
Down
CONCEPTS AND TOOLS FOR THE TEST OF THE COMMUNICATION SUB-SYSTEM
OF TIME-TRIGGERED DISTRIBUTED EMBEDDED SYSTEMS

Martin Horauer
Department of Embedded Systems

University of Applied Sciences Technikum Wien
Höchstädtplatz 5, A-1200 Vienna, Austria

Email: horauer@ieee.org

Eric Armengaud, Andreas Steininger
Department of Computer Engineering

Vienna University of Technology
Treitlstr. 3, A-1040 Vienna, Austria

Email: {armengaud, steininger}@ecs.tuwien.ac.at

Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference

IDETC/CIE 2007
September 4-7, 2007, Las Vegas, Nevada, USA

DETC2007-34439
ABSTRACT
With the adoption of FlexRay, the time triggered paradigm

has been widely accepted by the automotive industry as a means
to tackle the requirements of future automotive electronics. How-
ever, when compared with traditional event-triggered systems
like CAN, the benefits of higher reliability come at the cost of
increased complexity during system design. In fact, to support
the development of these systems adequate tool-support will be
mandatory. In this paper we discuss the requirements and con-
cepts for and present an implementation of a test and diagnosis
toolset for FlexRay-based automotive distributed networks. Next
to data monitoring and recording, this toolset provides facilities
for fault injection and replay. Hence, the presented implemen-
tation is tailored for an embedded test and fault diagnosis and
will enable an assessment of the reliability and dependability of
future automotive solutions.

INTRODUCTION
In recent years embedded electronic hard- and software has

become the most important enabler for innovations in the auto-
motive domain. In fact, modern cars employ up to 70 electronic
control units that are interconnected using various different field-
bus systems like, e.g., the Controller Area Network (CAN), the
Local Interconnect Network (LIN) or ByteFlight. The shared in-
formation provides an added value and allows the establishment
of new applications, e.g. by combining speed with steering infor-
mation or by relating sensor data from the wheels’ rotation to im-
1

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of U
prove the lane keeping stability of the car [1]. Hence, today’s ve-
hicle networks have transformed automotive control tasks, once
the domain of mechanical or hydraulic components, into truly
distributed electronic systems. Replacing rigid mechanical com-
ponents with dynamically configurable electronic elements trig-
gers an almost organic, system wide level of integration. As a
result, the cost of advanced systems should plummet. However,
car manufacturers have soon identified the network architecture
as the crucial point in this context. Complex applications have
shown that the above-mentioned fieldbus systems become a crit-
ical bottleneck. To that end an industrial consortium has estab-
lished the communication protocol FlexRay to overcome these
limitations, see [2].

Relying on both the time- and event-triggered paradigms,
FlexRay promises reliability and fault-tolerance aspects with the
bandwidth to serve the needs of a communication backbone and
the flexibility for the coupling of sensor/actuator systems re-
quired for future automotive solutions. Since FlexRay will be
introduced for safety-critical applications, e.g. X-by-wire sys-
tems, where a failure can lead to severe consequences, means for
the evaluation of dependability properties are required. Clearly,
testing is essential in order to evaluate whether the system is cor-
rectly implemented and configured and will react as expected in
its future field environment, even in case of faults. While meth-
ods for testing of the computing nodes themselves on the one side
and the bus on the other side do exist, a unified, accurate and sys-
tematic test approach on the system level is required that does not
only consider the function of these singular components in isola-
Copyright c© 2007 by ASME

se: http://www.asme.org/about-asme/terms-of-use

tion. The test efforts for distributed embedded systems rise with
system complexity due to the geographic diversity, the large sys-
tem state space and the large fault range. Hence, in practice one is
either faced with an excessive test duration or a very limited test
coverage. Furthermore, experience shows that problems with in-
teraction of “fault-free” components are becoming increasingly
relevant, a problem that is further aggravated by the large num-
ber of new product variants. In this context, the contributions
of this paper are (1) the concept for a systematic, structured test
approach to handle the test complexity for FlexRay-based dis-
tributed embedded systems, and (2) the presentation of a system
architecture for the implementation of a tester along with some
use-cases and experimental results conducted with a prototype
implementation.

The following section presents some common aspects that
need to be considered for testing FlexRay-based systems. After-
wards we present some related work and tools before we turn to
the concepts and architecture of our test-suite. The subsequent
description of use-cases will then show how the tool-set can be
used in practice. Finally, some test experiments and results ac-
quired with our prototype implementation are outlined before we
conclude the paper.

TESTING DISTRIBUTED EMBEDDED SYSTEMS
A test concept for distributed embedded systems must ad-

dress the following aspects:
Controllability defines (1) whether the system-under-test

(SUT) can be put into a test mode and (2) how the input test se-
quences can be applied to the SUT. In the context of automotive
electronics, the first item (a.k.a. offline test) is by its nature easier
to achieve during application development in the lab, before sys-
tem operation or during maintenance. It is, however, much more
problematic for an online test.
The second item is often hard to achieve due to accessability re-
strictions of the distributed embedded system. Hence, some kind
of remote-test that provides the test-stimuli via the fieldbus sys-
tem is desirable here. Note that remote testing is applicable for
both offline and online modes.

Observability defines where and how the outputs of the sys-
tem and potential internal states of the SUT can be observed
without influencing the system itself (a.k.a. probe-effect). Fur-
thermore, it addresses how the output information of the test can
be collected for a succinct evaluation and interpretation. Again
the employment of the fieldbus is desirable for this purpose. For
a remote-test some kind of information flow from the SUT to the
tester must occur over the field bus in order to transfer the desired
status information.

Prior to the test of a distributed embedded system, the def-
inition of a fault-hypothesis is mandatory. It makes some as-
sumptions about the types and numbers of faults that are to be
expected; hence, it partitions the fault-space into covered and

2

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
Star
1

Star
2

Communication
Controller

CHI

Processing
Subsystem

Communication
Controller

CHI

Processing
Subsystem

Communication
Controller

CHI

Processing
Subsystem

Communication
Controller

CHI

Processing
Subsystem

Communication
Controller

CHI

Processing
Subsystem

Fault Containment Region:
Communication Subsystem

Fault Containment Region:
CPU Subsystem Node A

Figure 1. A FlexRay system showing some fault containment regions

uncovered faults. In particular, the fault hypothesis addresses
the error containment regions (or fault containment regions when
one can assume fail-silent behavior), the failure modes, the fail-
ure frequency and the error detection and recovery mechanisms,
see [3] for elaborate definitions.

For distributed embedded systems – like FlexRay – that fol-
low the time-triggered paradigm the fault containment regions
are defined by so called temporal firewalls [4]. They block con-
trol information and let pass data solely. An example for such a
temporal firewall is the controller-host-interface (CHI) at every
node, cf. Fig. 1. This interface is a kind of dual-ported memory
residing between the network controller and the node’s process-
ing unit. Access from either side is only allowed at predefined
instants in time defined by the time-triggered schedule. Thus, in
principle, every fault-containment region can be tested indepen-
dently in isolation from each other, e.g., using node tests and a
test of the communication subsystem, respectively. Furthermore,
a system-test of the entire system may be required for the case
when an actual implementation deviates slightly from the speci-
fication or when configuration faults shall be detected.
Tools required for such tests should provide capabilities for mon-
itoring, data generation and injection, and replay as well as
pattern-generation, and data-analysis.

RELATED WORK
Tools to monitor bus-traffic are in widespread use for testing,

debugging and optimization of various communication services
and protocols, see e.g. [5, 6]. Several different implementations
and approaches exist for LANs ranging from pure software mon-
itors (e.g. tcpdump1, ethereal2, wireshark3, libnet [7]) at dif-
ferent levels of abstraction up to sophisticated approaches em-
ploying some kind of dedicated COTS network interface hard-
and software. Examples for COTS tools for network analysis

1http://www.tcpdump.org
2http://www.ethereal.com
3http://www.wireshark.org

Copyright c© 2007 by ASME
: http://www.asme.org/about-asme/terms-of-use

and monitoring tools tailored to fieldbus systems like CAN, LIN,
MOST, FlexRay or TTP/C are CANalyzer4 or TTView5. Im-
plementation issues of these and similar tools along with some
use-case scenarios can be found e.g. in [8, 9]. The majority of
these monitoring and network analysis tools operate at or above
the medium access layer employing COTS network controllers
and device drivers in a promiscuous mode where all (even cor-
rupt) frames are forwarded to the processing CPU.

For testing purposes a mechanism in the reverse direction
that allows some kind of data generation and injection or replay
is required as well. Whereas the first two mechanisms typically
allow arbitrary forms of data to be generated and injected to the
communication subsystem, the latter provides some facilities to
re-enact previously recorded scenarios. As with the monitoring
solutions data generators are either implemented as software us-
ing COTS networking hardware (although some kind of special
device drivers may be required here), or at or next to the physi-
cal layer employing some kind of arbitrary waveform generators
and/or programmable pattern generators. The generated and in-
jected data can be both – correct or faulty ones. Hence, a subset
of the existing fault injection tools and techniques fall into this
category as well, see [10] for a survey.
Replay of recorded data can be done either in causal order of
the recorded events, or by obeying both the causal and tempo-
ral order. For event triggered communication systems a clock
synchronization of the distributed system and timestamping of
outgoing packets must be enforced; especially when intermedi-
ate active network devices are present, since these devices influ-
ence both the causal and the temporal order. This requirement,
however, can be relaxed for time-triggered communication since
clock synchronization is an integral communication service and
the instants in time, when messages are transmitted are known a
priori. Implementations in this regard are provided, e.g., by the
CANalyzer or by [11,12] for distributed applications in different
domains.

THE TEST CONCEPT
To tackle the test complexity we first introduced a fine-

structured layer-model of FlexRay, see [13]. In particular, we
structured the layers of the communication subsystem – in anal-
ogy to the ISO/OSI model – into a set of fine granular functional
entities: Abstraction levels ai and mechanisms mi. Herein, an ab-
straction level represents a detailed view of the system whereas
a mechanism provides simple — ideally atomic — services that
are controlled by several inputs ai−1 and optional configuration
parameters ci and produce one or more outputs ai, cf. Fig. 2.
An example for such a mechanism mi is a decoder that may be
configured and parameterized via suitable decoder parameters ci;
4http://www.vector-informatik.com
5http://www.tttech.com

3

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of U
i

i-1

i+1

i

i-1

i

Figure 2. Mechanisms and abstraction levels

input to this mechanism is the encoded bit stream at the abstrac-
tion level ai−1 and output is the raw bit stream at the abstraction
level ai.

To reduce the test complexity we monitor bus traffic – us-
ing an assumed fault free embedded tester node – at a number
of discrete abstraction levels. Our test proceeds from the lowest
abstraction level towards the highest. Herein, an error detected
at an abstraction level ai may stem either from an erroneous in-
put ai−1, erroneous configuration ci or a defective mechanism
mi. Assuming that all mechanisms below have passed their test
properly, one can reason that the fault originates from the cor-
responding mechanism or one above in the sending path of the
respective remote node, cf. Fig. 3. In this way the sending path
of a remote node can be tested and diagnosed quite well. The test
the receive path, however, requires additional provisions. In par-
ticular the remote node’s reaction to a test stimulus applied on the
fieldbus must be observed. This requires (i) direct access to that
node for read-out of the respective mechanisms’ outputs, or (ii)
some kind of loop-back of this information (i.e. the node under
test replies to the test stimulus by sending its internal status over
the fieldbus), or (iii) some kind of regular status-output that pro-
vides the relevant information. When (iii) is not available, option

Communication
Controller

CHI

Processing
Subsystem

Communication
Controller

CHI

Processing
Subsystem

Communication
Controller

CHI

Processing
Subsystem

Node 1 Node 2 Node n

System-under-Test

Embedded Tester

Test Control Host
Figure 3. Remote Testing

Copyright c© 2007 by ASME

se: http://www.asme.org/about-asme/terms-of-use

D

(ii) seems to be the desired solution here, given the limited ac-
cessibility of automotive controllers that rules out (i). Loop-back
can be provided as a service of the node’s CPU relaying informa-
tion from the receive to the transmit path. A less intrusive loop-
back can eventually be exploited via the clock synchronization
services [14, 15]; this approach is currently under investigation.

The advantages of this approach are (i) the fault space can be
decomposed in an intuitive way into orthogonal basic faults, (ii) a
systematic exploration of the fault space is feasible as long as the
mechanisms are independent from each other, and (iii) physical
faults can be mapped to unique “syndromes”, i.e. combinations
of basic faults. As a limitation of this approach, however, simple
common mode faults, e.g. power supply faults or outages of the
clocking source, are not directly included, but can be represented
by their respective syndromes.

IMPLEMENTATION OF THE TEST-TOOL
Our prototype implementation consists of an embedded part

and a host part. The embedded part consists of an FPGA that
provides FlexRay receivers, transmitters, a protocol engine, a
timer, and monitoring and replay units that allow data acquis-
tion/injection at different levels of abstraction, see Fig. 4. Fur-
thermore, we developed the firmware for a RTAI Linux run-
ning on top of an embedded ARM CPU core. Data can be
stored/retrieved either to/from a flash disk for field operation or
via a Fast Ethernet connection to/from a remote control host, see
[16–18] for further implementation details.

FlexRay
Protocol Engine

Configuration Interface & Data Interface (DPRAM)

10 BaseT/100 BaseTx

Monitoring
UnitsReplay Units

Timer

FlexRay Bus

Altera Excalibur

PL PL

R T R T

Fast Ethernet Controller DRAMFlash Disk

Memory
Controller,
UART, etc.

IP-Module &
Flash Disk
Interfaces

ARM 922T
Processor Core

Figure 4. Architecture of the embedded tester hardware
ownloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of
Figure 5. Screenshot of the User Interface

The host part consists of a library to manage the flow of
data and control information, a graphical user interface to present
the acquired data to the user in various different ways, e.g. raw
data, scope, gauges, or in form of a dial widget (see Fig. 5 for
a screenshot). In addition, the user interface is used to control
the embedded tester, in particular it allows for the definition of
complex triggers, the configuration of filters, the selection of ab-
straction levels and it controls the flow of data. To support re-
play, monitored data can be either modified and/or generated;
the latter is per default made conform to the FlexRay specifica-
tion [2]. The entire monitoring/replay process can be scripted
and exported thus enabling automatic test scenarios.

USE CASES
The above described test approach for FlexRay-based sys-

tems will be usable in various stages in the life-cycle of a prod-
uct, e.g., during development or later-on whilst maintenance. De-
pending on the actual stage different tools and test approaches for
the various use-cases will be required. The following description
lists some use-cases for the test concepts and tools as outlined in
the previous sections:

For an early application development usually only the re-
quired nodes and infrastructure for the tasks at hand are avail-
able. Hereby, the developer is confronted with the task of verifi-
cation that aims at revealing implementation faults. Monitoring
is used to check the application’s output on the bus, and replay
using data generation may be used to emulate the corresponding
environment and provide a working bus infrastructure. E.g., one
can emulate with our tester multiple sensor nodes relating the
information of the wheels’ states for the development of an ESP
system. Hence, an emphasis for the test environment at this stage
is set on flexibility.

In a later stage during the development cycle the applica-
tions executing on various electronic control units from differ-
4 Copyright c© 2007 by ASME

Use: http://www.asme.org/about-asme/terms-of-use

6http://www.decomsys.com

Do
ent vendors will be coupled with each other. Hereby, a focus
of the test will be set on the inter-operability and protocol con-
formance of the different nodes and applications running on top
of them. The first one tries to prove the end-to-end functional-
ity between (at least) two communication systems according to
the standard(s) on which those systems are based. In contrast,
conformance testing evaluates whether the parameters of an im-
plemented system conform to the protocol specification – in our
case FlexRay. Herein, correct system operation has to be vali-
dated for the entire range of possible inputs and parameters. For
both use-cases parameter identification and validation is useful.
This can be achieved by the combination of monitoring, mea-
surements and replay followed by a statistical analysis and inter-
pretation, see [19].

After system integration and verification the test focus will
undoubtedly be set on robustness testing. Hereby, one scruti-
nizes the system behavior in the presence of erroneous and/or
stressful input conditions. Prior to test execution an appropriate
fault hypothesis must be defined. With that in mind one can suc-
cinctly generate and/or manipulate the bus traffic and inject faults
at the corresponding instants and locations. With the help of the
monitoring tools the output of these experiments is recorded and
analyzed in order to check whether the respective fault tolerance
mechanisms triggered.

As an optimization step performance testing or system eval-
uation is used to assess the performance of a given system by
means of metrics that can be used to compare the different im-
plementations using a benchmark suite. Here the main focus is
on measuring the performance of a system for a well defined set
of tasks, and not to verify or validate a system. Monitoring alone
will usually serve for this purpose.

During the operational phase of a car maintenance testing
is used to detect and localize faults. The scope is typically nar-
rowed to (physical) faults that occurred since the last mainte-
nance actions (e.g., due to ageing effects). In practice, e.g., some
kind of tester node is coupled to the system-under-test as illus-
trated in Fig. 3 and a set of tests are executed in order to unveil
defective components. Therefore, usually status information af-
ter a set of pre-defined tests is read-out.

Verification, conformance, inter-operability, and mainte-
nance tests are qualitative tests with the purpose to prove whether
an assumption is correct or wrong whereas robustness and perfor-
mance tests are quantitative tests that aim at deriving a numerical
characterization for a given attribute. The user interface has to
present the information in a way appropriate for the particular
case.

EXPERIMENTAL EVALUATION
The aim of the following experiments is to illustrate the ad-

equacy of our test environment for some of the above use-cases.
wnloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms
Node X Node Y Node Z

emulating an entire Sub-Net

Figure 6. Experimental Setup

In a first experimental series we investigated whether the
clock synchronization mechanism as implemented by a set of
COTS electronic control units (ECUs) from our industrial partner
Decomsys GmbH6 conforms to the FlexRay standard. Therefore
we coupled our tester to a SUT cluster, cf. Fig. 6.

Herein, the tester emulated several nodes of its own gener-
ating SYNC messages. In this way we were able to dictate the
clock synchronization thus forcing all other nodes to synchronize
towards the tester. By applying a deterministic replay (forcing
the point in time the tester’s frames are sent without taking into
account the SUT [20]) and monitoring the bus traffic at the same
time we could investigate whether the remaining nodes could fol-
low suite. In particular we tuned the maximum rate and step
correction values until the nodes in the SUT switched to silent
mode. Fig. 7 illustrates the results of the clock step experiment
and Tab. 1 summarizes our findings. Herein the values given
in the “Specification” column reflect the theoretical values from
the FlexRay specification for the configuration of pRateCorrec-
tionOut with 180µT and pOffsetCorrectionOut with 20µT (µT
stands for microtick). As expected, the nodes of the SUT turned
silent when the shift for the rate correction exceeded 4.5µs.

Table 1. Results of the Clock Synchronization Experiments

Parameter Results Specification

max. rate correction 4.5µs 4.5µs

max. step correction 450 ns 500 ns

For the step correction experiment our tester generated two
messages (ID 13 and ID 14) with the SYNC bit set, thus, dic-
tating the clock synchronization in our setting. After about 300
communication cycles we modified the step correction value of
the tester by increasing it by δs = 25ns. Then we left this value
constant for 40 communication cycles and set it back to the orig-
inal value for the following 40 communication cycles. After-
wards we applied a step correction value increased by additional
25ns (i.e. δs = 50ns) for the following 40 communication cycles
5 Copyright c© 2007 by ASME

 of Use: http://www.asme.org/about-asme/terms-of-use

Down
before we set this value back once more. This procedure was
applied periodically resulting in a stimulus as depicted in Fig. 7
(upper plot). At the same time we monitored the cycle length
(the number of microticks after clock correction applied to the
local node quartz) of the SUT nodes. These values followed the
stimulus – as can be seen in Fig. 7 (lower plot) – up to a logical
clock state deviation of δs = 450ns. Afterwards, they were no
longer able to follow suite; the nodes turned silent.

 4.9997e+006

 4.9999e+006

 5.0001e+006

 5.0003e+006

 5.0005e+006

 5.0007e+006

 0 200 400 600 800 1000 1200 1400

C
yc

le
 le

ng
th

 (
ns

)

Time (communication cycle)

ID 15
ID 16
ID 17
ID 18

 4.9997e+006

 4.9999e+006

 5.0001e+006

 5.0003e+006

 5.0005e+006

 5.0007e+006

C
yc

le
 le

ng
th

 (
ns

)

ID 13
ID 14

Figure 7. Step Correction Experiment: Stimulus (upper plot) and Re-
sponse (lower plot)

Fig. 8 provides a detail view of the cycle length one step
before the nodes of the SUT turned silent (stimulus + response)
along with the SUT nodes’ internal rate and offset correction val-
ues. It can be observed that the SUT nodes follow the dominating
replay node with a delay of two communication cycles. This is
due to the observation time required for the nodes to detect a
change of the logical time and on the re-synchronization period
from the FlexRay algorithm (2 cycles).

Moreover, it seems that the nodes’ cycle length might be up
to 250ns longer than the replay node’s cycle length. This be-
havior can be explained by the concurrent action of the rate and
offset mechanisms. Due to the reaction delay after the step, the
SUT nodes’ clock state are too late in comparison to the replay
node. Additionally the frequency has changed, too. This leads
to a punctual double correction, on one side to correct the accu-
mulated delay (due to the frequency step in the past) and on the
other side to adjust the rate (for the future).

The amplitude of the logical clock step for Fig. 8 (lower
plot) is 425ns. It can be observed, that the nodes’ offset correc-
loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of
tion values grow until 20 microticks (500ns) at communication
cycle 1006, which is the maximal offset correction allowed for
this configuration.
The values for the offset and rate correction are computed ac-
cording to the Fault Tolerant Midpoint (FTM) algorithm from
the nodes’ logical time differences. In our case, the tester node
builds a group with its two SYNC frames and the SUT builds
another group (tightly synchronized) with four SYNC frames.
Since the tester node presents a large shift (time difference) after
a step, it will be taken into account for the SUT nodes’ clock syn-
chronization. However, due to the FTM computation, the nodes
will correct only half the time difference between the tester node
and their own clock (the tester node provides the minimal value
and the SUT the maximal value – approx. 0 – for the time differ-
ence measurement). As a result, the clock state can not catch up
the delay accumulated just after the step (cycle 1004) and accu-
mulate even more delay that is corrected afterwards (cycle 1006).
This effect leads to an offset correction larger than the step am-
plitude. It can be then easily interpolated that the nodes will turn
into silent with a logical clock step below the configured 500ns
(in our case 450ns).

 4.9997e+006

 4.9999e+006

 5.0001e+006

 5.0003e+006

 5.0005e+006

 5.0007e+006

 1000 1002 1004 1006 1008 1010 1012 1014

ID 13
ID 14
ID 15
ID 16
ID 17
ID 18

 0

 5

 10

 15
ID 15
ID 16
ID 17
ID 18

 0
 2
 4
 6
 8

 10
 12
 14 ID 15

ID 16
ID 17
ID 18

Time (communication cycle)

C
yc

le
 L

en
gt

h
(n

s)

O
ffs

et
 c

or
re

ct
io

n
(u

T)
R

at
e

co
rr

ec
tio

n
(u

T)

Stimulus

Response

Figure 8. Details of the Step Correction Experiment: Rate Correction
(upper plot), Offset Correction (mid plot) and Cycle Length (lower plot)

In a second experiment series, we used the replay mode of
the tester to shift the “action point” of a frame – i.e., the point in
time when transmission of this frame is started – in a way so that
the frame moves close to/beyond its associated slot boundary.
6 Copyright c© 2007 by ASME

Use: http://www.asme.org/about-asme/terms-of-use

The aim was to create a slightly-off-specification7 failure [21]
and observe the rate of faulty frames at different points of the
communication medium and with different hardware implemen-
tations (physical layer chips from different vendors). The ac-
quired results revealed a tolerance in the receiving window so
that frames were accepted “as correct” by some nodes and re-
jected by other ones, see [22] for details. This observation allows
an important conclusion: There is definitely a non-zero probabil-
ity that slightly-off-specification failures may cause Byzantine
effects in the network.

In a third test-campaign we injected bit-flips into an ongoing
traffic of a COTS cluster. In particular we conducted 15 exper-
iments where each one consisted of more than 3,000 commu-
nication cycles and, hence, represented 9 to 15 seconds of bus
traffic. For every experiment we injected something between 46
and 1,092 deviations and monitored the traffic with our tester.
Whereas a standard COTS controller could classify the injected
errors only either as a syntax, content or bit-violation error, our
tester revealed detailed information of the cause for the recorded
errors (e.g. Transmit Start Sequence error, Byte Start Sequence
error, Symbol Window Violation, Cycle counter error,Static Pay-
load Length error, etc.) depending on the actual location and time
where the fault was injected.

CONCLUSION
With the adoption of FlexRay for series production, test so-

lutions for the complete life cycle of automotive communication
subsystems will gain significance. In particular, tests during var-
ious stages of the development process will be required to aid in
the implementation and verification process since ever more ap-
plications with enhanced functionalities will be introduced. To
that end, this paper introduced a systematic approach for struc-
turing the system under test and reducing the test complexity.
Next to an implementation some use-cases were presented and
underpinned with experimental results that show the applicabil-
ity of our test-tool.
The presented approach can be re-used for many different pur-
poses, e.g. for debugging and testing during system verification,
for inter-operability or robustness tests as well as even for main-
tenance tests. Future research will be directed towards enhancing
the combination of monitoring, replay, and fault-injection with a
fault dictionary that will enable a concise fault diagnosis and lo-
cation.

7An example for a slightly-off-specification failure is when a node sends on
its slot boundaries in such a manner that it is accepted as temporal accurate by a
subset of nodes whereas it is not accepted by a different subset of nodes, hence,

causing asymmetry in the system.

7

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of U
ACKNOWLEDGMENT
The presented concepts and tools have been developed in

the context of the FIT-IT research projects STEACS (807146),
ExTracT, and the FHplus project DECS (811414) all managed
by the Austrian Research Agency FFG.

REFERENCES
[1] G. Leen and D. Hefferman, In-Vehicle Networks, Expand-

ing Automotive Electronic Systems, IEEE Transaction on
Computers, January 2002, pp. 88-93.

[2] “–”, FlexRay Communications Systems - Protocol Speci-
fication Version 2.1 Rev. A., FlexRay Consortium, 2005,
http://www.flexray.com.

[3] H. Kopetz, On the Fault Hypothesis for a Safety-Critical
Real-Time System, Workshop on Future Generation Soft-
ware Architectures in the Automotive Domain, pp.14–23,
San Diego, USA, Jan. 2004.

[4] H. Kopetz and R. Nossal, Temporal Firewalls in Large Dis-
tributed Real-Time Systems, 6th IEEE Computer Society
Workshop on Future Trends of Distributed Computing Sys-
tems, pp. 310–315, Tunis, Tunisia, Oct. 1997

[5] P.D. Baker and K. Neal, System and method for gen-
eral purpose network analysis, United States Patent No.
6.000.041, Dec. 1999.

[6] K. Bisson and T. Troshynski, Switched Ethernet testing for
avionics applications, IEEE Aerospace and Electronic Sys-
tems Magazine, Vol. 19, Issue 5, pp. 31–35, 2004.

[7] M. Schiffman, Building Open Source Network Security
Tools, Wiley & Sons, 2002. ISBN-10: 0471205443

[8] P. Peti, R. Obermaisser, W. Elmenreich, and T. Losert, An
architecture supporting monitoring and configuration in
real-time smart transducer networks, Proc. of IEEE Sen-
sors, pp. 1479–1484, 2002.

[9] M.S. Reorda and M. Violante, On-line analysis and per-
turbation of CAN networks, 19th IEEE Int. Symposium on
Defect and Fault Tolerance in VLSI Systems, pp. 424–432,
Cannes, France, Oct. 2004.

[10] M.C. Hsueh, T.K. Tsai, and R.K. Iyer, Fault Injection Tech-
niques and Tools, IEEE Transactions on Computer, Vol. 30,
No. 4, pp. 75-82, 1997.

[11] D. Geels, G. Altekar, S. Shenker, and I. Sotica, Replay De-
bugging for Distributed Applications, Proc. of the USENIX
Annual Technical Conference, pp. 289–300, 2006.

[12] D. Sundmark, H. Thane, J. Huselius, A. Pettersson, R. Mel-
lander, I Reiyer, and M, Kallvi, Replay Debugging of Com-
plex Real-Time Systems: Experiences from Two Industrial
Case Studies, Proc. of the 5th International Workshop on
Automated Debugging, Ghent, Belgium, Sep. 2003.

[13] E. Armengaud, A. Steininger, M. Horauer, and R. Pal-
lierer, A Layer Model for the Systematic Test of Time-
Triggered Automotive Communication Systems, 5th Interna-

c
Copyright © 2007 by ASME

se: http://www.asme.org/about-asme/terms-of-use

tional Workshop on Factory Communication Systems, pp.
275-283, Vienna - Austria, Sept. 22 - 24, 2004.

[14] E. Armengaud and A. Steininger, Pushing the Limits of Re-
mote Online Diagnosis in FlexRay Networks, 6th Interna-
tional Workshop on Factory Communication Systems, pp.
45–54, Torino, Italy, June 28-30, 2006.

[15] E. Armengaud, A Remote and Transparent Approach for
the Test and Diagnosis of Automotive Networks, Junior Sci-
entist Conference, pp. 11-12, Vienna - Austria, April 19-21,
2006.

[16] E. Armengaud, A. Steininger and M. Horauer, A Method for
Bit Level Test and Diagnosis of Communication Services,
8th Int. Workshop on Design and Diagnostics of Electronic
Circuits and Systems, Sopron - Hungary, pp. 69-74, April
2005.

[17] E. Armengaud, A. Steininger and M. Horauer, A Flexi-
ble Hardware Architecture for Fast Access on Large Non-
Volatile Memories, 8th Int. Workshop on Design and Diag-
nostics of Electronic Circuits and Systems, Sopron - Hun-
gary, pp. 113-120, April 2005.

[18] M. Horauer, F. Rothensteiner, M. Zauner, E.Armengaud, A.
Steininger, H. Friedl and R. Pallierer, An FPGA based SoC
Design for Testing Embedded Automotive Communication
Systems employing the FlexRay Protocol, Austrochip 2004,
pp. 119-123, Villach - Austria, October 2004. ISBN: 3-200-
00211-5

[19] E. Armengaud, A. Steininger and M. Horauer, Automatic
Parameter Identfication in FlexRay based Automotive Com-
munication Networks, 11th IEEE International Confer-
ence on Emerging Technologies and Factory Automation,
Prague - Czech Republic, pp. 897-904, Sept. 2006.

[20] E. Armengaud, Low Level Bus Traffic Replay for the Test of
Time-Triggered Communication Systems, 9th IEEE Work-
shop on Design & Diagnostics of Electronic Circuits &
Systems (DDECS’06), pp. 55–156, Czech Republic, Apr.
2006.

[21] A. Ademaj. Slightly-Off-Specification Failures in the Time-
Triggered Architecture, 7th Annual IEEE International
Workshop on High Level Design Validation and Test, pp.
7–12, Cannes - France, Oct. 2002.

[22] E. Armengaud, A. Steininger and M. Horauer, Efficient
Stimulus Generation for Remote Testing of Distributed Sys-
tems - The FlexRay Example, 10th IEEE International Con-
ference on Emerging Technologies and Factory Automa-
tion, Catania - Italy, pp. 763-770, Sept. 2005, ISBN: 0-
7803-9402-X.
8 Copyright c© 2007 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

