; more
channel miles to provide greater channel storage; and an unequal distribution

of rainfall.
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These examples are a "worst case". Class "a" structures are designed to
flow through the emergency spillway an average of once in 25 years. Over 95
percent of all FRS bullt to date in Oklahoma have been class "a" structures.
In Oklahoma, the SCS has recorded an emergency spillway flow on the average
of once for every 134 structure-years of record. The principal reasons why
emergency spillways have not functioned as often as anticipated are (Riley,

R. C., U.S. Soil Conservation Service, written commun., 1984):

1. The water level in the reservoir prior to the storm was below
the principal spillway.

2. Antecedent moisture conditions prior to major storms have been
more often dry rather than wet.

3. Soill profile storage in the floodwater retarding pool is not
counted but may be quite significant for some sites and for
certain solls.

4, Additional detention storage is often added where it is rela-
tively economical or where poor emergency spillway conditions
exist. Therefore, many class "a" structures have more than

25-year detention storage.
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Station flood-frequency relations of gaged regulated sites

Flood-frequency relations were defined for the 10 selected rural gages
regulated by FRS. The procedures used to define these relations were the
same as utilized in the previous section on unregulated sites. Estimates of
the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods and log-Pearson statis-
tics for these estimates are given for each station in table 1.

The frequency relations for the FRS regulated sites were computed using
weighted skew values, utilizing the regional skew values based on the unregu-
lated sites. This method was used since several of the regulated station
skew values were close to the same value as the unregulated station skew or
the regionalized skew (for stations with no unregulated record 10 years or
greater). The FRS regulated data analysis shows that as the regulated period
of record increases, the regulated station skew approaches the value of the
unregulated station skew.

Five of these sites also include unregulated periods of record of 10
years or more in length and these data are also listed in table 11. The
years missing from the end of the unregulated period to the beginning of the
regulated period represent the period during which most of the FRS were
constructed on the watershed upstream from the gage. Data from station
07324400, Washita River near Foss, Okla., was used as Soldier Creek near
Foss, Okla., because during the period of record 1962-80, all storm runoff

flowing by that gage was contributed entirely by Soldier Creek.
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Regression analysis of gaged rural regulated sites

Regression relations were defined between peak discharges of selected
frequencies and basin and climatic characteristics. The parameters investi-
gated included all those in table 8 except FOREST and STORAGE. A was defined
as the drainage area below the influence of the FRS and represents the unreg-
ulated portion of the basin. In addition three more parameters were investi-
gated:

PERCUNR percent of the drainage area in the basin unregulated
by FRS,

DETSTOR actual detention storage of the FRS, in acre-feet per
square mile of the total drainage basin,

MDETSTOR estimated detention storage, in inches
= (I24,2)(100-PERCUNR)

At least three parameters are required to obtain reasonable accuracy.
Three different sets of three parameters produced equivalent accuracy: (1)
AREA, P, and PERCUNR; (2) A, P, and DETSTOR; and (3) AREA, P, and MDETSTOR.

The following three sets of regression relations on the 10 regulated
station data set were run: (1) all regulated data; (2) regulated data from
those basins that had unregulated periods of record; and (3) regulated data
from those basins with regulated periods of record only. Covariance analysis
on a 2-variable model using A and P indicated that both sets of regulated
data, (2) and (3), were not significantly different and could be pooled

together.
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Since there was a scarcity of data to define regulated regression rela-
tions, it was decided to check if a modification of the unregulated regres-
sion relations, which had a large data base, would give a reasonable compar-
ison to the regulated station flood-frequency curves defined by the 10 sta-
tion records. The station flood-frequency relations were compared to:

(1) using the unregulated portion of the drainage area, Au, as A in equations
2-8 (Livingston, 1981); and (2) using the entire drainage area in equations
2-8 and multiplying the result by the percent drainage area unregulated,
PERCUNR, expressed as a decimal. The residuals between the observed station
peak discharges and the estimates obtained by both modifications of the
statewide unregulated regression equations were used to compute standard
errors. The method of using the unregulated area as the contributing drain-
age area had a much smaller standard error at each flood frequency. There-

fore, that method is the best adjustment for regulation from FRS.
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Effects of floodwater retarding structures

Using the data from the five sites that had both unregulated and requ-
lated periods of record of 10 years or more, the effects of FRS on peak dis-
charge and flow duration curves of these particular sites were investigated.
The effect of FRS on peak flood discharge is especially noticeable when the
flood-frequency from before and after FRS construction periods is plotted on
the same graph (fig. 17-21). 1In each case, flood peaks are reduced for all
recurrence intervals.

The structures should start to lose their flood peak reduction
effectiveness at a recurrence interval greater than the 500-year frequency
and the regulated frequency curve should start to converge toward the
unregulated frequency curve. However, this hypothesis is not supported by
the data because there is insufficient length of record at FRS regulated
sites.

Flow duration curves for these five stations with the before and after
periods plotted on the same graph also indicate a significant effect in that

mean daily discharges are reduced at the higher discharges (fig. 22-26).
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SUMMARY

Observed flood peak data at 226 unregulated rural sites in Oklahoma and
adjacent States were used to compute regression equations defining flood-
frequency relations for sites draining less than 2,500 miZ. A new general-
ized skew map for Oklahoma was developed for the flood-frequency relations
utilized in the regression analysis. These equations are not applicable to
basins significantly affected by regulation. Methods for estimating flood
discharges for urban areas in Okahoma were not analyzed due to insufficient
data. The methods in Sauer (1974b) and Thomas and Corley (1977) should be
used for urban areas.

The flood-frequency relations of 10 selected sites regulated by small
floodwater retarding structures (FRS) built by U.S. Soil Conservation Service
were compared with modifications of the unregulated regression equations.
Comparisons indicate that the magnitude and frequency of flooding at ungaged
sites where flow is regulated by FRS can best be determined by replacing
total drainage area with the unregulated portion of the drainage area (area
below the FRS) in the statewide regression equation. The effects of FRS on
flood-frequency relations and flow duration curves were shown for five regu-

lated sites that had both unregulated and regulated periods of record.
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