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Interpreting Orthogonal Triple-Wire 
Data From Very High Turbulence 
Flows 
For turbulence intensities of up to 30 percent, an orthogonal triple-wire probe can 
be used to make accurate measurements of the instantaneous velocity vector. Above 
this limit difficulties arise in the interpretation of the data due to the problem 
described as rectification. This paper presents a means by which data from an 
orthogonal triple-wire probe may be interpreted for single point measurements in 
Gaussian turbulence with intensity up to 50 percent resulting in unbiased estimates 
of the velocity mean vector, Reynolds stress tensor, and time correlation coefficients. 

Introduction 
Researchers commonly use hot wire anemometers in the 

study of air boundary layers, but, since a hot wire probe re­
sponds in a similar manner to either forward or backward 
motion in the flow, very high levels of turbulence create an 
uncertain relationship between the output from these ane­
mometers and the statistics of the velocity field being measured. 
The studies of Tutu and Chevray1 (1975) and Andreopoulos2 

(1983) help set limits for the domain on which instantaneous 
velocity measurements can be made with hot wire probes with­
out significant errors due to the physics of the response of 
these probes to turbulent fluctuations. Tutu and Chevray (1975) 
present the problem for cross-wire probes, analyzing the re­
sponse of the probe to high levels of turbulence assuming a 
trivariate normal distribution function for the component ve­
locities and a simple model for the rectification of negative 
instantaneous velocities. Andreopoulos (1983) performs a sim­
ilar analysis for triple-wire probes, concluding that mean ve­
locities and turbulence intensities can be measured accurately 
at turbulence intensities of up to 30 percent. 

The present study proposes to extend the domain on which 
an orthogonal triple wire can be reliably employed, beyond 
the limits set by previous investigations of the problem of 
rectification, by presenting a method for interpreting data from 
orthogonal triple-wires for turbulence intensities of up to 50 
percent for situations when the underlying velocity distribution 
is trivariate normal or nearly so. 

'Tuto, K. N., and Chevray, R., 1975, "Cross-wire Anemometry in High 
Intensity Turbulence," Journal of Fluid Mechanics, Vol. 71, pp. 785-801. 

2Andreopoulos, J., 1983, "Statistical Errors Associated with Probe Geometry 
and Turbulence Institute in Triple Hot-Wire Anemometry," /. Phys. E: Sci. 
Instrum., Vol. 16, pp. 1264-1271. 
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The Nature of the Errors 
Hot wire anemometers incur deterministic errors when sub­

jected to highly turbulent velocity fluctuations. Tutu and Chev­
ray (1975) identify two important physical problems in the use 
of an orthogonal cross-wire probe in turbulent flows of high 
intensity. First, the binormal (FF-component for a cross-wire 
probe) fluctuations contributed significantly to the ane­
mometer output and become misinterpreted in the values of 
the means and fluctuations of the [/and Vcomponents. Sec­
ond, very large turbulent fluctuations at low mean velocities 
may be "rectified" due to the inability of the hot wire probe 
to distinguish the direction of the velocity vector. Consider the 
following response equation for a single wire normal to the 
mean flow direction: 

(1) U2
M = k1U

2 + k2V
2 + kiW

2 

where t/eff is the instantaneous effective cooling velocity on 
the wire and k\, k2, and £3 are the directional sensitivity coef­
ficients for the wire. Suppose t/err is used to estimate U. For 
high levels of turbulent fluctuations, not only do the V and 
W components bias the estimate of U, but also a negative value 
for U cannot be distinguished from a positive value. 

While both cross-wire and single-wire probes suffer both 
types of errors, an orthogonal triple-wire probe identifies the 
bi-normal component on each wire, alleviating the problem of 
inter-component cross-talk and leaving only the problem of 
rectification. Figure 1 is a sketch of a typical orthogonal triple-
wire probe. Velocity components in the wire coordinate system, 
denoted Xj or (X, Y, Z), are related to velocity components 
in the laboratory coordinate system, denoted by U-, or ([/, V, 
W), through the geometry of the probe, the pitch angle a>, 
and the roll angle a. The response equations for the orthogonal 
triple-wire relate the effective cooling velocities on the wires, 
Ueffj, to the component velocities in the wire coordinate system, 
Xj, as follows: 

U2
atj = KIJXJ (2) 

where K/j is a matrix of directional sensitivities (typically as-
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Fig. 1 The orthogonal triple-wire probe. Wire (X, Y, Z) and laboratory 
(U, V, W) coordinate systems 

sumed constant). The effective cooling velocities, t/eff>;, are 
related to the squares of the component velocities in wire co­
ordinates, Xj, disregarding any directional information about 
Xj. A simple rotation relates the velocity vector in the labo­
ratory coordinate system, Uj, to the velocity vector in the wire 
coordinate system, Xj, as follows: 

U,= CIJXJ (3) 

where Cy is a coordinate rotation matrix accounting for wire 
geometry including probe pitch and roll angles. In practice one 
would estimate t/eff],- from the component anemometer bridge 
output voltages, E„ and then estimate the component veloci­
ties, Xj, via Eq. (2), assuming the direction of each component 
velocity is positive. Conceptually, rectification errors occur 
when the instantaneous velocity vector falls outside the first 
octant in Xj velocity space. 

The Impact of Rectification Errors on Velocity Statistics 
A one-dimensional, idealized illustration of the rectification 

process and its influence on the sample distribution of velocity 
vectors is presented in Fig. 2. The example presented in Fig. 
2 assumes that all of the velocity fluctuations occur in the U 
component of velocity and that there is no prong or probe-
stem interference with the velocity vector. Under these as­
sumptions, negative velocities become interpreted as positive 
velocities of the original magnitude, shifting the mean of the 
overall distribution of velocities to the right and reducing its 
variance. 

0 1 2 3 

Fig. 2 Schematic of the rectification process 

Although three-dimensional cases are more complicated than 
this simplified one-dimensional example, the influence of rec­
tification errors on velocity statistics can generally be under­
stood through the distortion of the distribution of velocity 
vectors. Rectification errors translate into incongruities be­
tween the "true" underlying distribution of velocity vectors 
and a measured/interpreted sample distribution. In three-di­
mensional cases, estimates for the moments of the velocity 
joint distribution function (e.g., the mean vector, Reynolds 
stress tensor, time correlations, etc.) are biased as a conse­
quence of these incongruities. 

A simulation of triple-wire probe response to high turbulence 
was used'to identify which regions of the velocity joint dis­
tribution function are affected by rectification errors and to 
provide insight into new ways to interpret samples containing 
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Cov = 
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f = 
/( ) = 

k\, k2, h = 

Kij 
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PSD 

coordinate rotation ma­
trix 
transpose of the coordi­
nate rotation matrix 
cumulative distribution 
function 
covariance 
hot wire bridge voltage 
for /th channel 
frequency 
indicator function 
hot wire probe direc­
tional sensitivity coeffi­
cients 
matrix of directional 
sensitivity coefficients 
sample median 
sample size 
power spectral density 
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Q„ Z, = random variables 
Rjj = Reynolds stress tensor 

rT = empirical autocorrela­
tion coefficient for time 
lag r 
time 
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coordinate system 
y'th component of veloc­
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nates 
y'th component of veloc­
ity at time lag T 

l/eff,,- = hot wire effective veloc­
ity for the /th channel 

', v', w' = standard deviation in U, 
V, and W, respectively 

X, Y, Z = velocities in (triple) wire 
coordinate system 

Ui = 

Xj = y'th component of veloc­
ity in wire coordinates 

Xj = y'th component of veloc­
ity in wire coordinates 
at time lag T 

a = triple-wire probe roll 
angle 

7 = empirical standard de­
viation 
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= mean 
= correlation coefficient 
= autocorrelation coeffi­

cient for time lag T 
= standard deviation 
= time lag between obser 
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time series 

= triple-wire probe pitch 
angle 

464 / Vol. 116, SEPTEMBER 1994 Transactions of the ASME 

Downloaded From: https://fluidsengineering.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



> 0 

-1 -

-
. 
«. _ 
-

-
_ 
-
-
_ 
-

1 1 1 1 

1 1 1 1 1 1 1 1 

0 

o / 
O/pjfl 

o 6 rftrH 
<s$0 oo $2*26; 
O ^ £ 

o ° Oo° 
o cP 

o 

1 1 1 1 1 1 1 i 

• I I I 1 1 1 1 1 1 1 1 1 

8 „ 
/ V 0 ^ " 

Spoc85a> 

\ °o 
o \ 

1 1 1 1 

M&°0^ 
^ § > ° ° ° 
8&8 o 

f°o& 
65 Qj 

o ° 

, , , l , i i , l , 

i i i 

-
-

-
" 
. 

„ 

-
— " 

1 1 1 

- 1 0 1 2 3 

U 
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Fig. 4 Rectification affects the spectrum of component velocities 

> 0 

Fig. 3(b) Simulated response of triple-wire probe to velocity vectors 
plotted in Fig. 3(a) 

observations subject to rectification errors. The simulation was 
performed in two parts. First, a random sample from the 
"true" velocity distribution was simulated by selecting vectors 
from a trivariate normal distribution having a specified mean 
vector, Reynolds stress tensor, and [/-component autocorre­
lation function. Then the response of the triple-wire probe was 
simulated by interpreting the sample from the "true" distri­
bution through the response equations for the triple-wire probe, 
Eqs. (l)-(3) above. Details of the simulation of the velocity 
field are given in Appendix A. 

Figure 3 illustrates the simulated response of an orthogonal 
triple-wire probe (w = 0 deg, a = 90 deg) to high turbulence, 
with the data represented in the U- Vplane. For this simulation 
u'/U = 0.5, v' = w' = 0.8w', and the correlation coefficient 
between «' and v' equals 0.3. The lines in Fig. 3 represent 
planes bounding the first octant of the velocity space in wire 
coordinates. The hollow dots in Fig. 3(a) correspond to "true" 
data points and the solid dots in Fig. 3(b) correspond to a 
mapping of the same true data points onto the U- V plane after 
rectification. If a velocity vector does not suffer an error due 
to rectification, a solid dot in Fig. 3(6)is plotted at the same 
coordinates as the hollow dot in Fig. 3(a) corresponding to the 
true velocity. If the velocity vector suffers rectification, then 
the true velocity plotted in Fig. 3(a) is mapped into a new 
coordinate location within the cone of interpretation in Fig. 
3(b). It should be noted that some of the data points that fall 
near but still within the planes bounding the first octant of the 

velocity space in wire coordinates in Fig. 3(a) appear as rectified 
in Fig. 3(b). This occurs when a velocity vector presented in 
Fig. 3(a) has a nonzero component in the W direction (not 
shown in Fig. 3(a)) that is sufficiently large to place the data 
point outside the first octant of the velocity space in wire 
coordinates. The result is that the data point appears as rec­
tified in Fig. 3(b). 

Consider the statistics one might calculate if one had access 
to the true velocity readings, i.e., the hollow dots in Fig. 3(a), 
and compare them to those one would calculate using the 
"rectified" velocity reading, i.e., the solid dots in Fig. 3(b). 
Using the "rectified" data, one would overpredict the means 
of both U and V, underpredict the variance of both U and V, 
and underpredict the correlation between U and V. Note that 
if the correlation coefficient between u' and v' had been zero 
instead of 0.3, the mean value of V would be unbiased, but 
the variance of V would still be underestimated. 

Figure 4 shows the power spectral density function for the 
[/-component of velocity for a simulated turbulence of u'/U 
= 0.5, v' = w' = u'. The effects of rectification are apparent 
in the low frequency, energy containing portion of the spec­
trum, although it isn't clear from Fig. 4 how this problem 
arises. Reconsidering the problem in the time domain one could 
construct a bivariate plot of U(t = 0) and U(t = T) (where 
T = lag time between observations in a stationary time series) 
that would display the same features as Fig. 3 did for U and 
V. In such a plot, the correlation between U(t = 0) and U(t 
= r) would then represent the autocorrelation for U for time 
lag r. The errors in the estimates of the autocorrelations due 
to rectification result in the errors seen in the spectrum in Fig. 
4. These errors are concentrated in the portion of the spectrum 
containing the largest fluctuations in the turbulence. 

Figures 5 and 6 show the simulated errors in the cumulative 
distribution functions of the individual components of velocity 
for both the laboratory coordinate velocities, (U, V, W), and 
the wire coordinate velocities, (X, Y, Z), for u'/U = 0.5, u' 
— v' = w', and with the mean velocity vector aligned with 
the axis of the probe stem. Figure 5 shows that in the laboratory 
coordinates, rectification affects the entire distribution for each 
component velocity. The U component is primarily affected 
from the low side of the distribution, while V and W are 
affected on both sides. This is due to the geometry of the probe 
and its orientation to the mean velocity vector. Figure 6 shows 
the corresponding errors in the velocity components in wire 
coordinates. In the wire coordinate system the errors only 
affect one side of the distribution for each component. Ob­
servations in the wire coordinate velocities above their re­
spective medians are unaffected by rectification for turbulence 
intensities of 50 percent. This fact can be used as the basis for 
a technique for interpreting triple wire data in high turbulence. 
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Fig. 5 In laboratory coordinates, rectification entirely distorts the ve- Fig. 6 In wire coordinates, rectification only distorts one side of the 
locity distributions velocity distributions 

Median Based Estimators 
The rectification of the velocity signal by hot wire ane­

mometers operating in highly turbulent flows causes significant 
errors in the conventional estimates of the mean velocity vector, 
the Reynolds stress tensor, the one-dimensional power spec­
trum, etc. Biased estimates of the moments of the velocity joint 
distribution function occur because "rectified" measurements 
contaminate certain regions of the distribution. Can one infer 
the moments of the underlying true cumulative distribution 
function (CDF) given the partially distorted, rectified CDF? 
In the wire coordinate system rectification errors contaminate 
the marginal distributions for Xj for low values. Are there 
measures of location (the center of the distributions) and scale 
(measure of deviations) which resist the errors in the low ve­
locity tails of these distributions? 

In the literature of statistics, Robinson3 (1980) discusses the 
problem of estimating autocorrelation functions for a station­
ary Gaussian time series, Q, (t = 1,2, . . . , «) , that has been 
censored, i.e., a time series in which some of the data is se­
lectively missing or excluded from the analysis. He specifically 
considers the univariate case where observations fall below the 
median value are censored but observations at or above the 
median are measured without error. Under these assumptions, 
Robinson (1980) proves that 

lim M=ix 

lim y = a 

lim rr-pr 
H ~ 00 

where M is the sample median and y and rT are defined as 
follows: 

T = [ ^ / ( Z S > 0 ) ] [ i ; z?/(z,>o) 

where 

rT = 2 V27r5T - 1 

Z,= Q,-M 

ST = "y, -J— -y= / ( Z , > 0 and Z,+ T>0) 

'Robinson, P. M., 1980, "Estimation and Forecasting for Time Series Con­
taining Censored or Missing Observations," Time Series Analysis, O. D. An­
derson, ed., North-Holland Publishing Co., pp. 167-182. 

Robinson (1980) concludes that an unbiased estimate of the 
autocorrelation function for the true time series can be made 
from the censored time series using estimators based on the 
median of the series and observations greater than the median. 

Robinson's (1980) statistical analyses of censored data can 
be extended to the interpretation of rectified triple-wire data. 
Following Robinson's (1980) logic, the correlation between two 
components can be estimated by 

ruv = 2\/2ir5„„ - 1 

where 

1 Z„ 
; = 2 f ^ / ( Z „ > 0 a n d Z „ > 0 ) 

N - 'y 

Furthermore, under the assumptions of Robinson's (1980) 
analysis it can be shown that 

lim r„„ = pu„ 

This last result can be used to estimate both the autocorrelation 
of U for time lag T (from the bivariate CDF of U(t = 0) and 
U(t = T)) and the components of the Reynolds shear stress. 

For cases where the contamination of the marginal distri­
butions of Xj due to rectification is limited to values below 
their respective medians and it is reasonable to assume that 
the underlying joint distribution is Gaussian, the following 
statements are true: 

(1) For each component XJt the median is an unbiased es­
timate of the mean. 

(2) For each component Xjt yj is an unbiased estimate of 
the Reynolds normal stress for that component. 

(3) For each pair of components (Xh Xj), /V/TiY; is an 
unbiased estimate for the Reynolds shear stress between those 
two components (no summation on / and j). 

(4) For each pair of components (^,(0), XJ(T), rT is an 
unbiased estimate for the time correlation between components 
X-; and Xj for time lag T. 

The statistics for the components of velocity in wire coordinates 
determine the corresponding statistics in laboratory coordi­
nates by the following relationships: 

U,= C,jXj (4) 

Wy'.lab ~~ wA: •***/, wire W y 

Cov(t/„, U^)lab = CcUCpkCo\(Xj,Xky„ 

(5) 

(6) 
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Experimental Validation of the Technique 
The usefulness of the estimators proposed in the previous 

section depends on two assumptions. The first is that the true 
underlying distribution function is Gaussian. The second is 
that the contamination of the marginal distributions of Xj due 
to rectification is limited to values below the respective medians 
of Xj. The first assumption depends on the flow in which one 
measures and will be addressed in the next section. The second 
assumption depends on the response of the probe to high 
turbulence and will be addressed presently. 

Using a simulation and a model for rectification errors, it 
is easy to answer the question: Will rectification errors due to 
a specified level of turbulence be restricted to values below the 
medians of Xp. It would be convenient to be able to use sim­
ulations of the response of the probe as the sole arbiter in 
setting limits on levels of turbulence below which the Reynolds 
stresses could be estimated accurately using the relations above, 
but there are compelling reasons to require experimental con­
firmations of the simulations. 

There are two questions which must be answered experi­
mentally. First, is the rectification experienced by the probe 
the same as the mathematical rectification used to simulate 
probe response? This cannot strictly be the case, since for high 
turbulence prong and even probe stem interference is certain 
to occur for some values of the instantaneous velocity vector. 
Nonetheless, the measured "rectified" joint CDF may be ac­
ceptably close to the mathematically rectified joint CDF. If 
this is the case, one could test hypotheses about the underlying 
distribution using the simulation. Second, even if not exact, 
can the simulations be used to set the limits on the domain on 
which the proposed estimators can be applied? In other words, 
is the penetration of real rectification errors into the velocity 
joint CDF about the same as the penetration predicted by 
means of the probe simulation? 

A calibrated, qualified, orthogonal triple wire probe'1 was 
placed in a free jet at a location where the turbulence intensity 
was high but did not exceed 30 percent (an accepted upper 
limit for reasonably accurate measurements). Once the desired 
statistics had been measured for this location in the free jet, 
the probe, while remaining at the same point in the flow field, 
was then pitched to force the instantaneous velocity vector 
outside the acceptable cone for a significant proportion of the 
total sample in subsequent tests. The probe started at 0 degrees 
and was subsequently pitched to 20 and 30 degrees. (As the 
probe was pitched to 20 and 30 degrees, there were instances 
when the equation for the wire velocities in terms of the ef­
fective cooling velocities, Eq. (2), could not be solved. This 
was due to instantaneous interference with a prong, causing 
wires to "see" different velocities. When this type of error 
occurred components for which the equations cannot be solved 
were set to zero. While this interpretation would bias mean 
based estimators it does not affect median based estimators.) 
Since the results of the experiment were to be compared to the 
results for the probe simulation run under the same conditions 
as the experiment, the measurements for the probe pitched at 
0 degrees were used to establish the inputs to the simulation. 
The simulation was then run with the probe pitched at 0, 20, 
and 30 degrees to the mean flow direction. 

Figure 7 compares the results from the experiment to the 
results from the simulation of the experiment. Figures 7(a) and 
1(b) show that while the actual rectification for the X com­
ponent of velocity differs from the simulated rectification, both 

•"Details of the calibration and qualification procedures associated with the 
use of the triple wire probe are considered to be either established practices or 
special issues that fall outside the scope of the concerns of this paper. The details 
of the procedures associated with the present implementation can be found in 
the following: Maciejewski, P. K., and Moffat, R. J., 1989, "Heat Transfer 
with Very High Free-Stream Turbulence," Report No. HMT-42, Thermosciences 
Division of Mechanical Engineering, Stanford University. 
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Fig. 7(b) Simulated distribution of X for rectification experiment 

the experiment and the simulation agree on the location of the 
point beyond which the distribution is unaffected. Similar re­
sults have been obtained for the Y and Z components as well. 
While the simulation cannot be used to account for actual 
rectification errors, it can be used to set accurate limits for the 
physical conditions under which the proposed median based 
estimators will resist errors. 

Discussion 
The errors incurred by an orthogonal triple wire probe op­

erating in high turbulence are deterministic, not random. The 
errors in the statistics of the velocity field are repeatedly biased. 
Conventional estimators (e.g., means and moments) are highly 
sensitive to rectification errors, but median based estimators 
resist these errors for turbulence intensities up to 50 percent. 
From a simulation at it'/U = 0.5, the errors in wire velocity 
component medians are 1 percent. At u'/U = 0.7, errors in 
these medians are only 5 percent. 

The assumption that the underlying distribution is Gaussian 
(on which these procedures rest) can be partially tested. One 
could run a Kolmogorov-Smirnov test on the hypothesis that 
the "uncontaminated" portion of the distribution has a Gaus­
sian shape. It should be noted that such a test cannot prove 
that the underlying distributions are as assumed. It only tests 
whether or not the available "uncontaminated" data are con­
sistent with this assumption. 

The proposed measures of turbulence come purely from the 
need to resist the deterministic errors incurred by hot wire 
probes in highly turbulent flow fields. Does it make sense from 
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a physical point of view to use these measures? From an em­
pirical point of view, it is not clear which measures of tur­
bulence will correlate with other parameters of interest. There 
is no a priori reason to prefer the mean to the median. The 
strongest argument for maintaining the conventional moments 
measures of turbulence is that we are familiar with how to 
think about them in the context of the Reynolds averaged 
equations. For Gaussian distributions the median based esti­
mators proposed in this paper estimate the moments measures 
and can be used directly to close moments models. For un­
derlying distributions that are non-Gaussian, one must either 
relate the median based measures to the expected moments 
measures and use existing turbulence models or develop new 
models which employ median based estimators directly. 

Recommendations 
If it is reasonable to assume the underlying velocity joint 

distribution function is Gaussian, the median based estimators 
presented above yield unbiased estimates of the mean vector, 
Reynolds stress tensor, and two-component time correlations. 
One can use these estimators on data taken with an orthogonal 
triple wire probe for flows with turbulence intensities in the 
neighborhood of 50 percent. Simulations of the probe response 
can be used to establish the limits of reliable use. If the un­
derlying distribution is significantly non-Gaussian, then fur­
ther precautions should be taken in interpreting triple-wire data 
in very high turbulence. 
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A P P E N D I X A 

Simulating High Turbulence at a Point 
A random sample from a trivariate normal distribution with 

a specified mean vector and covariance matrix (Reynolds stress 
tensor) simulates a sample from the " t rue" population of 
velocity vectors, t/,7 (;'th observation, y'th component). Indi­
vidual components of the sample are then correlated in time 
using a first order autoregessive model given by 

U!j{t)=ajU;j{t-l)+Uij{t) 
where £//,(0) = C//y-(0),and t/y ~ N(iij, o/) and a,-are specified 
by the user. This model simulates a time series having com­
ponent autocorrelation functions given by 

Pj(T) = a] 

component integral scale given by 

7)=- l / ln (« , - ) 

and component spectra given by 

PSD ; ( / ) = - 2 ln(o,-)/ {(ln(a,.))2 + (2TT/)2 ) 

This model provides a simulated sample from the population 
of velocity vectors with an underlying analytic joint pdf and 
analytic component spectra. The sample joint pdf and com­
ponent spectra can be compared directly to their underlying 
true counterparts. 

Call for Papers 
Symposium on Flow-Induced Vibration—1995 

Continuing the tradition since 1977, the Technical Committee of Fluid-Structure Interaction and the Operations, Applications 
and Components Committee of the Pressure Vessel and Piping Division of The American Society of Mechanical Engineers 
will co-sponsor a Symposium on Flow-Induced Vibration to be held at the ASME/JSME Pressure Vessel and Piping 
Conference from July 23 to July 27, 1995 at the Hilton Hawaiian Village in Honolulu, Hawaii. Papers are solicited in, but 
not limited to, the following areas: 

• Fluid-elastic instability of tube bundles 
• Turbulence-induced vibration 
• Damping (Experimental and Theoretical) 
• Acoustically-induced vibrations 
• Leakage flow-induced instability 
9 Two-phase flow-induced vibration 
9 Non-linear aspects of flow-induced vibration 
9 Vibration induced wear 
8 Fluid-structure interaction 
9 Operational experience 

Non-traditional topics, such as flow-induced vibration in components other than tube banks and fuel bundles, are particularly 
welcome. Interested authors should submit, by September 10, 1994, a 100-word abstract to: 

(American, Europe and Australia) 
Mr. M. J. Pettigrew, 
AECL Research, 
Chalk River Laboratories, 
Chalk River, Ontario, 
Canada K1J 1J0 
Tel 613-584-3311 X-3792 
Fax 613-584-4523 

(Asia, Africa) 
Dr. Katsuhisa Fujita, 
Takasago R&D Center, 
Mitshibishi Heavy Industries, Ltd., 
2-1-2 Shinhama, Arai, 
Takasago, Hyogo Pref, 6/6, Japan 
Tel/Fax 0794-45-6700/6926 

Abstracts will be accepted or rejected by September 30, 1994 and first drafts of the accepted papers will be due November 
15, 1994. The papers will be reviewed according to the usual ASME procedure and if accepted, the final manuscripts will 
be due by March 1, 1995. The accepted papers will be presented in the Symposium and will be printed in the Symposium 
Proceeding. The authors can also submit their papers to other technical journals for publication. 

This Symposium is being coordinated by M. K. Au-Yang of B&W Nuclear Technologies. 
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