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Abstract

The detour index of a connected graph is defined as the sum of the detour distances

(lengths of longest paths) between unordered pairs of vertices of the graph. A graph with

n vertices and n+1 edges is called a bicyclic graph. In this paper, we consider the detour

indices of bicyclic graphs with two cycles or three cycles and determine the graphs with

the first four smallest detour indices in the class of n-vertex bicyclic graphs for n ≥ 5.

1 Introduction and Preliminaries

Let G be a connected graph with the vertex set V (G) and edge set E(G). The distance

between vertices u and v in G is the length (number of edges) of a shortest path between

them, denoted by d(u, v|G) [1, 2]. The Wiener index of the graph G is defined as [3, 4]

W (G) =
∑

{u,v}⊆V (G)

d(u, v|G).

As one of the oldest topological indices, the Wiener index has found various applications

chemical research [5–7] and has also been studied extensively in mathematics [7–10]. See

[11–13] for more new results on the Wiener index. The detour distance [14, 15] (also
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known under the name elongation) between vertices u and v in G is the length of a

longest path between them, denoted by l(u, v|G). The detour index of the graph G is

defined as [14–17]

ω(G) =
∑

{u,v}⊆V (G)

l(u, v|G).

The detour index has been applied to chemistry, especially in quantitative structure-

activity relationship (QSAR) studies, see [14–19] for more details.

For the computation aspect of the detour index, some computer methods were dis-

cussed in [16,20–22]. Recently, Zhou and Cai [23] established some basic mathematical

properties of the detour index, especially, they gave bounds for the detour index, deter-

mined the graphs with minimum and maximum detour indices respectively in the class of

n-vertex unicyclic graphs with cycle length r, where 3 ≤ r ≤ n − 2, and determined the

graphs with the first three smallest and largest detour indices respectively in the class of

n-vertex unicyclic graphs for n ≥ 5. Then in [24, 25] Qi and Zhou studied the detour index

of unicyclic graphs whose vertices on the unique cycle have degree at least three and the

unicyclic graphs with given maximum degree, respectively. In [26], they also studied the

Hyper-detour index of unicyclic graphs. Qi [27] determined the graphs with the smallest

and largest detour indices respectively in the class of n-vertex bicyclic graphs with ex-

actly two cycles for n ≥ 5. Du [28] determined the graphs with the second and the third

smallest and largest detour indices in the class of n-vertex bicyclic graphs with exactly

two cycles for n ≥ 6. In this paper, we consider the detour indices of bicyclic graphs with

two cycles or three cycles and determine the graphs with the first four smallest detour

indices in the class of n-vertex bicyclic graphs for n ≥ 5.

Let Sn, Pn and Cn be respectively the n-vertex star, path and cycle. A connected

graph G with n vertices is a unicyclic graph if |E(G)| = n and is a bicyclic graph if

|E(G)| = n+ 1. Obviously a bicyclic graph contains either two or three cycles.

Lemma 1 ([8]) Let T be an n-vertex tree different from Sn and Pn. Then (n − 1)2 =

W (Sn) < W (T ) < W (Pn) =
n3−n

6
.

For a connected graphG with u ∈ V (G), letD(u|G) =
∑

v∈V (G) d(u, v|G) and let L(u|G) =∑
v∈V (G) l(u, v|G). Then W (G) = 1

2

∑
u∈V (G) D(u|G), ω(G) = 1

2

∑
u∈V (G) L(u|G).

Lemma 2 ([23]) Let v be a vertex on the cycle Cn with n ≥ 3. Then L(v|Cn) =
1
4
(3n2−

4n + n0) and ω(Cn) =
1
8
n(3n2 − 4n + n0) where n0 = 1 if n0 is odd and n0 = 0 if n0 is
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even.

Lemma 3 ([27]) Let x be a cut-vertex of a connected graph G, and let u and v be vertices

occurring in different components which arise upon the deletion of x. Then

l(u, v|G) = l(u, x|G) + l(x, v|G)

Obviously, if w is a pendent vertex of a connected graph G order n and y is the unique

neighbor of w, then L(w|G) = L(y|G) + n− 2.

For a graph G, let |G| = |V (G)|.

Lemma 4 ([25]) Let x be a cut vertex of a connected graph G and G−x consists of two

vertex–disjoint subgraphs G′
1 and G′

2. Let Gi be the subgraph of G induced by V (G′
i)∪{x},

i = 1, 2. Then ω(G) = ω(G1) + ω(G2) + (|G1| − 1)L(x|G2) + (|G2| − 1)L(x|G1).

2 Bicyclic Graphs with Small Detour Indices

Let Bn be the set of n-vertex bicyclic graphs. Let B1
n and B2

n be the sets of n-vertex

bicyclic graphs respectively with two cycles and with three cycles. Then, Bn= B1
n∪B2

n.

Let Gp,q
n and Gp,r,q

n be the sets of n-vertex bicyclic graphs respectively with two cycles Cp

and Cq without common path, and with three cycles Cp+r−2, Cq+r−2 and Cp+q−2, where

2 ≤ r ≤ p ≤ q are all integers and Cp+r−2, Cq+r−2 have a common path Pr.

For integers 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ r, Tui
, Tvj , Twk

are trees attached at

ui, vj, wk vertices of Pp, Pq and Pr respectively. We denote a bicyclic graph with three

cycles by Gp,r,q
n (Tu1Tu2 . . . Tup , Tv1Tv2 . . . Tvq , Tw1Tw2 . . . Twr), where

∑p
i=1 |Tui

|+∑q−1
j=2 |Tvj |+∑r−1

k=2 |Twk
| = n. In particular, if only one tree Tu1(= Tv1 = Tw1) is a star with center vertex

u1, and the other trees Tui
, Tvj , Twk

(i, j, k �= 1) are all trivial, the graph is denoted by Sp,r,q
n

(see Figure 1). Let us define an n-vertex graph Θp,r,q
n in Gp,r,q

n to be a graph with all trees

are trivial, i.e., |T (ui)| = |T (vj)| = |T (wk)| = 1 for each i, j, k. Obviously, p+r+q−4 = n.

Theorem 1 Let G ∈ Gp,r,q
n , where p, q ≥ 3, r ≥ 2 and p + q + r − 4 ≤ n. Then

ω(G) ≥ ω(Sp,r,q
n ) with equality if and only if G = Sp,r,q

n .

Proof. Let G0 be a graph with the smallest detour index among graphs Gp,r,q
n . We need

only to show that G0 = Sp,r,q
n .

Claim 1. Tui
, Tvj , Twk

are all stars with their centers at ui, vj, wk for each i, j, k.
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u1(=v1=w1)

wk vjui

up(=vq=wr)

Tui TvjTwk

G n   (Tu1Tu2 
... Tup,Tv1Tv2

 ...
  Tvq,Tw1Tw2 ... Twr)

p,r,q

u1(=v1=w1)

wk vjui

up(=vq=wr)

 S
p,r,q
n  

Figure 1: The graphs Gp,r,q
n (Tu1Tu2 . . . Tup , Tv1Tv2 . . . Tvq , Tw1Tw2 . . . Twr) and Sp,r,q

n

Suppose without loss of generality that the tree Tui
is not a star. Let G1 be obtained

from G0 by deleting all edges of Tui
and connected all isolated vertices to ui; that is, the

tree rooted at ui in G1 and T ′
ui
is a star with its center at ui. For G0, ui is a cut vertex, and

Tui
and G0 − (V (Tui

) \ {ui}) are two induced subgraphs. By Lemma 1, ω(T ′
ui
) < ω(Tui

).

On the other hand, it is easily seen that L(ui|T ′
ui
) < L(ui|Tui

). Then ω(G1) < ω(G0) from

Lemma 4, which is a contradiction to the choice of G0. Hence, Claim 1 follows.

Claim 2. Only one tree of Tui
, Tvj , Twk

is nontrivial for all i, j, k.

Without loss of generality, suppose that Tua and Tub
are nontrivial. By Claim 1, we

know that Tua and Tub
are both stars. If L(ua|G0) ≥ L(ub|G0), let G2 be obtained from

G0 by deleting a pendent vertex x of Tua and attaching it to ub. By Lemmas 3 and 4, it

follows that ω(G0)−ω(G2) = L(x|G0)−L(x|G2) = [L(ua|G0)+n−2]−[L(ub|G2)+n−2] =

L(ua|G0)−L(ub|G2). Since L(ub|G2) = L(ub|G0)−[l(ub, ua)+1]+1 = L(ub|G0)−l(ub, ua),

ω(G0)− ω(G2) = L(ua|G0)− L(ub|G0) + l(ub, ua) > 0. If L(ua|G0) < L(ub|G0), let G2 be

obtained from G0 by deleting a pendent vertex y of Tub
and attaching it to ua. Similarly,

we have ω(G0)− ω(G2) > 0. This contradicts the choice of G0. Hence, Claim 2 follows.

Claim 3. Only one tree of Tu1 and Tup is nontrivial.

For G0, suppose that only Tui
(i �= 1, p) is nontrivial and |Tui

| = α. Let G3 be the

graph constructed from G0 by deleting all pendent vertices of Tui
and connecting all

isolated vertices to u1, that is, G3 = Sp,r,q
n . Let G be constructed from G0 by deleting all

pendent vertices of Tui
, that is, G = Θp,r,q

n−|Tui |+1. It follows that ω(G0)−ω(G3)=[L(ui|G)−
L(u1|G)](α − 1) by Lemma 4. By the definition of detour distance, we know L(ui|G) >

L(u1|G). It implies that ω(G0) > ω(G3), which is a contradiction to the choice of G0.

Hence, Claim 3 follows.
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Claim 1, 2, 3 yield Theorem 1. �

We need the following three Lemmas to prove the Theorem 2. Note that ω(G) =

1
2

∑
u∈V (G) L(u|G) = L(w|G) +

∑
{u,v}⊆V (G)\{w}

l(u, v|G)

Lemma 5 ω(Θp,r,q
n ) > ω(Sp,r−1,q

n ) for r ≥ 3.

Proof. Let Θ = Θp,r,q
n , where p+ q+ r−4 = n. Let Θ′ be constructed from Θ by deleting

the vertex wr−1, adding edge wr−2wr, and attaching the isolated vertex x to u1 as a pendent

vertex. It implies that Θ′ = Sp,r−1,q
n . Considered the transformation from Θ to Θ′, we

found that only the detour distance between x and any other vertex has the possibility

of increasing, the increment is denoted by integer λ1. That is λ1 = L(x|Θ′) − L(x|Θ).

The detour distance between any other two vertices will reduce or keep to be unchanged.

That is
∑

{u,v}⊆V (Θ′)\{x}
l(u, v|Θ′) − ∑

{u,v}⊆V (Θ)\{x}
l(u, v|Θ) ≤ 0. Now we will to show that

λ1 < 0, which will lead to ω(Θ′) < ω(Θ).

λ1 = L(x|Θ′) − L(x|Θ) = L(u1|Θ′) + n − 2 − L(x|Θ). It is easy to know that∑
y∈V (Pp)∪V (Pq)\{wr}

lΘ′(u1, y) =
∑

y∈V (Pp)∪V (Pq)\{wr}
lΘ(u1, y), denoted by m (integer). Thus

L(u1|Θ′) =
r−1∑
k=2

lΘ′(u1, wk) +m+ lΘ′(u1, x) =
1
2
(r − 2)(2q + r − 5) +m+ 1 and L(x|Θ) =

L(wr−1|Θ) ≥ L(wr|Θ) + n − 2 = L(u1|Θ) + n − 2 =
r∑

k=2
lΘ(u1, wk) + m + n − 2 =

1
2
(r − 1)(2q + r − 4) +m+ n− 2. Since n = p+ q + r − 4, we obtained λ1 ≤ p− n < 0.

Therefore, Lemma 5 holds. �

In the following Lemmas 6 and 7, we consider the cases of r = 2, p ≥ 4 and r = 2, p =

3, q ≥ 4. The proofs of them are similar to that of Lemma 5.

Lemma 6 ω(Θp,2,q
n ) > ω(Sp−1,2,q

n ) for p ≥ 4.

Proof. Let Θ = Θp,2,q
n , where p + q − 2 = n. We construct the graph Θ′′ from Θ by

deleting the vertex up−1, adding edge up−2up, and attaching the isolated vertex z to u1

as a pendent vertex. This implies that Θ′′ = Sp−1,2,q
n . Since L(z|Θ′′) = L(u1|Θ′′) + n −

2 = L(u1|Cn−1) + n − 1 and L(z|Θ) > L(up−1|Cn) = L(u1|Cn), by Lemma 2 we obtain

L(z|Θ′′)−L(z|Θ) < L(u1|Cn−1)−L(u1|Cn) + n− 1 = 1
4
(−2n+ 3− rn + rn−1) < 0, where

rn = 1 for odd n and rn = 0 for even n. Thus, ω(Θ′′) < ω(Θ). Hence Lemma 6 holds. �

Lemma 7 ω(Θ3,2,q
n ) > ω(S3,2,q−1

n ) for q ≥ 4.
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v2
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3,2,3

u2

u3

u1

a-1

d-1

b-1

c-1

Sn(a,b,c,d)

u1

v2

u3

u2

n-4

Figure 2: The graphs S3,2,3
n and Sn(a, b, c, d)

Proof. Let Θ = Θ3,2,q
n , where q + 1 = n. We constructed the graph Θ′′′ from Θ by

deleting the vertex vq−1, adding edge vq−2vq, and attaching the isolated vertex h to u1 as

a pendent vertex. It implies that Θ′′′ = S3,2,q−1
n .

We will show that L(h|Θ′′′) − L(h|Θ) < 0. In fact, since L(h|Θ′′′) = L(u1|Θ′′′) +

n − 2 = L(u1|Cn−1) + n − 1 and L(h|Θ) = L(h|Cn) + 1, we have L(h|Θ′′′) − L(h|Θ) =

L(u1|Cn−1)− L(h|Cn) + n− 2 = −	n
2

 < 0. Hence, Lemma 7 holds. �

Theorem 2 Among graphs of B2
n for n ≥ 4, S3,2,3

n is the graph with the smallest detour

index, which is equal to n2 + 3n− 11.

Proof. At first, we will prove that ω(Sp,r,q
n ) > ω(Sp,r−1,q

n ) for r ≥ 3. For Sp,r,q
n , let us

delete the vertex wr−1, connect wr−2 and wr, and attach the isolate vertex y to u1 as a

pendent vertex. Then we obtain a graph Sp,r−1,q
n . Since u1 is a cut-vertex of Sp,r,q

n , Tu1

and G′ are two induced subgraphs of Sp,r,q
n by V (Tu1) and V (Sp,r,q

n \Tu1)∪{u1}. u1 is also

a cut-vertex of Sp,r−1,q
n , and Tu1 and G′′ are two induced subgraphs of Sp,r−1,q

n by V (Tu1)

and V (Sp,r−1,q
n \ Tu1) ∪ {y} ∪ {u1}. Here, G′ = Θp,r,q

n−|Tu1 |+1 and G′′ = Sp,r−1,q
n−|Tu1 |+1. Then

ω(G′) > ω(G′′) by Lemma 5. Since

L(u1|G′)− L(u1|G′′) =
r−1∑
k=2

lG′(u1, wk)− [
r−2∑
k=2

lG′′(u1, wk) + lG′′(u1, y)]

= (r − 2)(
r − 3

2
+ q)− (r − 3)(

r − 4

2
+ q)− 1

= q + r − 4 > 0

and by Lemma 4, we have

ω(Sp,r,q
n )− ω(Sp,r−1,q

n ) = ω(G′) + |Tu1 |L(u1|G′)− ω(G′′)− |Tu1 |L(u1|G′′) > 0,
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which implies that ω(Sp,r,q
n ) > ω(Sp,r−1,q

n ). The rest may be deduced by analogy, then

ω(Sp,r,q
n ) > ω(Sp,r−1,q

n ) > ω(Sp,r−2,q
n ) > . . . > ω(Sp,2,q

n ). (1)

Secondly, by Lemmas 4 and 6 we obtain

ω(Sp,2,q
n ) > ω(Sp−1,2,q

n ) > ω(Sp−2,r,q
n ) > . . . > ω(S3,2,q

n ). (2)

By Lemmas 4 and 7, we have

ω(S3,2,q
n ) > ω(S3,2,q−1

n ) > ω(S3,2,q−2
n ) > . . . > ω(S3,2,3

n ). (3)

Hence, the result holds. �

For positive integers a, b, c, d, let Sn(a, b, c, d) ∈ G3,2,3
n , formed by attaching a − 1,

b− 1, c− 1 and d − 1 pendent vertices to u1, u3, v2, and u2 of Θ3,2,3
4 respectively, where

a ≥ b, c ≥ d and a+b+c+d = n (see Figure 2). Let Λn = {Sn(a, b, c, d)|a+b+c+d = n}.
Let Γ1

n ⊆ G3,2,3
n , and for any graph G ∈ Γ1

n, |Tu1 | = n − 3 (u1 = v1 = w1), |Tui
| =

|Tvj | = |Twk
| = 1 for i, j, k �= 1. Let Γ2

n ⊆ G3,2,3
n , and for any graph G ∈ Γ2

n, |Tu2 | = n− 3,

|Tui
| = |Tvj | = |Twk

| = 1 for other i, j, k.

Any n-vertex tree of diameter 3 is of the form Tn;a,b formed by attaching a and b

pendent vertices to the two vertices of P2 respectively, where a+ b = n− 2 and a, b ≥ 1.

Let S ′
n = Tn;n−3,1 for n ≥ 4 and S ′′

n = Tn;n−4,2 for n ≥ 5. For n ≥ 6, let D′
n and E ′

n

respectively be the n-vertex bicyclic graphs formed by attaching n − 6 pendent vertices

and a path P2 to u1 for D′
n and to u2 for E ′

n of Θ3,2,3
4 . For n ≥ 7, let D′′

n and E ′′
n be the

n-vertex bicyclic graphs formed by attaching n − 7 pendent vertices and the star S3 at

its center vertex to u1 for D
′′
n and to u2 for E

′′
n of Θ3,2,3

4 . Obviously, D′
n, D

′′
n ∈ Γ1

n and E ′
n,

E ′′
n ∈ Γ2

n (see Figure 3).

Let Δn = {G ∈ Gp,r,q
n |8 < p+q+r ≤ n+4}. Since G3,2,3

n = {G ∈ Gp,r,q
n |p+q+r = 8}

and p+ q + r ≥ 8 for any G ∈B2
n, obviously, B2

n= G3,2,3
n ∪Δn.

Lemma 8 Among the graphs in Δn with n ≥ 5, S3,3,3
n is the unique graph with the

smallest detour index, which is equal to n2 + 5n− 18.

Proof. Without loss of generality, let r ≤ p ≤ q. By the proof of Theorem 2, we have

the inequality sequences:

ω(Sp,3,q
n ) > ω(Sp−1,3,q

n ) > ω(Sp−2,3,q
n ) > . . . > ω(S3,3,q

n ) (4)
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u3
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Figure 3: The graphs D′
n and D′′

n

and

ω(S3,3,q
n ) > ω(S3,3,q−1

n ) > ω(S3,3,q−2
n ) > . . . > ω(S3,3,3

n ). (5)

Combining Theorem 1 and inequality sequences (1)∼(5), it follows that the graph with

the smallest detour index among Δn is from {S3,3,3
n , S3,2,4

n }. By lemma 4, we compute that

ω(S3,3,3
n ) = n2 + 5n− 18 < ω(S3,2,4

n ) = n2 + 8n− 28. Hence, the result holds. �

Lemma 9 Among the graphs in Γ1
n with n ≥ 7, the D′

n and D′′
n are the graphs with the

second and third smallest detour index, which is equal to n2 + 4n− 14 and n2 + 5n− 19,

respectively.

Proof. For any n-vertex bicyclic graph G ∈ Γ1
n\{S3,2,3

n , D′
n, D

′′
n}. Note that |Tu1 | = n−3,

|Tui
| = |Tvj | = |Twk

| = 1, for i, j, k �= 1. Let G1 = Θ3,2,3
4 and G2 be an induced subgraph

of G by V (G \G1) ∪ {u1}. Obviously, G2 is a tree not Sn−3, S
′
n−3 or S ′′

n−3. By Lemma 3

of [23], we have ω(G2) > ω(S ′′
n−3) > ω(S ′

n−3) for n ≥ 7. Then, L(u1|G2) > L(u1|S ′′
n−3) >

L(u1|S ′
n−3) together with Lemma 4, we obtain that D′

n and D′′
n are respectively the unique

graphs in Γ1
n with the second and third smallest detour indices, where ω(D′

n) = ω(S ′
n−3)+

ω(Θ3,2,3
4 ) + 3L(u1|S ′

n−3) + 8(n − 4) = n2 + 4n − 14 and ω(D′′
n) = ω(S ′′

n−3) + ω(Θ3,2,3
4 ) +

3L(u1|S ′′
n−3) + 8(n− 4) = n2 + 5n− 19. This proves the result. �

Also, the following lemma is obvious.

Lemma 10 Among the graphs in Γ2
n with n ≥ 7, the E ′

n and E ′′
n are the graphs with the

second and third smallest detour index, which is equal to n2 + 5n− 18 and n2 + 6n− 23,

respectively.
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Lemma 11 Among the graphs in Λn \ {S3,2,3
n } with n ≥ 7, Sn(1, 1, n− 3, 1) is the unique

graph with the smallest detour index, which is equal to n2 + 4n− 15. Sn(n− 4, 2, 1, 1) is

the unique graph with the second smallest detour index, which is equal to n2 + 5n− 21.

Proof. Suppose that G is the graph with the smallest detour index of Λn \ {S3,2,3
n }. The

proof of Theorem 1 Claim 2 implies that there are at most two trees of Tui
, Tvj , Twk

for

1 ≤ i, j ≤ 3 and 1 ≤ k ≤ 2 to be nontrivial.

If only one tree is nontrivial, G ∈ {Sn(a, 1, 1, 1), Sn(1, 1, c, 1)} for a, c ≥ 2. Since

Sn(a, 1, 1, 1) = S3,2,3
n , then G = Sn(1, 1, c, 1), i.e. G = Sn(1, 1, n − 3, 1) and ω(G) =

n2 + 4n− 15.

If the two trees are nontrivial, G ∈ {Sn(a, 1, c, 1), Sn(a, b, 1, 1), Sn(1, 1, c, d)} for a, b, c, d
≥ 2. We consider the following three cases.

Case 1. G ∈ {Sn(a, 1, c, 1)|a + c + 2 = n}. For 2 ≤ c ≤ n − 4 and a = n − 2 − c,

we have ω(Sn(a, 1, c, 1)) = ω(Sn(n − 2 − c, 1, c, 1)) = −3c2 + (3n − 5)c + n2 − 3. Let

f(c) = −3c2 + (3n − 5)c + n2 − 3, then f ′(c) = −6c + 3n − 5. f(c) is an increasing

function if 2 ≤ c ≤ �3n−5
6

� and f(c) is a decreasing function if 	3n−5
6


 ≤ c ≤ n − 4. So,

we have the sequences: f(2) < . . . < f(�3n−5
6

�) and f(	3n−5
6


) > . . . > f(n − 4). By

direct computation, we have f(2) < f(n − 4) < f(3) < . . ., i.e. ω(Sn(n − 4, 1, 2, 1)) =

n2+6n−25 < ω(Sn(2, 1, n−4, 1)) = n2+7n−31 < ω(Sn(n−5, 1, 3, 1)) = n2+9n−45 < . . ..

Then G = Sn(n− 4, 1, 2, 1) and ω(G) = f(2) = n2 + 6n− 25.

Case 2. G ∈ {Sn(a, b, 1, 1)|a + b + 2 = n}. Without loss of generality, let a ≥ b ≥
2. Thus 2 ≤ b ≤ �n−2

2
�. Analogous to the proof of Case 1 given above, we deduce

ω(Sn(a, b, 1, 1)) = ω(Sn(n − 2 − b, b, 1, 1)) = −2b2 + 2(n − 2)b + n2 + n − 5. It implies

that the sequence ω(Sn(n− 4, 2, 1, 1)) = n2 + 5n− 21 < ω(Sn(n− 5, 3, 1, 1)) = n2 + 7n−
35 < ω(Sn(n − 6, 4, 1, 1)) = n2 + 9n − 53 < . . . < ω(Sn(n − 2 − �n−2

2
�, �n−2

2
�, 1, 1) ={

3
2
n2 − n− 3 : for even n

3
2
n2 − n− 7

2
: for odd n

.

Then G = Sn(n− 4, 2, 1, 1) and ω(G) = n2 + 5n− 21.

Case 3. If G ∈ {Sn(1, 1, c, d)|c+ d+ 2 = n}. Without loss of generality, let c ≥ d ≥ 2.

Thus 2 ≤ d ≤ �n−2
2
�. Also analogous to the proof of Case 1 given above, we deduce

ω(Sn(1, 1, c, d)) = ω(Sn(1, 1, n− 2− d, d) = −3d2+3(n− 2)d+n2+n− 6. It implies that

the sequence ω(Sn(1, 1, n− 4, 2)) = n2+7n− 30 < ω(Sn(1, 1, n− 5, 3)) = n2+10n− 51 <

. . . < ω(Sn(1, 1, n− 2− �n−2
2
�, �n−2

2
�) =

{
7n2−8n−12

4
: for even n

7n2−8n−15
4

: for odd n
.

Then G = Sn(1, 1, n− 4, 2) and ω(G) = n2 + 7n− 30.
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In conclusion, G ∈ {Sn(1, 1, n − 3, 1), Sn(n − 4, 1, 2, 1), Sn(n − 4, 2, 1, 1), Sn(1, 1, n −
4, 2)}. Together with their detour indices, we obtain G = Sn(1, 1, n− 3, 1). Furthermore,

it is easy to know that Sn(n − 4, 2, 1, 1) is the unique graph with the second smallest

detour index in Λn \ {S3,2,3
n } with n ≥ 7, which is equal to n2+5n− 21. Hence, the result

holds. �

The main results of this paper are Theorems 3 and 4.

Theorem 3 Among the graphs in B2
n with n ≥ 5, the following holds:

(i) For n = 5, S3,2,3
5 is the unique graph with the smallest detour index, which is equal

to 29; S5(1, 1, 2, 1) is the unique graph with the second smallest detour index, which

is equal to 30; S3,3,3
5 is the unique graph with the third smallest detour index, which

is equal to 32;

(ii) For n = 6, S3,2,3
6 is the unique graph with the smallest detour index, which is equal

to 43; S6(1, 1, 3, 1) and S6(2, 2, 1, 1) are the graphs with the second smallest detour

index, which is equal to 45; D′
6 is the graph with the third smallest detour index,

which is equal to 46.

(iii) For n ≥ 7, S3,2,3
n is the unique graph with the smallest detour index, which is equal

to n2+3n− 11; Sn(1, 1, n− 3, 1) is the graph with the second smallest detour index,

which is equal to n2 + 4n − 15. For n ≥ 8, D′
n is the graph with the third smallest

detour index, which is equal to n2 + 4n − 14. For n = 7, D′
n and Sn(n − 4, 2, 1, 1)

are the graphs with the third smallest detour index, which is equal to 63.

Proof. Among the graphs in B2
n with n ≥ 4, by Theorem 2, we know S3,2,3

n is the unique

graph with the smallest detour index, which is equal to n2 + 3n− 11.

Let G and G0 be the graphs with the second and third smallest detour index respec-

tively.

For n = 5, there are only four graphs S3,2,3
5 , S5(1, 1, 2, 1), S

3,3,3
5 and S3,2,4

5 in B2
n. By

directed computation, the result holds.

For n = 6, if p+q+r > 8, we have G = S3,3,3
6 by Lemma 8; If p+q+r = 8, then G �= E ′

6

by the Claim 1 of Theorem 1. Thus G ∈ {D′
6, S6(1, 1, 3, 1), S6(2, 1, 2, 1), S6(2, 2, 1, 1), S6(1,

1, 2, 2)}. By the proof of Lemma 11 and a little computation, ω(S3,3,3
6 ) = ω(S6(1, 1, 2, 2)) =

48 > ω(S6(2, 1, 2, 1)) = 47 > ω(D′
6) = 46 > ω(S6(1, 1, 3, 1)) = ω(S6(2, 2, 1, 1)) = 45. Thus
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G = S6(1, 1, 3, 1) or S6(2, 2, 1, 1). Furthermore, it is easy to know that G0 ∈ {D′
6, E

′
6}.

Since ω(E ′
6) = 48 > ω(D′

6), then G0 = D′
6.

For n ≥ 7, if p + q + r > 8, G ∈ Δn. Thus by Lemma 8, G = S3,3,3
n ; If p + q + r = 8,

we know that G ∈ Γ1
n ∪ Λn \ S3,2,3

n by the proof of Theorem 1. By Lemmas 9 and 11,

G ∈ {D′
n, Sn(1, 1, n − 3, 1)}. Since ω(S3,3,3

n ) = n2 + 5n − 18 > ω(D′
n) = n2 + 4n − 14 >

ω(Sn(1, 1, n − 3, 1)) = n2 + 4n − 15, we have G = Sn(1, 1, n − 3, 1). Then combining

Lemmas 10 and 11, G0 ∈ {D′
n, E

′
n, Sn(n − 4, 2, 1, 1)} and ω(D′

n) = n2 + 4n − 14 ≤
ω(Sn(n − 4, 2, 1, 1)) = n2 + 5n − 21 < ω(E ′

n) = n2 + 5n − 18 with the second equality if

and only if n = 7. Thus G0 = D′
n for n ≥ 8 and G0 = D′

n or Sn(n− 4, 2, 1, 1) for n = 7.

Hence, the proof of theorem is completed. �

We will recall the conclusion of bicyclic graph with exactly two cycles in Lemma 12.

Let Sp,q
n ∈ B1

n be the graph formed by attaching n + 1 − p − q pendent vertices to the

unique common vertex of the two cycles Cp and Cq. Let B
′
n ∈ B1

n be the n-vertex bicyclic

graph with two 3-cycles sharing a common vertex u1(v1), and attaching a path P2 and

n− 7 pendent vertices to the vertex u1. Let B
′′
n ∈ B1

n be the n-vertex bicyclic graph with

two 3-cycles sharing a common vertex u1(v1), and attaching a star S3 at its center and

n− 7 pendent vertices to the vertex u1. Let φn(a, b, c) ∈ B1
n be a bicyclic graph with two

triangles having a common vertex u1(v1) formed by attaching a − 1 pendent vertices to

u1, and attaching b− 1 and c− 1 pendent vertices to the two neighbors of u1 in the same

triangle respectively. Let ψn(a, b, c) ∈ B1
n be a bicyclic graph with two triangles having

a path P2 formed by attaching a− 1 pendent vertices to u1 which is one of the common

vertices of triangles and terminal vertices of P2, and attaching b − 1 and c − 1 pendent

vertices to the two neighbors of u1 in the same triangle respectively.

Lemma 12 ([27, 28]) Among the graphs in B1
n with n ≥ 5, the following holds:

(i) For n ≥ 5, S3,3
n is the unique graph with the smallest detour index, which is equal to

n2 + 2n− 7;

(ii) For n = 6, φ6(1, 2, 1) and ψ6(1, 1, 1) are the unique graphs with the second smallest

detour index, which is equal to 45; S3,4
6 is the unique graph with the third smallest

detour index, which is equal to 50.

(iii) For n ≥ 7, B′
n is the second smallest detour index, which is equal to n2+3n−10; For

n = 7, φ7(2, 2, 1) and ψ7(2, 1, 1) are the unique graphs with the third smallest detour
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index, which is equal to 62. For n ≥ 8, B′′
n, φn(n−5, 2, 1) and ψn(n−5, 1, 1) are the

unique graphs with the third smallest detour index, which is equal to n2 + 4n− 15.

The following Theorem 4 is obvious from the Theorem 3 and Lemma 12.

Theorem 4 Among graphs of Bn with n ≥ 5, the following holds:

(i) For n ≥ 5, S3,3
n is the graph with the smallest detour index, which is equal to

n2+2n− 7. S3,2,3
n is the graph with the second smallest detour index, which is equal

to n2 + 3n− 11.

(ii) For n = 5, S5(1, 1, 2, 1) is the third smallest detour index, which is equal to 30. S3,3,3
5

is the forth smallest detour index, which is equal to 32.

(iii) For n = 6, S6(1, 1, 3, 1), S6(2, 2, 1, 1), φ6(1, 2, 1) and ψ6(1, 1, 1) are the third smallest

detour index, which is equal to 45. D′
6 is the forth smallest detour index, which is

equal to 46.

(iv) For n ≥ 7, B′
n is the third smallest detour index, which is equal to n2 + 3n − 10.

φn(n − 5, 2, 1), ψn(n − 5, 1, 1), Sn(1, 1, n − 3, 1) and B′′
n (for n ≥ 8) are the unique

graphs with the forth smallest detour index, which is equal to n2 + 4n− 15.

Acknowledgement

This work was supported by the National Natural Science Foundation(no.61075033) and

the Guangdong Provincial Natural Science Foundation of China (no.9151063101000021).

The authors thank the referees valuable comments and hints.

References
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[5] N. Trinajstić, Chemical Graph Theory , 2nd revised edn., CRC press, Boca Raton,

1992, pp. 241–245.
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