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Proactive Data Download and User Demand

Shaping for Data Networks
John Tadrous, Atilla Eryilmaz, and Hesham El Gamal

Abstract—In this work, we propose and study optimal proac-
tive resource allocation and demand shaping for data networks.
Motivated by the recent findings on human behavioral patterns,
and the emergence of highly capable handheld devices (such as
smart phones), our framework aims to smooth out the network
traffic over time. Such a load balance minimizes the total cost
required for data delivery.

The framework utilizes proactive data services as well as
smart content recommendation schemes for shaping the demand.
Proactive data services take place during the off-peak hours
based on a statistical prediction demand profile for each user,
whereas smart content recommendation assigns modified val-
uations to data item so as to render the users’ demand less
uncertain. Hence, it boosts the performance of proactive services.
We conduct theoretical performance analysis that quantifies the
leveraged cost reduction through the proposed framework. We
show that the cost reduction scales with the number of users as the
cost function itself does. Further, we prove that demand shaping
through smart recommendation strictly reduces the incurred cost
even below that of proactive data service only.

Index Terms—Resource allocation, wireless networks, convex
optimization, predictable demand.

I. INTRODUCTION

THe vast expansion of highly capable smart wireless

devices has powered a substantial transformation of the

global data network into a more mobile, increasingly demand-

ing, and socially more interconnected form. Such a wireless

revolution has raised major concerns about an inevitable surge

of wireless traffic load by throughput-hungry application that

existing resource allocation schemes may not stand. These ap-

plications include multimedia services which constitute more

than 50% of the total Internet load [1], [2]. On the other

hand, there is a growing body of evidence that the available

spectrum, which defines an ultimate resource for wireless com-

munications, is suffering an inherent underutilization problem

as has been reported in the recent studies by FCC [3], [4].

Consequently, there is an urged call for the development

of more advanced and sophisticated techniques improving the

wireless resource management and allocation. Recently, the

notion of dynamic spectrum access (DSA) has been introduced

as a remedy to the spectrum underutilization problem, and

has been enabled through the cognitive radio technology [5],

[6]. The cognitive radio approach, however, is still facing

significant technological hurdles [6], [7] and, will offer only

a partial solution to the problem. This limitation is tied to

the main reason behind the underutilization of the spectrum;
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namely the large disparity between the average and peak

traffic demand in the network.

Actually, one can see that the traffic demand at the peak

hours is much higher than that at night. Now, the cognitive

radio approach assumes that the users will be able to utilize

the spectrum at the off-peak times, but at those times one may

expect the cognitive radio traffic characteristics to be similar

to that of the primary users (e.g., at night most of the primary

and cognitive radio users are expected to be idle).

Recently, we have proposed the notion of proactive resource

allocation [8] as a remedy to the spectrum crisis. The tech-

nique aims at exploiting the predictable human demand as well

as the powerful processing capabilities and the large memory

storage offered by the smart wireless devices in smoothing

out the wireless network traffic over time by proactively serv-

ing predictable peak-hour requests during the off-peak time.

Hence, the peak-to-average demand ratio is minimized and

significant utilization for the available resources is provided

[9]-[11].

There exists a substantial evidence, both for general human

behavior [12]-[16] and specifically for wireless data users [17]-

[23], that supports the underlying premise of large-timescale

(in the order of minutes to hours) user predictability which, in

turn, motivates our proactive design framework. In [9], the

notion of proactive resource allocation for wireless unicast

networks has been introduced and analyzed under perfect

predictability of users’ demand, and the performance has

been quantified through the diversity gain metric. The results

have been extended to multicast networks in [10] where

multicast alignment gain revealed a potential for a significant

reduction in the resources required to attain a certain level of

quality of service (QoS). In [11], proactive resource allocation

has been investigated in cognitive radio networks, where the

good citizen phenomenon is demonstrated. Such a phenomena

revealed an enhanced QoS for a non-proactive cognitive user

while primary users employ proactive resource allocation.

There are also emerging works aiming to balance the

network traffic over time through time/load-dependent pricing

(see for example [24]-[27]). The main approach is to adjust

the service price depending on the total network load in a way

that assigns low prices to off-peak services and higher prices

to peak-hour demand. A recent study in [24] highlights the

potential of smoothing-out the network traffic through time-

dependent pricing. In fact, some network operators outside the

USA (such as Orange, MTN and Uninor) have already started

using adaptive pricing schemes to mitigate the excessive cost

resulting from high bandwidth consumption [25]-[26].

On the other hand, there exists a recent work [27] that
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considers the same problem in the USA. It optimizes price

allocation mechanisms that encourage network users to delay

their demand to the off-peak hour based collected statistics

about their willingness to defer to a time when the service

prices are considerably reduced. While pricing can be used

for demand shaping (see e.g. [28]), our proposed approach

sheds light on the use of recommendation schemes as another

important parameter that controls the future demand. Further,

we highlight the point that our proposed approach does not

aim at pushing users to defer their demand in time. Instead, it

encourages them to be deterministic about their future demand.

In this paper, we develop a framework for optimal proactive

resource allocation and demand shaping for wireless networks

comprising a service providers and associated subscribers. The

subscribers’ demand assumes cyclostationary statistics as it

repeats itself over finite time durations, whereby the service

provider can track, learn and construct a user demand profile

to each subscriber. These profiles are then used to determine

proactive data downloads to the users in a way that minimizes

the time average expected cost incurred by the service provider

while providing reliable data delivery. Moreover, we consider

a further improvement to the cost performance by applying

slight modifications to the demand profiles of the users so as

to render them more deterministic. We refer to this operation

by demand shaping. We develop a smart recommendation

scheme to perform demand shaping while maintaining the

user satisfaction about the quality of offered data items. The

demand shaping scheme is proved to strictly reduce the cost

even below proactive downloads alone. The main contribution

of this work are listed as follows.

• In Section II, we provide a description of the time-slotted

system model, present the notion of user demand profile and its

cyclostationary nature, and layout the time average expected

cost for a traditional non-proactive network to serve the users’

demand.

• In Section III, we formulate the general time average

proactive resource allocation problem that incorporates joint

data download and demand shaping. We prove the existence

of a steady state solution to the infinite horizon version of it.

• In Section IV, we consider the proactive data download

side of the problem. We adopt the cost reduction leveraged

through proactive downloads as our metric of interest. An

upper and lower bounds on the optimal cost reduction are

established, and its asymptotic scaling laws when the number

of users grows to infinity are characterized. We show that,

successive time slots that witness a disparate levels of traffic

load result in a cost reduction that scales in the same order of

the non-proactive cost itself.

• In Section V, we study the joint allocation of proactive

data downloads and user demand profile. we aim at further

reduce the time average expected cost by pushing the user

demand profile more deterministic. In Section V-A, we char-

acterize the optimal solution to the problem under weak user

satisfaction constraints where each user is flexible to follow

the recommendations made by the service provider.

• In Section V-B, we take the user satisfaction into account.

We use the entropy about the given user profile to quantify the

uncertainty about the future demand, as well as the flexibility

of each user to follow a new set of recommendations. The

new set of user satisfaction constraints renders the problem

computationally intractable. However, we propose an iterative

scheme where an almost-surely strictly reduced cost below

that of proactive downloads alone can be obtained.

• In Section VI we formulate and study a data-item rec-

ommendation problem that assigns new ratings to the recom-

mended data items for each user that 1) achieve the modified

profiles, and 2) stick as close as possible, in the Euclidean-

distance sense, to the actual ratings made by the corresponding

users.

• The work is concluded in Section VIII.

II. SYSTEM MODEL

We consider a network comprising N users with a variable

demand and a service provider that responds to users’ requests

in a timely basis. The service provider has a total of M
different data items that each user can request from in a

random fashion. Each data item m is assumed to have a size

of S(m) > 0, and

Š := minm∈{1,··· ,M}{S(m)} > 0, (1)

Ŝ := maxm∈{1,··· ,M}{S(m)} < ∞. (2)

In a time-slotted system, the content of each data item is

consistently updated every time slot, where such a content

could be a movie (as in YouTube and Netflix), a soundtrack

(as in Pandora), a social network update (as in Facebook and

Twitter), a news update (as in CNN and Fox News), etc. We

consider the application-layer timescale in which the duration

of a time slot is the time taken for a user to completely run the

requested data item, which can be in the order of minutes or

possibly hours. At the beginning of each time slot, the service

provider collects the demand of all users and supplies them

with the requested data items, which have been updated over

the previous time slot.

Users’ demand profiles: We assume that the demand

of each user can be tracked, learned, and predicted by the

service provider over time. The service provider constructs

a demand profile for every user n and time slot t, denoted

pn,t = (Pn,t(m))Mm=1, where Pn,t(m) is the probability that

user n requests item m in slot t. We assume that each user

can request at most one data item per time slot. Then, we

model the statistics of the predictable user demands as follows:

• The demand of user n at slot t is captured by a random

variable In,t(m) where

In,t(m) =

{

1, with probability Pn,t(m),

0, with probability 1− Pn,t(m).

• For any time slot t, In,t(m) is independent of In,t+1(k)
for all m, k.

• For any two users n, k such that n 6= k, In,t(m) is

independent of Ik,t(j) for all m, j.

• At slot t ≥ 0, user n requests at most one data item.

Hence
∑M

m=1 In,t(m) ≤ 1.

• The probability that user n does not request any data item

at slot t is qn,t := 1−
∑M

m=1 Pn,t(m).



3

pn,t+1 pn,t+T-1 pn,tpn,t pn,t+1 Time
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Fig. 1: Cyclostationary demand profiles over time. Every T
time slots, the demand profile of user n is repeated.

Further, the demand profile of each user follows a cyclo-

stationary pattern that repeats itself consistently in a period

of T time slots as shown in Fig. 1. The T -slot period can

be interpreted as a single day through which the activity of

each user varies each hour, but occurs with the same statistics

consistently each day. Thus, we can write pn,t+l = pn,t+kT+l

for any non-negative integer k, and l = 0, · · · , T − 1.

Data item valuations: Define vn,t(m) ∈ [0, 1] as the

valuation (rating) of data item m as offered by the service

provider to user n at time t. The offered valuations depend

on the user preferences and interests, and can be estimated

through different techniques, such as collaborative filtering.

The probability that user n requests data item m at time

slot t is modeled as Pn,t(m) := φm,t(vn,t), where φm,t :
[0, 1]M → [0, 1] is a non-negative function that maps the

ratings of user n into a corresponding probability of requesting

item m specifically at time slot t for any m,n, t. The function

φm,t captures the relative differences between the ratings of

the M data items as seen by user n.

Incurred cost: To supply requested data items, the service

provider incurs a certain cost due to the resources consumed

at each time slot, which is supposed to depend on the total

load created by the users’ demand. Suppose that L is the total

network load at a given slot, then the aggregate cost incurred

by the service provider is C(L), where C : R+ → R+ is

a smooth, strictly convex, and monotonically increasing cost

function. We assume also that the total load at a given time

slot is not observable by the service provider, an assumption

that is justified by practical data delivery scenarios whereby

users’ requests arrive to a widespread content delivery network

associated with the service provider (cf. [29], [30]) rendering

the observability of the total load in each slot by a central

entity impractical.

However, this assumption does not contradict the assump-

tion that service provider can construct users’ profiles through

tracking and learning their demand since such a process is

supposed to have taken place through a long period of time

over which the service provider can retrieve sufficient statistics

about the users’ preferences and activities from the content

delivery network, such a step that we assume to be performed

initially.

We consider the time average expected cost incurred by a

non-proactive network, a network whose service provider does

not exploit the predictability of the user demand, as

CN (N) := lim sup
τ→∞

1

τ

τ−1
∑

t=0

E [C (Lt)] , (3)

User n
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Fig. 2: Time diagram of proactive downloads for the demand

of user n.

where

Lt :=

M
∑

m=1

N
∑

n=1

S(m)In,t(m), t ≥ 0 (4)

is the total load at time slot t encountered by the non-proactive

network. The average cost CN (N) represents a baseline

to which we compare the relative cost reduction leveraged

through efficient utilization of the available users’ profiles.

III. PROBLEM FORMULATION

In this section, we pose the general formulation of the

proactive resource allocation problem, and highlight some of

its features.

A. Proactive Data Download and Demand Shaping

Now, we propose a proactive network framework in which

the service provider makes use of the predictable and cyclo-

stationary nature of the users’ demand in balancing the total

load over time, hence minimizes the time average expected

cost.

Our approach aims at producing proactive data downloads at

each time slot depending on the demand statistics. It utilizes

the prior knowledge about the user profile in the upcoming

time slot, combines it with the statistics about the demand

during the current slot, and proactively sends a portion of

each potential data item to the respective users. We denote

by xn,t+1(m) the portion of data item m sent ahead to user

n at time slot t, m = 1, · · · ,M , n = 1, · · · , N , t = 0, 1, · · · .

Fig. 2 provides an illustrating diagram.

Moreover, we assume that the service provider is allowed to

slightly modify the demand profile of each user in a way that

strikes a balance between enhancing the certainty about the

future demand, and maintaining the user satisfaction about the

quality of offered ratings to each data item. The modification

of demand profiles offers a further cost reduction gain since

a more deterministic user renders the proactive download

process more efficient1. In fact, the statistical knowledge about

1Addressed in more detail in Section V
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the future demand might results in potential wastage in the

proactive downloads as such data may not be actually re-

quested and hence the service provider could end up incurring

extra cost.

Therefore, the service provider may offer slightly different

valuations from those recognized by users as follows. Suppose

that p̃n,t = (P̃n,t(m))Mm=1 is the profile of user n at time slot t
with qn,t being the probability that user n remains silent in slot

t. Then, we model user n’s flexibility to change his own profile

of slot t from p̃n,t to pn,t by a satisfaction region Fp̃n,t
which

is a collection of probability profiles that user n is satisfied to

adopt at slot t. Further, each profile pn,t ∈ Fp̃n,t
has to always

satisfy qn,t = 1 −
∑M

m=1 Pn,t(m), since the modification of

the user preferences does not affect his activity at that slot.

For simplicity of notation, let v = {vn,t}n,t, x = {xn,t}n,t,
p = {pn,t}n,t, and C̄(.) = lim supτ→∞

1
τ

∑τ
t=0 E[C(.)].

Now, the proactive download and demand shaping problem

for time average expected cost minimization is formulated as

CP(N) :=

minimize
v,x,p

C̄

(

Lt +

M
∑

m=1

N
∑

n=1

xn,t+1(m)− xn,t(m)In,t(m)

)

subject to

0 ≤ xn,t(m) ≤ S(m), ∀m,n, t ≥ 0,

pn,t ∈ Fp̃n,t
, ∀n, t ≥ 0,

pn,t = pn,kT+t, ∀k, n, t ≥ 0

Pn,t(m) = φm,t(vn,t), ∀m,n, t ≥ 0,

vn,t ∈ [0, 1]M , ∀n = 1, · · · , N,
(5)

where the optimization is jointly done over the valuations,

proactive downloads and users’ profiles seeking the minimum

possible expected cost under user satisfaction restrictions. We

introduce the following lemma to establish the existence of the

time average expected cost for both the non-proactive network

(3), and the proactive network (5).

Lemma 1. Let {yn}n≥0 be a bounded sequence in R+, then

the limit limn→∞
1
n

∑n−1
i=0 yi exists and is finite.

Proof. Please refer to Appendix A.

Corollary 1. For any N ∈ N, the time average expected costs

CN (N) and CP(N) exist, and lim supτ→∞ can be replaced

with limτ→∞ in (3), and (5).

Proof. Follows directly from Lemma 1 while noting that 0 ≤
E [C(Lt)] ≤ C(Ŝ ·N) and

0 ≤ E

[

C

(

Lt +
M
∑

m=1

N
∑

n=1

xn,t+1(m)− xn,t(m)In,t(m)

)]

≤ C(Ŝ ·N), for all t ≥ 0.

Having established the existence of the time average ex-

pected cost, we now investigate the existence of a one-cycle

steady-state solution.

B. One-cycle Steady-state Solution

The cyclostationary nature of the demand profiles, and the

unobservability of the instantaneous load suggest the existence

of a steady-state solution to (5) as follows.

Theorem 1. For any N ∈ N, the joint proactive download

and demand shaping problem can be formulated as

CP(N) =

minimize
v,x,p

◦
C

(

Lt +

M
∑

m=1

N
∑

n=1

xn,t+1(m)− xn,t(m)In,t(m)

)

subject to

0 ≤ xn,t(m) ≤ S(m), ∀m,n, t = 0, · · · , T − 1,

pn,t ∈ Fp̃n,t
, ∀n, t = 0, · · · , T − 1,

xn,0 = xn,T ,

Pn,t(m) = φm,t(vn,t), ∀m,n, t = 1, · · · , T − 1,

vn,t ∈ [0, 1]M , ∀n = 1, · · · , N,
(6)

where
◦
C(.) = 1

T

∑T−1
t=0 E[C(.)].

Proof. Please refer to Appendix B.

Corollary 2. For any N ∈ N, the time average expected cost

incurred by the non-proactive network is given by

CN (N) =
1

T

T−1
∑

t=0

E [C(Lt)] . (7)

As such, only one cycle of the time average expected cost

is tantamount to the infinite-horizon time average cost.

It turns out, however, that the general formulation in (6) is

not convex in (x,p) because the objective function involves

a collection of products of the components of both x and p,

where x = {xn,t}n,t, p = {pn,t}n,t with n = 1, · · · , N , and

t = 0, · · · , T − 1. In order to tackle difficulty in obtaining

a global optimal solution for the problem, we divide it into

three main steps. We first address the performance of proactive

downloads alone without demand shaping which characterize

the the best proactive data allocation in response to a given

demand profile. Then, we consider the determination of the

best joint demand profile and proactive download that always

improves the beyond proactive downloads alone. Finally, we

investigate data item valuation approach that yields the target

demand profile.

IV. PROACTIVE DATA DOWNLOAD

In this section, we quantify the performance of proactive

data downloads only. We assume that the system is operating

at a given demand profile p̃ while the system provider is

determining the optimal proactive downloads x∗. As discussed

in the proof of Theorem 1, the problem in this case becomes

convex in x:

CP(N, p̃) := minimize
x

1

T

T−1
∑

t=0

E

[

C

(

Lt +

M
∑

m=1

N
∑

n=1

xn,t+1(m)− xn,t(m)In,t(m)

)]

subject to 0 ≤ xn,t(m) ≤ S(m), ∀m,n, t,

(8)
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and CN (N, p̃) := 1
T

∑T−1
t=0 E [C(Lt)]. In this section, we fo-

cus on the cost reduction leveraged through efficient proactive

downloads only. We define the cost reduction when there are

N users in the system as

∆C(N) := CN (N, p̃)− CP(N, p̃),

and consider its asymptotic performance when the number of

users grows to infinity. More specifically,

lim sup
N→∞

∆C(N)

h(N)C ′(γ ·N)
, and lim inf

N→∞

∆C(N)

h(N)C ′(γ ·N)
,

where C ′ is the first derivative of the cost function C, γ is

some positive constant, and h(N) ≤ N,N ∈ N, is a positive

non-decreasing function in N .

By the convexity of the optimization problem (8), and the

compactness of the feasible set, there exists an optimal solution

x∗ with x∗
n,t+1(m) being the optimal proactive download of

data item m made to user n in slot t.

Definition 1 (Active users). For each data item m and time

slot t, we define a set Bt(m) of active users as

Bt(m) := {n : E [In,t(m)C ′(Lt)− C ′(Lt−1)] > 0} ,

t = 0, · · · , T − 1, m = 1, · · · ,M,

with Bt(m) := |Bt(m)| is the cardinality of set Bt(m).

In the definition above, the expectation

E [In,t(m)C ′(Lt)− C ′(Lt−1)]

captures the marginal contribution of of user n to the cost

of time slot t, when requests item m, over the cost of the

previous time slot t − 1. The active users for any given slot

have a high potential to improve the cost reduction through a

proactive service of their demand.

Despite the convexity of (8), a closed form expression for

the optimal value is not available for the general cost function

defined above. As such, we study the asymptotic performance

of ∆C(N) through upper and lower bounds that exhibit the

same scaling order with N . To that end, we establish such

bounds in the following subsections.

A. Upper Bound

We use the set of active users Bt(m) to characterize an

upper bound on ∆C(N) as follows.

Lemma 2 (Upper bound on cost reduction). Let N ∈ N. For

Bt(m) defined above,

∆C(N) ≤
1

T

T−1
∑

t=0

M
∑

m=1

S(m)×

∑

n∈Bt(m)

E [In,t(m)C ′(Lt)− C ′(Lt−1)] .
(9)

Proof. Please refer to Appendix C.

B. Lower Bound

In order to establish a lower bound on the cost reduction,

we introduce the following preliminaries.

Definition 2. For every time slot t ∈ {0, · · · , T −1}, suppose

that Bt(m) is non-empty for some data item m. We define the

quantity x̂t as

x̂t := arg min
0≤xt≤Š

E

[

C

(

Lt−1 +

M
∑

m=1

∑

n∈Bt(m)

xt

)

+ C

(

Lt −

M
∑

m=1

∑

n∈Bt(m)

xtIn,t(m)

)]

. (10)

The following result about x̂t holds.

Lemma 3. If Bt(m) is non-empty for some time slot t and

data item m, then x̂t > 0.

Proof. Please refer to Appendix D.

Definition 3 (Policy A). A proactive download allocation

strategy named Policy A produces a proactive download vector

x̃ satisfying the constraints of (8) as follows. For time slot

t = 0, · · · , T − 1, and any data item m,

x̃n,t(m) =

{

x̃t if n ∈ Bt(m),

0 if n /∈ Bt(m),
(11)

where

x̃t := x̂t − r, (12)

for some r > 0 chosen such that2 x̃t > 0 for all t ∈
{0, · · · , T − 1}, and x̂t is defined in (10).

Note that, Policy A, assigns equal proactive downloads to

all active users in a given slot t. We utilize this policy in

establishing the following lower bound on the performance of

∆C(N).

Lemma 4 (Lower bound on cost reduction). Let N ∈ N.

Under Policy A and for Bt(m) defined above,

∆C(N) ≥
1

T

T−1
∑

t=0

M
∑

m=1

x̃t

∑

n∈Bt(m)

E

[

In,t(m)C ′

(

Lt −

M
∑

j=1

∑

k∈Bt(j)

x̃tIk,t(j)

)

− C ′

(

Lt−1 +

M
∑

j=1

∑

k∈Bt(j)

x̃t

)]

> 0.

(13)

Proof. Please refer to Appendix E.

Having established general upper and lower bounds on the

potential cost reduction, we study its asymptotic performance

with the number of users and present the result in the next

subsection.

2Such a positive r exists since T is finite, and by Lemma 3, x̂t > 0 for
any non-empty Bt(m).
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C. Asymptotic Analysis

When the number of users N grows to infinity, the expected

time average cost also grows to infinity when qn,t < 1, ∀n,

and some t. The cost reduction itself will also grow to infinity

with a certain scaling order with N . Such a cost reduction

depends mainly on the number of elements in Bt(m), and

how it scales with N . Throughout this subsection, we assume

that qn,t < 1, ∀n, t. That is, each user can request a data item

at any time slot with a positive probability.

The following assumption considers the asymptotic behav-

ior of Bt(m) as N → ∞.

Assumption 1. Assume that there exists some non-decreasing

function h : N → N such that h(N) ≤ N on N, h(N) → ∞
as N → ∞, and for every time slot t and data item m, the

limit

βt(m) := lim
N→∞

Bt(m)

h(N)
(14)

exists, and βt(m) < ∞, ∀m = 1, · · · ,M, t = 0, · · · , T − 1.

Note that, under Assumption 1, βt(m) > 0 implies the

number of active users grows to infinity as the total number of

users does. The following two lemmas are crucial to establish

the main asymptotic scaling result.

Lemma 5. Under Assumption 1, there exists a positive con-

stant γ2 such that

ρt(m) : = lim sup
N→∞

∑

n∈Bt(m)

E [In,t(m)C ′(Lt)− C ′(Lt−1)]

h(N)C ′(γ2 ·N)

< ∞, ∀m, t.

Further, if βt(m) = 0, then ρt(m) = 0.

Proof. Please refer to Appendix F.

Lemma 6. Under Assumption 1, suppose that the cost function

C satisfies

lim
L→∞

Lδ

C ′(L)
= 0, for some δ > 0. (15)

Suppose also that βt(m) > 0 for some data item m and time
slot t. Then,

σt(m) := lim inf
N→∞

1

h(N)C′(γ1 ·N)
×

∑

n∈Bt(m)

E



In,t(m)C′



Lt −

M
∑

j=1

∑

k∈Bt(j)

x̃tIn,t(j)









− E



C
′



Lt−1 +

M
∑

j=1

∑

k∈Bt(j)

x̃t









> 0, for some γ1 > 0.

Proof. Please refer to Appendix G.

Lemmas 5, and 6 are instrumental to establish the asymp-

totic scaling result of the cost reduction, which is stated in the

following theorem.

Theorem 2 (Asymptotic cost reduction for infinite number

of active users). Under Assumption 1, suppose that the cost

function C satisfies Condition (15). Then, there exist finite

positive constants γ̂, and γ̌ for which

lim sup
N→∞

∆C(N)

h(N) · C ′(γ̂ ·N)
≤

1

T

T−1
∑

t=0

M
∑

m=1

S(m)ρt(m), (16)

and

lim inf
N→∞

∆C(N)

h(N) · C ′(γ̌ ·N)
≥

1

T

T−1
∑

t=0

M
∑

m=1

χtσt(m), (17)

where χt := lim infN→∞ x̃t, t = 0, · · · , T − 1.

Proof. The proof is straightforward from Lemma 5, and

Lemma 6.

Theorem 2, characterizes asymptotic upper and lower

bounds on the scaling of the cost reduction leveraged through

proactive data download. Moreover, we can also conclude the

following.

Corollary 3. Under Assumption 1, and Condition (15), if for

some time slot t and data item m, βt(m) > 0, then there exists

a finite positive constant γ such that

∆C(N) = Θ (h(N)C ′(γN)) . (18)

Thus, if the number of active users grows to infinity as

h(N), the leveraged cost reduction grows unboundedly to

infinity as h(N)·C ′(γN). At this point, the following remarks

can be made.

Remark 1. For a polynomial cost function with some degree

d > 1, the leveraged cost reduction scales with the number

of users as h(N)Nd−1. Further, if h(N) is linear in N , then

∆C(N) grows as Nd, i.e., ∆C(N) scales with N as the cost

itself does.

Remark 2. For an exponential cost function, the cost reduc-

tion grows exponentially with the number of users since the

derivative of the cost function is also an exponential function.

However, the constant γ affects the exponent of scaling.

Remark 3. The super-linearity of the class of cost functions

satisfying Condition (15) specifies a typical form of practical

types of costs, such as those measuring delays and energy

consumption in communication networks.

Remark 4. The necessity of Condition (15) to establish the

scaling result (18) is manifested by considering the following

setup. Let C(L) = L− log(L+ 1), which is a monotonically

increasing and strictly convex cost function, but does not obey

Condition (15). Assuming T = 2, L0 = 0, almost surely, and

L1 = SN for a single-data item system with size S. Given this

setup, the all users are active in slot 1, however, the obtained

optimal cost reduction does not scale as Θ( γN2

1+γN
) for any

γ > 0.

Until this point, we have addressed the scenario where the

number of active users for some data items and time slots

grows to infinity. Now, we investigate the potential of scaling

cost reduction when the number of active users is bounded

above and the total number of users grows to infinity. Such a

case can essentially result from a high uncertainty about the



7

exact future demand for each user, especially when the user

preferences are equally distributed over the set of data items.

The following assumption captures this scenario.

Assumption 2. Assume lim infN→∞ Bt(m) > 0 for all m, t,
and that Bt(m) ≤ B for some B ∈ [0,∞), and for all m =
1, · · · ,M , t = 0, · · · , T − 1, and N ∈ N.

Assumption 2 formalizes the case when there always exists

a positive number of active users in the systems, but such a

number is bounded above while the total number of users N
grows to infinity. The scaling order of the cost function with

number of users, under that assumption, is characterized in the

following theorem.

Theorem 3 (Asymptotic cost reduction for bounded number

of active users). Under Assumption 2, let

B̂t(m) := lim sup
N→∞

Bt(m),

B̌t(m) := lim inf
N→∞

Bt(m), ∀m, t.

The expected time average cost ∆C(N) satisfies

lim sup
N→∞

∆C(N)

C ′(γ̂ ·N)
≤

1

T

T−1
∑

t=0

M
∑

m=1

S(m)
∑

n∈B̂t(m)

ρn,t(m),

(19)

and

lim inf
N→∞

∆C(N)

C ′(γ̌ ·N)
≥

1

T

T−1
∑

t=0

M
∑

m=1

χt

∑

n∈B̌t(m)

σn,t(m), (20)

for some finite positive constants γ̂, γ̌, where

ρn,t(m) := lim sup
N→∞

E [In,t(m)C ′(Lt)− C ′(Lt−1)]

C ′(γ̂ ·N)
,

n ∈ B̂t(m),

σn,t(m) :=

lim inf
N→∞

E

[

In,t(m)C ′
(

Lt −
∑M

j=1

∑

n∈Bt(j)
x̃tIn,t(j)

)]

C ′(ŜN)

−
E

[

C ′
(

Lt−1 +
∑M

j=1

∑

n∈Bt(j)
x̃t

)]

C ′(ŜN)
, n ∈ B̌t(m).

Proof. The proof follows by taking lim sup and lim inf of (9)

and (13), respectively, as N → ∞.

Note that, in Theorem 3, χt > 0, ∀t, and σn,t(m) > 0,

∀m,n, t. This holds since the terms
∑M

j=1

∑

n∈Bt(j)
x̃tIn,t(j),

and
∑M

j=1

∑

n∈Bt(j)
x̃t are bounded by Assumption 2, while

the terms Lt−1, and Lt grow to infinity almost surely as N →
∞, for all m,n, t.

Corollary 4. Under Assumption 2, there exists a positive

constant γ such that

∆C(N) = Θ(C ′(γN)). (21)

The significance of (21) is boosted under the class of

cost functions with C ′(N) → ∞ as N → ∞, which yield

unbounded cost reduction for a bounded number of active

users. The following remark highlights this gain.

Remark 5. For a class of cost functions with C ′(N) → ∞
as N → ∞, the leveraged cost reduction grows unboundedly

to infinity as C ′(γN) even if there is only one active user for

only one data item at only one time slot. The reason behind

such unbounded gain attributes to the coupling of the cost

incurred to serve the request of this active user and the costs

of serving the rest of users, which grows unboundedly with N .

Theorem 3 and Corollary 4 have provided a worst-case

scaling scenario for the cost reduction. In the asymptotic

scenario of this case, the demand profiles of all but finitely

many users are rather indeterministic and creating a substantial

uncertainty about the expected user demand. Such a confusion

forces the service provider to refrain its proactive transmission

to a wide set of users. In order to tackle such a problem,

we consider, in the following section, joint allocation of user

demand profile and proactive data download.

V. DEMAND SHAPING

Our notion of demand shaping is motivated by the obser-

vation that less predictable users, whose demand profiles are

divided almost equally over a subset of data items, can be

expected to be more responsive to recommendation differences

offered by the service provider. For example, a user who

is indifferent to watching a documentary on the American

revolution or the civil war is likely to be more responsive to

the recommendation disparity between the two. We highlight

the following point. Our proposed framework uses recommen-

dations to improve the predictability of future demands, hence

the accuracy of the proactive downloads. Therefore, especially

less predictable users that are sensitive to data item valuation

differences provide a high potential for proactive service gains.

We attack the joint design problem in two scenarios due to

their structural differences. First, we consider a relaxed optimal

joint allocation of proactive downloads and demand profile, a

scenario whereby no restrictions are imposed on the new users’

profiles other than maintaining the same probability of being

inactive, qn,t, n = 1, · · · , N , t = 0, · · · , T − 1. Afterwards,

we study a more practical scenario where users’ satisfaction

constraints are imposed.

A. Jointly Optimal Solution for Fully Flexible Users

In order to gain insights on the structure of the best user

profile leading to minimum expected cost with proactive

downloads, we consider the relaxed version of the optimization

problem (6) satisfying:

Assumption 3. Assume that user demands are fully flexible,

i.e.,

Fn,p̃n,t
=

{

pn,t :

M
∑

m=1

Pn,t(m) = 1− qn,t, Pn,t(m) ≥ 0

}

,

∀n, t.
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Under Assumption 3, the joint proactive download and

demand profile allocation problem is formulated as

CJ (p∗,x∗) :=

minimize
(p,x)

◦
C

(

Lt +

M
∑

m=1

N
∑

n=1

xn,t+1(m)− xn,t(m)In,t(m)

)

subject to 0 ≤ xn,t(m) ≤ S(m), ∀m,n, t,

0 ≤ Pn,t(m), ∀m,n, t,
M
∑

m=1

Pn,t(m) = 1− qn,t, ∀n, t,

(22)

where p = (pn)
N
n=1, and pn = (pn,t)

T−1
t=0 . Note that, the new

user profile is chosen such that the probability of a user n
remains silent in slot t is qn,t unchanged. Thus, the service

provider may modify the preferences of the users through data

item valuation techniques, but it can not change the activity

of each user of whether to request a data item at all or remain

silent.

Note that in this section, we focus only on minimizing the

expected time average cost incurred by the service provider

under proactive downloads instead of the expected cost reduc-

tion. The key idea is that, maximizing cost reduction through

changing the user profiles affects the cost of the non-proactive

network as well which renders the comparison unfair. In

Section IV, however, proactive downloads only do not affect

the cost of the non-proactive network, which validates the use

of the cost reduction metric.

Since the feasible set of (22) is compact and the objective

function is convex, then there exists a globally optimal solution

to the problem [31]. We denote such a solution by (p∗,x∗)
and characterize it in the following theorem.

Theorem 4. Under Assumption 3, define M∗ := {m :
S(m) = Š} and pick some m∗ ∈ M∗, then

P ∗
n,t(m) =

{

1− qn,t, m = m∗,

0, m 6= m∗,
(23)

and

x
∗ =argmin

x

◦

C

(

L
∗
t +

M
∑

m=1

N
∑

n=1

xn,t+1(m)− xn,t(m)I∗n,t(m)

)

subject to 0 ≤ xn,t(m) ≤ S(m), ∀m,n, t,
(24)

where I
∗
n,t(m) is the indicator function associate with

P ∗
n,t(m), and L∗

t is the non-proactive network load under p∗.

Further, if |M∗| = 1, then (p∗,x∗) is unique.

Proof. Please refer to Appendix H

Theorem 4, therefore, suggests a new user profile that

ensures requesting the data item with the least size if the user

is to request a data item at all. Then proactive downloads under

the new profile minimize the average incurred cost for service.

In the next subsection, we model and study the problem under

user satisfaction constraints.

B. Joint Design under User Satisfaction Constraints

We start this section by proposing a novel model for

capturing the economic responsiveness and service flexibilities

of the user demands, which will facilitate the design. Suppose

that p̃n,t is the initial (given) profile of user n for slot t, with

qn,t being the probability that user n remains silent at slot t.

Definition 4. We consider the term

π̃n,t(m) :=
P̃n,t(m)

1− qn,t
, ∀m,n, t,

to denote the probability that user n requests data item m at

time slot t given that he decided to request a data item at all.

We also use π̃n,t := (π̃n,t(m))Mm=1.

Next, we introduce a key measure and a related constraint

that captures the economic responsiveness and flexibility of

users in shifting their demand profile within acceptable service

quality limits.

Definition 5. (Entropy Ball Constraint (EBC)) For user n at

time slot t with initial profile p̃n,t and probability of being

silent qn,t, we say that a new profile pn,t satisfies the entropy

ball constraint if
∑

m Pn,t(m) = 1− qn,t and

‖p̃n,t − pn,t‖

1− qn,t
≤ αnH(π̃n,t), ∀n, t, (25)

where αn is a positive constant differentiating between user

classes and normalizing the right hand side of (25), and

H(π̃n,t) = −
∑

m π̃n,t(m) log π̃n,t(m) is the entropy [33] of

π̃n,t.

The above metric utilizes the entropy of the choice of user

n under the initial profile p̃n,t to capture the radius of an

M - dimensional ball centered at π̃n,t. The reason behind

choosing relying on the entropy to determine size of the

satisfaction region for each user is the following. The entropy

of a certain user profile characterizes how deterministic such

a user is. The higher the uncertainty about the user demand,

the higher the entropy is, and the larger the potential that the

user is willing to follow the new profile recommended by the

service provider. This holds since users with indeterministic

demand do not necessarily mind a specific data item, hence

give more flexibility for the service provider to push their

demand profiles more deterministic.

On the other hand, small entropy reflects a deterministic

demand profile whereby the user is not flexible to modify

his profile. Moreover, we use the parameter αn to further

control the radius of the entropy ball as user n can belong to a

higher class where αn is small resulting in a tight satisfaction

region and perhaps an unchanged profile. Figure 3 depicts an

illustrating shape of the EBC for M = 3.

Using the above EBC, the constraint set Fn,p̃n,t
will be give

as:

Assumption 4.

Fn,p̃n,t
= {pn,t : pn,t satisfies EBC, Pn,t(m) ≥ 0, ∀m},

∀n, t.
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(0,0,1)

(1,0,0)

(0,1,0) Zero entropy at corner

points implies

deterministic demand

M-point

simplex

)1(~
,tn

p

)2(~
,tn

p

)3(~
,tn

p

Maximum entropy center

point (1/3,1/3,1/3)

implies unpredictable or

flexible demand

Entropy ball

constraint

Fig. 3: An example of M = 3 data items that user n can

choose from in slot t. Entropy ball shrinks to a zero radius at

the corner points, and attains a maximum radius at the center

point.

Note that EBC maintains a constant probability of remaining

silent, qn,t, for all users and time slots. Statistically, the user

does not have to change his access rate.

Under Assumption 4, the joint proactive data download and

demand profile allocation problem becomes:

minimize
(p,x)

◦
C

(

Lt +
M
∑

m=1

N
∑

n=1

xn,t+1(m)− xn,t(m)In,t(m)

)

subject to

‖p̃n,t − pn,t‖

1− qn,t
≤ αnH(π̃n,t), ∀n, t,

constraints of (22).
(26)

While the constraints of (26) are all convex in (p,x),
the objective function, denoted as f0(p,x), is non-convex.

Thus, in contrast to the tractable structure under fully flexible

demands of previous section, the characterization of a global

optimal solution of (26) is computationally intractable. Nev-

ertheless, we next show that strict performance improvement

over proactive downloads can still be guaranteed.

To see this, suppose that x̃ is the optimal proactive download

allocation obtained under the initial user profile p̃, where

(p̃, x̃) does not satisfy the KKT conditions [31] of (26), then

a point (p̂, x̂) which satisfies f0(p̂, x̂) < f0(p̃, x̃), as well as

the KKT conditions of (26), can be obtained through iterative

solution to approximate convex problems.

Lemma 7. Let f̂k be a convex function in (p,x) that replaces

f0 of (26) at iteration k. Denote by (pk−1,xk−1) the optimal

solution to the resulting convex optimization problem at the

k − 1st iteration, k = 1, 2, · · · . If

1) f̂k(p,x) ≥ f0(p,x) for all feasible (p,x),
2) ∇f̂k(pk−1,xk−1) = ∇f0(p

k−1,xk−1),

3) f̂k(pk−1,xk−1) = f0(p
k−1,xk−1),

∀k = 1, · · · , then f0(p
k−1,xk−1) > f0(p

k,xk), ∀k, and the

sequence {(pk,xk)}k converges to a point (p̂, x̂) which is a

locally optimal solution to (26).

The above lemma is a special case of Theorem 1 in [34]

which aims at providing local optimal solutions to non-convex

optimization problems.

Corollary 5. Starting from initial condition (p0,x0) = (p̃, x̃),
a sequence of approximate functions {f̂k} generated as in

Lemma 7 and resulting in a KKT-satisfying point (p̂, x̂) leads

to f0(p̃, x̃) > f0(p̂, x̂).

In the following theorem, we suggest a general approxima-

tion to f0 of (26) at each new iteration k that converges to a

locally optimal solution.

Theorem 5. For f0 being the objective function of (26), the

approximate function

f̂k(p,x) = f0(p
k−1,x)+
∑

m,n,t

∂f0(p,x
k−1)

∂Pn,t(m)

∣

∣

∣

∣

p=pk−1

· Pn,t(m) (27)

at iteration k ≥ 1 is convex in (p,x), further, the sequence

of solutions to the problem resulting from replacing f0 with

{f̂k}k converges to a locally optimal solution of (26).

Proof. Please refer to Appendix I.

The approximate function (27), can now be used to replace

f0 of (26) at iteration k ≥ 1. Starting with (p0,x0) = (p̃, x̃),
the successive solutions to approximate optimization problems

with f0 being replaced by f̂k of (27) converges to a point

(p̂, x̂) with f0(p̂, x̂) < f0(p̃, x̃). Further, the following con-

clusion can be made about (p̂, x̂).

Theorem 6. For a locally optimal solution (p̂, x̂) to (26), we

have
‖p̃n,t − p̂n,t‖

1− qn,t
= αnH(π̃n,t), ∀n, t. (28)

In other words, the locally optimal profile p̂n,t always lies on

the boundary of the EBC region.

Proof. Please refer to Appendix J

Theorem 6 motivates the design of efficient low complexity

schemes for joint proactive download and demand shaping in

large scale systems.

Remark 6. The proof of Theorem 6 does not depend on

the structure of the constraint region Fn,p̃n,t
for any n, t.

Consequently, we can conclude that any optimal solution to

the formulation (6) always yields modified demand profiles

that lie on the boundary of the constraint region Fn,p̃n,t
.

The final step in the proposed framework is how to change

the users’ profiles from the initial ones obtained through

tracking and learning user behavior to the new ones obtained

through constrained cost minimization. Towards this end, we

consider a new recommendation system that sets slightly

different ratings to data item from those given by the users’

themselves.
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VI. DATA ITEM RECOMMENDATION SCHEME

Upon the calculation of the locally optimal demand profile

p̂, the service provider has to assign new valuations, v =
(vn,t)n,t, so that the users adjust their new profiles accord-

ingly. However, following a user-satisfaction based techniques

that rely only on the user preferences and valuations (cf. [18]-

[23]), the service provider has originally assigned a rating of

rn(m) for data item m to user n (which is independent of the

dynamics of the varying network load), but the requirements

of the new demand profile necessitate a valuation of vn,t(m)
to be assigned to data item m and user n and time slot t.
A large difference between the new and the old rating values

could still cause the user to feel unsatisfied with the offered

valuations, especially when they do not meet his expectations.

We presume that the new rating vector vn,t must be as close as

possible, in the Euclidean distance sense, to the original rating

vector rn = (rn(m))Mm=1, while achieving the new demand

profile. Figure 4 depicts a block diagram of the proposed data

item valuation scheme.

User n

recognition

and interests

New valuation

allocation

Set of

M data

items

Personal

valuation

vector rn,

and

preference

functions

fn,t

)outage

tn,
p̂Modified profile

Vector

v*n,t of

offered

ratings to

user n and

time t

Fig. 4: Block diagram of data item valuation system for a user

n at time slot t. The determination of the user interests applies

through learning algorithms.

As has been hypothesized in Section II, there exists a

function φm,t : [0, 1]M → [0, 1] that determines the user

profile based on the offered ratings to the data items. Now,

assuming that the initial profile for user n at slot t is

p̃n,t = (P̃n,t(m))Mm=1, then according to φm,t, we have

P̃n,t(m) = φm,t(rn), where φm,t is supposed to be mono-

tonically increasing in rn(m) and measure the relative quality

of data item m to the rest of data items. After all, the rating

allocation is a user-based problem where the service provider

can compute new ratings for each user separate from the

others. Denoting the new profile for user n at time slot t by

p̂n,t = (P̂n,t(m))Mm=1, the valuation assignment problem for

user n at slot t is formulated as

minimize
vn,t

‖vn,t − rn‖

subject to P̂n,t(m) = φm,t(vn,t), ∀m,

vn,t ∈ [0, 1]M .

(29)

Remark 7. Problem (29) is convex if and only if φm,t is a

linear fractional mapping in vn,t.

An example case on a linear fractional mapping is

φm,t(vn) = (1− qn,t)
vn(m)

∑M
j=1 vn(j)

, ∀m,n, t. (30)

In this example, the mapping function φm,t captures the

relative preference of a user to choose data item m amongst all

data items. While problem (29) is convex, a globally optimal

solution can be obtained efficiently through a gradient descent

algorithm [31].

In the case where φm,t is not a linear fractional mapping, the

problem turns out to be non-convex, calling for approximate

solutions. One possible way of handling such a difficulty is to

replace the non-convex φm,t with an approximate linear frac-

tional form, and iteratively solving for approximate solutions

till convergence to a locally optimal rating vector, a similar

approach to that used in Section V.

VII. NUMERICAL SIMULATIONS

To validate the proposed proactive resource allocation mech-

anism proposed in this work, we consider the following

example system for simulation. A service provider is assumed

to have M = 3 data items with fixed sizes S = (3, 2, 4).
There are N = 2 users that may request services on a daily

basis, whereby the day is divided into T = 2 time slots

with demand profiles following a cyclostationary distribution

with period T . One time slot is supposed to represent an

off-peak hour demand with qn,0 = 1 − p0, n = 1, 2 with

p0 = 0.1. The other time slot represent a peak-hour demand

which has qn,1 = 1 − p1, n = 1, 2. The profiles of both

users during the off-peak hour are p1,0 = p0 · (0.8, 0.1, 0.1),
p2,0 = p0 · (0.3, 0.1, 0.6). Likewise, during the peak hour

p1,1 = p1 · (0.8, 0.1, 0.1), p2,1 = p1 · (0.3, 0.1, 0.6). The

parameters p0 and p1 represent the user activity during the

off-peak and peak hours.

A. Proactive Downloads

We start by investigating the effect of the proactive down-

loads, being implemented during the off-peak hour, on the

expected total cost and load of the whole system. We consider

the two main cost functions: (1) a quadratic cost function

C(L) = L2, L ∈ R+ and (2) an outage-constrained cost

function C(L) = L
χ−L

, where χ is the maximum load that

the service provider can afford at a given time slot. We use

χ = 9.8 and plot the obtained results versus p1 in Figure 5.

In Figures 5a, 5b, the expected total load is plotted versus p1
under the two different cost functions. Both figures show an

expected cost reduction leveraged from the proactive resource

allocation, especially when the customer activity p1 increases.

In Figure 5c,5d, we show the total load during the off-peak

and peak hours with and without proactive downloads. As

can be observed, proactive downloads tend to pull the peak-

hour load towards the low traffic period so as to minimize

the difference between the two loads. However, because of

the uncertainty about the customer choice, the allocation

procedure does not exactly divide the load equally over the

two traffic hours which may lead to unnecessary waste of

resources and more cost. The upper histograms of both figures

show the significant difference between the off-peak and peak

hour loads, whereas the lower histograms reveal a considerably

reduced gap between such loads, particularly in the quadratic

cost function case. In the outage-constrained cost function

case, the gap is not significantly reduced because of the

system is fairly far from the instability point at which the

load approaches the capacity.
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Fig. 5: Proactive downloads reduce the expected cost and tend to balance the system load.

B. Optimal Profiles and Recommendations

For the proposed joint user profile and proactive downloads

scheme in Section V, we conduct a simulation which is a

continuation to the above system where p1 = 0.9 is fixed.

For both types of cost functions, a corresponding iterative

algorithm is run which takes into account the approximate

convex objective function developed in (27). The convergence

of results are plotted in Figure 6 where it is clear that the

proposed algorithms start from the initial proactive downloads

and profiles (p̃, x̃) and proceed with the iterative solutions

until convergence to a local optimal solution to the original

problem (p̂, x̂). The resulting sequence of the objective func-

tions (the cost functions) is strictly decreasing.

Upon obtaining the new peak-hour profiles p̂1,1, and p̂2,2,

the recommendation process proposed in (29) is invoked to

assign new ratings for the available items, where we assume

φm,t of (30). We take the original valuation vectors as

r1 = (0.8, 0.1, 0.1) and r2 = (0.3, 0.1, 0.6). The results of the

simulations are summarized in Table I, II, for the quadratic

and outage-constrained cost functions respectively. It can be

noted that, the modified profiles always lie on the boundary of

the entropy ball as the service provider is interested in pushing

the profiles in the direction of the most deterministic behavior

that leads to requesting the smallest size item. Also, the new

ratings are quite close to the original.

C. Scaling of Cost Reduction

In order to validate the scaling laws of the cost reduction

derived in Section IV, we consider the following scenario of

M = 8 data items, with size of S(m) = S = 6 units ∀m.

The period of the cyclostationary demand profiles is We take

qn,0 = 0.9 and qn,1 = 0.1, ∀n. We assume demand profiles
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Item index Modified profile Modified profile New rating New rating
p̂1,1/p1 p̂2,1/p1 v

∗
1,1 v

∗
2,1

1 0.8772 0.3111 0.7985 0.3381
2 0.1222 0.2211 0.1112 0.2403
3 0.0006 0.4678 0.0005 0.5084

TABLE I: Results of joint proactive downloads and user profile allocation for quadratic cost function.

Item index Modified profile Modified profile New rating New rating
p̂1,1/p1 p̂2,1/p1 v

∗
1,1 v

∗
2,1

1 0.8298 0.3546 0.8005 0.2594
2 0.1222 0.4507 0.1179 0.3297
3 0.0480 0.1947 0.0463 0.1424

TABLE II: Results of joint proactive downloads and user profile allocation for a outage-constrained cost function.
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Fig. 6: Convergence of the joint user profile and proactive

downloads allocation.

of the users to follow a Zipf distribution with

Pn,t(m) = Gn,t

1− qn,t
m2

, ∀n, t,

where Gn,t is a normalizing factor. While considering a

quadratic cost function C(L) = L2, the parameter β1(1) > 0
under h(N) = N implying an optimal cost reduction that

scales with the number of users as Θ(N2).
In Figure 7, we plot the optimal ratio of ∆C(N)/(SN2)

versus the number of users N , where it is clear that, as N
increases, the ratio approaches a constant value that assures

a cost reduction scaling as Θ(N2). Further, we evaluate the
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Fig. 7: Asymptotic cost reduction ∆C(N) scales as Θ(N2)
under a quadratic cost function.

upper and lower bounds established in (9), (13) respectively,

divide them by SN2 and plot the result on the same figure

for the sake of validation. Obviously, both the upper and

lower bounds have the same scaling order as the optimal cost

reduction.

VIII. CONCLUSION

In this work, we have proposed and studied a proactive

resource allocation and demand shaping framework for data

networks. The framework aims to utilize the predictability of

future demand in creating more opportunities for a balanced

load over time, hence a considerable resource utilization. We

have considered the resource allocation problem from the

perspective of a service provider (SP) which incurs excessive

costs due to the peak-hour demand to sustain the service of

the users’ requests. Inspired by the recent findings on the

predictability of human behavior, we have proposed the notion

of users’ demand profiles to capture the statistical information

about the future demand for each user. Such profiles are

harnessed in proactive content downloads where a portion of

highly likely future demand is downloaded to the respective

users during the off-peak hour, in a way that smooths out

the network load over time, and minimizes the time average

expected cost incurred by the SPs.

We have analyzed the asymptotic scaling lows of the cost

reduction leveraged through such proactive downloads with the
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total number of users. We have proved the cost reduction to

scale as the same order as the cost of non-proactive networks

does. Even in a worst case scenario, where the network users

are indeterministic, the cost reduction scales with the first

derivative of the cost function. In order to improve the cer-

tainty about the users’ demand, we have proposed and studied

the notion of demand shaping, which is proved to strictly

reduce the cost reduction under user satisfaction constraints.

We have developed a data item smart recommendation scheme

that enhances the certainty about the demand of each user,

hence the quality of proactive downloads. We have validated

the theoretical results with numerical examples to quantify the

potential gains of the proposed framework.

APPENDIX A

PROOF OF LEMMA 1

Let ȳn = 1
n

∑n−1
i=0 yi. It suffices to show that {ȳn}n≥0 is a

Cauchy sequence.

Fix ǫ > 0, and pick two positive integers n1, n2 such that

n1 < n2. Then

|ȳn1
− ȳn2

| =

∣

∣

∣

∣

∣

1

n1

n1−1
∑

i=0

yi −
1

n2

n2−1
∑

i=0

yi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n2

∑n1−1
i=0 yi − n1

∑n2−1
i=0 yi

n1n2

∣

∣

∣

∣

∣

(a)

≤
(n2 − n1)

∑n1−1
i=0 |yi|

n1n2
+

∑n2−1
i=n1

|yi|

n2

(b)

≤ 2K

(

1−
n∗ + k1
n∗ + k2

)

(c)
< ǫ,

where (a) follows by triangular inequality, (b) follows because

the boundedness of {yn}n implies yn ≤ K, ∀n ≥ 0 and

for some K ∈ R+, and (c) follows since we replace n1 and

n2 respectively with n∗ + k1 and n∗ + k2 and choose n∗

large enough. Hence {yn}n≥0 is a real Cauchy sequence, and

therefore converges to a finite limit smaller than K.

APPENDIX B

PROOF OF THEOREM 1

We note that the cyclostationarity of the demand profiles

implies that {Im,kT+t(m)}k≥0 is an independent and identi-

cally distributed (i.i.d.) sequence of random variables for every

t ≥ 0. Further, we have Pn,t(m) if a function of vn,t for all

m,n, t, by hypothesis. Hence, it suffices to show that for any

choice of {pn,t}n,t, we have the optimal choice of {xn,t}n,t,
call it {x∗

n,t}n,t, satisfies

x∗
n,t = xn,kT+t, ∀k ∈ Z+, n = 1, · · · , N, t = 0, · · · , T − 1.

(31)

Let us use the notation

gt(xt,xt+1) :=

E

[

C

(

Lt +

M
∑

m=1

N
∑

n=1

xn,t+1(m)− xn,t(m)In,t(m)

)]

,

where xt = (xn,t)
N
n=1, to denote the expected cost at time slot

t under some choice of demand profile {pn,t}n,t. We have

by the cyclostationarity of demand profiles gt(xt,xt+1) =
gkT+t(xt,xt+1), ∀k, t. Also, since C is a strictly convex

function, and the expectation operator preserves convexity, it

follows that gt(xt,xt+1) is strictly convex in (xt,xt+1) [31].

Now, suppose towards a contradiction that {x∗
n,t}n,t does not

satisfy (31). Then

lim
τ→∞

1

τ

τ−1
∑

t=0

gt(x
∗
t ,x

∗
t+1) =

lim
K→∞

1

KT

K−1
∑

k=0

T−1
∑

t=0

gt(x
∗
kT+t,x

∗
kT+t+1)

(a)

≥

1

T

T−1
∑

t=0

gt

(

lim
K→∞

∑K−1
k=0

(

x∗
kT+t,x

∗
kT+t+1

)

K

)

(b)
=

1

T

T−1
∑

t=0

gt(x̄t, x̄t),

where

x̄t = lim
K→∞

1

K

K−1
∑

k=0

x∗
kT+t. (32)

Inequality (a) follows by Jensen’s inequality since gt is convex,

and
∑K−1

k=0
1
K

= 1 for all K ≥ 0. Equality (b) holds because

the limit (32) exists by Lemma 1, and |x∗
kT+t| ≤ Ŝ for all

k, t.
Now, it follows that {x̄t}t with x̄t = x̄kT+t, ∀k, t is

the unique globally optimal choice of proactive downloads

that minimizes the time average expected cost under {vn}n,

{pn,t}n,t. Thus we have a contradiction as {x∗
t }t is no longer

the optimal choice of proactive downloads.

APPENDIX C

PROOF OF LEMMA 2

The cost reduction can be written as

∆C(N) =

1

T

T−1
∑

t=0

E

[

C (Lt)− C

(

Lt +

M
∑

m=1

N
∑

n=1

x∗
n,t+1(m)

−
M
∑

m=1

N
∑

n=1

x∗
n,t(m)In,t(m)

)]

(a)

≤

1

T

T−1
∑

t=0

[

C ′ (Lt)

(

M
∑

m=1

N
∑

n=1

x∗
n,t(m)In,t(m)

−

M
∑

m=1

N
∑

n=1

x∗
n,t+1(m)

)]

(b)
=

1

T

T−1
∑

t=0

E

[

M
∑

m=1

N
∑

n=1

x∗
n,t(m)(In,t(m)C ′(Lt)− C ′(Lt−1))

]

=

1

T

T−1
∑

t=0

M
∑

m=1

N
∑

n=1

x∗
n,t(m)E

[

In,t(m)C ′(Lt)− C ′(Lt−1)

]

(c)

≤

1

T

T−1
∑

t=0

M
∑

m=1

S(m)
N
∑

n=1

E [In,t(m)C ′(Lt)− C ′(Lt−1)] .
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Inequality (a) follows by the mean value theorem, as for

any two non-negative random variables X,Y , there exists a

random variable X0 such that

E [C(X)− C(Y )] = E [C ′(X0)(X − Y )]

= E [C ′(X0)(X − Y );X > Y ] +

E [C ′(X0)(X − Y );X ≤ Y ]

≤ E [C ′(X)(X − Y );X > Y ] +

E [C ′(X)(X − Y );X ≤ Y ]

= E [C ′(X)(X − Y )] .

as C ′ is non-negative and monotonically increasing function.

Equality (b) follows by rearranging the terms of the right hand

side (RHS) of Inequality (a). Finally, Inequality (c) holds since

we consider the summation over Bt(m) instead of all users

which can only add a positive value, by the definition of Bt(m)
(see Definition 1). Then, we replace x∗

n,t(m) with S(m) as

x∗
n,t(m) ≤ S(m) for all m,n, t.

APPENDIX D

PROOF OF LEMMA 3

By applying the optimality condition on x̂t, we have either

x̂t = Š > 0 or x̂t is the unique solution to

M
∑

i=1

∑

n∈Bt(i)

E

[

In,t(i)C
′

(

Lt −
M
∑

j=1

∑

k∈Bt(j)

x̂tIk,t(j)

)

− C ′

(

Lt−1 +

M
∑

j=1

∑

k∈Bt(j)

x̂t

)]

= 0.

(33)

The proof follows since E [In,t(m)C ′ (Lt)] > E [C ′(Lt−1)]
for all n ∈ Bt(m), and C ′ is monotonically increasing.

APPENDIX E

PROOF OF LEMMA 4

We have the cost reduction satisfies

∆C(N)
(a)

≥

1

T

T−1
∑

t=0

E

[

C(Lt)− C

(

Lt −
M
∑

m=1

∑

n∈Bt(m)

x̃tIn,t(m)

+

M
∑

m=1

∑

n∈Bt+1(m)

x̃t+1

)]

(b)

≥

1

T

T−1
∑

t=0

E

[

C ′

(

Lt −
M
∑

m=1

∑

n∈Bt(m)

x̃tIn,t(m)

+

M
∑

m=1

∑

n∈Bt+1(m)

x̃t+1

)

×

(

M
∑

m=1

∑

n∈Bt(m)

x̃tIn,t(m)

−

M
∑

m=1

∑

n∈Bt+1(m)

x̃t+1

)]

(c)

≥

1

T

T−1
∑

t=0

M
∑

m=1

x̃t

∑

n∈Bt(m)

E

[

In,t(m)C ′

(

Lt −

M
∑

j=1

∑

k∈Bt(k)

x̃tIk,t(j)

)

−

C ′

(

Lt−1 +

M
∑

j=1

∑

k∈Bt(j)

x̃t

)]

> 0.

Inequality (a) follows since Policy A does not necessarily

solve (8) optimally. Inequality (b) holds by the first order

condition on the convexity of the cost function C. Inequality

(c) follows by rearranging the terms of the RHS of In-

equality (b) and replacing the terms
∑M

j=1

∑

k∈Bt+1(j)
x̃t+1,

−
∑M

j=1

∑

k∈Bt−1(k)
x̃t−1Ik,t−1(j) with zeros while noting

that C ′ is monotonically increasing on its domain. Finally, the

last strict inequality holds since x̃t < x̂t which, combined with

the monotonicity and non-negativity of C ′, and the optimality

condition (33), yields an always positive sum as long as Bt(m)
is non-empty for some t and m.

APPENDIX F

PROOF OF LEMMA 5

Set γ2 = Ŝ. We have by the positivity of C ′,

ρt(m) ≤

lim sup
N→∞

∑

n∈Bt(m)

E[In,t(m)C ′(Lt)]

h(N)C ′(Ŝ ·N)
≤

lim sup
N→∞

∑

n∈Bt(m)

E[In,t(m)C ′(Ŝ ·N)]

h(N)C ′(Ŝ ·N)

since Lt ≤ Ŝ ·N almost surely. It follows therefore that

ρt(m) ≤ Pn,t(m) lim sup
N→∞

Bt(m)

h(N)

= βt(m) < ∞,

by Assumption 1.

APPENDIX G

PROOF OF LEMMA 6

The proof follows in two steps. In one step, we show that

if lim infN→∞ x̃t > 0 then

lim inf
N→∞

1

h(N)C ′(γ1 ·N)
×

∑

n∈Bt(m)

E



In,t(m)C ′



Lt −

M
∑

j=1

∑

k∈Bt(j)

x̃tIn,t(j)







 > 0,
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for some γ1 > 0. In the other step, we prove that
lim infN→∞ x̃t > 0, and

lim inf
N→∞

E

[

∑

n∈Bt(m)

In,t(m)C′

(

Lt −
M
∑

j=1

∑

k∈Bt(j)

x̃tIn,t(j)

)]

∑

n∈Bt(m)

E

[

C′

(

Lt−1 +
M
∑

j=1

∑

k∈Bt(j)

x̃t

)] > 1.

Step 1: Suppose that lim infN→∞ x̃t > 0. By Fobini’s

theorem, we can move the summation inside the expectation,

since all the summands are non-negative. Also, by Fatou’s

lemma, we have

lim inf
N→∞

1

h(N)C ′(γ1 ·N)
×

∑

n∈Bt(m)

E



In,t(m)C ′



Lt −

M
∑

j=1

∑

k∈Bt(j)

x̃tIn,t(j)







 ≥

E

[

lim inf
N→∞

∑

n∈Bt(m) Pn,t(m)

h(N)
×

lim inf
N→∞

C ′
(

−Ŝ +
∑M

j=1

∑N
k=1(S(j)− x̃t)Ik,t(j)

)

C ′(γ1N)



 =

E

[

lim inf
N→∞

∑

n∈Bt(m) Pn,t(m)

h(N)
×

lim inf
N→∞

C ′
(

−Ŝ +N ·
∑M

j=1

∑N
k=1

(S(j)−x̃t)Ik,t(j)

N

)

C ′(γ1N)



 .

But for any n ∈ Bt(m), Pn,t(m) > 0 for otherwise n /∈
Bt(m). Further, βt(m) > 0 by hypothesis. Therefore,

lim inf
N→∞

∑

n∈Bt(m)

Pn,t(m)

h(N)
= βt(m) lim

Bt(m)→∞

∑

n∈Bt(m)

Pn,t(m)

Bt(m)

> 0.

On the other hand, Kolmogorov’s strong law of large

numbers implies

γ1 : = lim
N→∞

M
∑

j=1

∑N
k=1(S(j)− x̃t)Ik,t(j)

N

= lim
N→∞

M
∑

j=1

(S(j)− x̃t)
Pk,t(j)

N
almost surely

> 0 almost surely,

since qn,t < 1, ∀n, t.
Hence, we have

E

[

lim inf
N→∞

∑

n∈Bt(m) Pn,t(m)

h(N)
×

lim inf
N→∞

C ′
(

−Ŝ +N ·
∑M

j=1

∑N
k=1

(S(j)−x̃t)Ik,t(j)

N

)

C ′(γ1N)



 ≥

E



βt(m) · lim
Bt(m)→∞

∑

n∈Bt(m)

Pn,t(m)

Bt(m)



 > 0.

Step 2: In this step, we prove that there exists χ > 0,
independent of N , for which if x̃t = χ, then

lim inf
N→∞

∑

n∈Bt(m)

E

[

In,t(m)C′

(

Lt −
M
∑

j=1

∑

k∈Bt(j)

χIn,t(j)

)]

∑

n∈Bt(m)

E

[

C′

(

Lt−1 +
M
∑

j=1

∑

k∈Bt(j)

χ

)] > 1.

We set x̃t = χ, independent of N , and we will prove that

0 < χ < Š.
By Fubini’s theorem and Fatou’s lemma, as in Step 1, it

suffices to prove that

E

[

lim infN→∞

∑

n∈Bt(m)

In,t(m)C′

(

Lt −
M
∑

j=1

∑

k∈Bt(j)

χIn,t(j)

)]

E

[

lim infN→∞

∑

n∈Bt(m)

C′

(

Lt−1 +
M
∑

j=1

∑

k∈Bt(j)

χ

)] > 1,

for some 0 < χ < Š.

We have from Condition (15),

E

[

lim inf
N→∞

∑

n∈Bt(m)

In,t(m)C′

(

Lt −
M
∑

j=1

∑

k∈Bt(j)

χIn,t(j)

)]

E

[

lim inf
N→∞

∑

n∈Bt(m)

C′

(

Lt−1 +
M
∑

j=1

∑

k∈Bt(j)

χ

)] ≥

E



lim inf
N→∞

∑

n∈Bt(m)

In,t(m)

(

Lt −
M
∑

j=1

∑

k∈Bt(j)

χIn,t(j)

)δ




E



lim inf
N→∞

∑

n∈Bt(m)

(

Lt−1 +
M
∑

j=1

∑

k∈Bt(j)

χ

)δ




(a)

≥

E



lim inf
N→∞

∑

n∈Bt(m)

In,t(m)

(

M
∑

j=1

N
∑

k=1

(S(j)− χ)In,t(j)

)δ




E



lim inf
N→∞

∑

n∈Bt(m)

(

Lt−1 +
M
∑

j=1

N
∑

k=1

χ

)δ




(b)
=

E



lim inf
N→∞

∑

n∈Bt(m)

In,t(m)

Bt(m)

(

M
∑

j=1

N
∑

k=1

(S(j)−χ)In,t(j)

N

)δ




E

[

lim inf
N→∞

(

∑M

j=1

∑N

k=1

S(j)Ik,t−1(j)

N
+Mχ

)δ
] ,

where Inequality (a) follows since we extend the negative

sum −
∑M

j=1

∑

k∈Bt(j)
χIn,t(j) to include the terms from

outside set Bt(j), j = 1, · · · ,M , while noting that C ′

is monotonically increasing. Further, we increase denomina-

tor by extending the sum to
∑

j,k χ. Equality (b) follows

through multiplying both the numerator and denominator by

N δBt(m).

Now, by Kolmogorov’s strong law of large numbers, we

define the quantities:

c1(m) := lim
N→∞

∑

n∈Bt(m)

In,t(m)

Bt(m)

= lim
N→∞

∑

n∈Bt(m)

Pn,t(m)

Bt(m)
almost surely,
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c2(j) := lim
N→∞

M
∑

k=1

Ik,t−1(j)

N

= lim
N→∞

∑

k=1

Pk,t−1(m)

N
almost surely,

and

c3(j) := lim
N→∞

M
∑

k=1

Ik,t(j)

N

= lim
N→∞

∑

k=1

Pk,t(m)

N
almost surely.

Since qk,τ (j) < 1, ∀k, j, τ , βt(m) > 0, and Pk,t(j) > 0,

∀k ∈ Bt(m), we conclude

c1(m) > 0 almost surely

c2(j) > 0 almost surely, j = 1, · · · ,M

c3(j) > 0 almost surely, j = 1, · · · ,M.

Hence,

E



lim inf
N→∞

∑

n∈Bt(m)

In,t(m)
Bt(m)

(

M
∑

j=1

N
∑

k=1

(S(j)−χ)In,t(j)
N

)δ




E

[

lim inf
N→∞

(

∑M
j=1

∑N
k=1

S(j)Ik,t−1(j)
N

+Mχ
)δ
]

(c)
=

c1(m)
(

∑M
j=1(S(j)− χ)c3(j)

)δ

(

Mχ+
∑M

j=1 S(j)c2(j)
)δ

.

The right hand side (RHS) of Equality (c) is strictly greater

than 1 if and only if

χ <

(

c1(m)
1
δ

∑M
j=1 c3(j)S(j)

)

−
∑M

j=1 c2(j))S(j)
(

M +
∑M

j=1 c3(j)
) .

Now, to show that χ > 0, it suffices to prove that


c1(m)
1
δ

M
∑

j=1

c3(j)S(j)



−

M
∑

j=1

c2(j)S(j) > 0.

We have by the definition of set Bt(m) that
∑

n∈Bt(m)

E [In,t(m)C ′(Lt)− C ′(Lt−1)] > 0.

By Condition (15), and for sufficiently large N , we obtain

E





∑

n∈Bt(m)

In,t(m)(Lt)
δ



 > E





∑

n∈Bt(m)

(Lt−1)
δ



 ,

which implies

lim inf
N→∞

E

[

∑

n∈Bt(m) In,t(m)(Lt)
δ
]

E

[

∑

n∈Bt(m)(Lt−1)δ
] > 1,

for otherwise βt(m) = 0 which contradicts the hypothesis that

βt(m) > 0.

By multiplying both the numerator and denominator by

N δBt(m), we obtain

c1(m)
(

∑M
j=1 S(j)c3(j)

)δ

(

∑M
j=1 S(j)c2(j)

)δ
> 1

⇒
(c1(m))

1
δ
∑M

j=1 S(j)c3(j)
∑M

j=1 S(j)c2(j)
> 1.

APPENDIX H

PROOF OF THEOREM 4

We use proof by contradiction as follows. Suppose that

(p̄, x̄) with

Īn,t(m) :=

{

1, with probability P̄n,t(m),

0 with probability 1− P̄n,t(m),

satisfies

CJ (p̄, x̄) < CJ (p∗,x∗) (34)

where P̄n,t(m) < 1− qn,t, ∀m ∈ M∗.

Now, by considering the difference D := CJ (p̄, x̄) −
CJ (p∗,x∗), we have

D =

CJ (p̄, x̄)−
1

T

T−1
∑

t=0

E

[

C

(

N
∑

n=1

(

S(m∗)− x∗
n,t(m

∗)
)

×

I
∗
n,t(m

∗) + x∗
n,t+1(m

∗)

)]

(a)

≥

CJ (p̄, x̄)−
1

T

T−1
∑

t=0

E

[

C

(

N
∑

n=1

(S(m∗)− x̄n,t(m
∗))×

I
∗
n,t(m

∗) + x̄n,t+1(m
∗)

)]

(b)

≥

1

T

T−1
∑

t=0

E

[

C ′(Yt) ·

(

∑

m,n

(S(m)− x̄n,t(m)) Īn,t(m)

+x̄n,t+1(m)−

N
∑

n=1

((S(m∗)− x̄n,t(m
∗)) I∗n,t(m

∗)+

x̄n,t+1(m
∗))

)]

(c)

≥

1

T
min

t=0,··· ,T−1
C ′ (inf Yt) ·

T−1
∑

t=0

E

[(

∑

m,n

(S(m)−

x̄n,t(m))Īn,t(m) + x̄n,t+1(m)−
N
∑

n=1

(

(S(m∗)− x̄n,t(m
∗)) I∗n,t(m

∗) + x̄n,t+1(m
∗)
)

)]

≥
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1

T
min

0≤t≤T−1
C ′ (inf Yt)×

(

T−1
∑

t=0

N
∑

n=1

(S(m∗)− x̄n,t(m
∗)) (P ∗

n,t(m
∗)− P̄n,t(m

∗))+

M
∑

m=1,m 6=m∗

(S(m)− x̄n,t(m)) P̄n,t(m) + x̄n,t+1

)

=

1

T
min

0≤t≤T−1
C ′ (inf Yt)×

(

T−1
∑

t=0

N
∑

n=1

(S(m∗)− x̄n,t(m
∗)) (P ∗

n,t(m
∗)− P̄n,t(m

∗))+

M
∑

m=1,m 6=m∗

S(m)P̄n,t(m) + x̄n,t(m)(1− P̄n,t(m))

)

,

where the first equality follows since x∗
n,t(m) = 0, ∀m 6= m∗

as P ∗
n,t(m) = 0, ∀m 6= m∗. Inequality (a) holds by replacing

x∗
n,t(m

∗) with x̄n,t(m
∗) while noting that x̄n,t(m

∗) does not

necessarily minimize the expected cost under p∗. Inequality

(b) holds by the mean value theorem for random variables [32]

since Yt is a random variable satisfying

Yt > min

{

N
∑

n=1

(S(m∗)− x̄n,t(m
∗)) I∗n,t(m

∗) + x̄n,t(m
∗),

M
∑

m=1

N
∑

n=1

(S(m)− x̄n,t(m)) Īn,t(m) + x̄n,t(m)

}

≥ 0,

Yt < max

{

N
∑

n=1

(S(m∗)− x̄n,t(m
∗)) I∗n,t(m

∗) + x̄n,t(m
∗),

M
∑

m=1

N
∑

n=1

(S(m)− x̄n,t(m)) Īn,t(m) + x̄n,t(m)

}

,

on the entire space of events for all t = 0, · · · , T−1. Inequality

(c) is straightforward since we consider min operator instead

of E operator, while noting that C ′(Yt) > 0 as C is an

increasing function. The last equality follows by rearranging

the terms of the preceding inequality.

Now, since

1

T
min

0≤t≤T−1
C ′ (Yt)) > 0,

1− P̄n,t(m) ≥ 0, ∀m,n, t, and for every n, we have

(S(m∗)− x̄n,t(m
∗)) (P ∗

n,t(m
∗)− P̄n,t(m

∗))

+

M
∑

m=1,m 6=m∗

S(m)P̄n,t(m) > 0

by the definition of p∗. It follows that D < 0 which contradicts

the main hypothesis in (34).

If |M∗| = 1, the uniqueness of (p∗,x∗) follows since we

have proved that D < 0 for any m∗ ∈ M∗.

APPENDIX I

PROOF OF THEOREM 5

First, we note that f̂k is convex in (p,x) since f0(p
k−1,x)

is convex in x by the definition of the cost function C, the

term
∑

m,n,t
∂f0(p,x

k−1)
∂Pn,t(m)

∣

∣

∣

∣

p=pk−1

·Pn,t(m) is affine in p, hence

convex, and the superposition of convex functions is also

convex.

Second, we consider the three conditions specified in

Lemma 7. Since f0 is continuous in (p,x) and is defined

over a bounded and closed feasible set, then it has a global

maximum value U > 0. Such a value can be added to f̂k

defined above to keep Condition 1) of Lemma 7 satisfied.

However, adding a constant to the objective function does not

affect the solution, which is main point of interest. Therefore,

Condition 1) of Lemma 7 is not necessary in this case.

For Condition 2) of Lemma 7, we have

∂f̂(p,x)

∂xn,t(m)

∣

∣

∣

∣

(pk−1,xk−1)

=
∂f̂(pk−1,x)

∂xn,t(m)

∣

∣

∣

∣

(pk−1,xk−1)

=
∂f0(p,x)

∂xn,t(m)

∣

∣

∣

∣

(pk−1,xk−1)

, ∀m,n, t.

Likewise,

∂f̂(p,x)

∂Pn,t(m)

∣

∣

∣

∣

(pk−1,xk−1)

=
∂f0(p,x)

∂Pn,t(m)

∣

∣

∣

∣

(pk−1,xk−1)

, ∀m,n, t.

Thus Condition 2) of Lemma 7 is satisfied.

Finally, Condition 3) of the same lemma need not be

satisfied since it is mainly stated in Theorem 1 [34] for

non-convex constraint function that has to be replaced by a

convex approximate. Condition 3) mainly implies the satisfac-

tion of the complementary slackness conditions by both the

approximate and the original constraint functions. Since we

are interested only in the objective function, Condition 3) of

Lemma 7 is not necessary for convergence to a KKT point.

APPENDIX J

PROOF OF THEOREM 6

We use proof by contradiction. Suppose that there exists a

user n0 and a time slot t0 for which

‖p̂n0,t0 − p̃n0,t0‖ < αn0
(1− qn0,t0)H(π̃n0,t0).

By the local optimality of (p̂, x̂), ∃ r > 0 such that

1

T

T−1
∑

t=0

E

[

C

(

Lt +

N
∑

n=1

M
∑

m=1

x̂t+1(m)− x̂t(m)În,t(m)

)]

<

1

T

T−1
∑

t=0

E

[

C

(

Lt +

N
∑

n=1

M
∑

m=1

x̂t+1(m)− x̂t(m)In,t(m)

)]

,

(35)

for any p such that ‖pn0,t0 − p̂n0,t0‖ < r, pn0,t0 ∈ Fn,p̃n0,t0
,

and pn,t = p̃n,t for any other (n, t) 6= (n0, t0), with

pn0,t0 = (Pn0,t0(m))m, and Pn,t is the probability of the

random variable In,t(m).
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Now, we construct the profile p̄ = (p̄n,t)n,t as follows. We

set p̄n,t = p̂n,t for all (n, t) 6= (n0, t0), but p̂n0,t0 is chosen

such that

‖p̂n0,t0 − p̃n0,t0‖ = min{r, αn0
(1−qn0,t0)H(π̃n0,t0)}. (36)

Consider now the difference between the expected costs

obtained under (p̂, x̂), and (p̄, x̂). We have

1

T

T−1
∑

t=0

E

[

C

(

Lt +
N
∑

n=1

M
∑

m=1

x̂t+1(m)− x̂t(m)În,t(m)

)

−

C

(

Lt +

N
∑

n=1

M
∑

m=1

x̂t+1(m)− x̂t(m)Īn,t(m)

)]

(a)
=

1

T
· E

[

C

(

Lt0 +

N
∑

n=1

M
∑

m=1

x̂t0+1(m)− x̂t0(m)În,t0(m)

)

−

C

(

Lt0 +
N
∑

n=1

M
∑

m=1

x̂t0+1(m)− x̂t0(m)Īn,t0(m)

)]

(b)
=

1

T
· E

[

C ′(Yt0)

(

M
∑

m=1

N
∑

n=1

(S(m)− x̂n,t0(m))

)]

(c)

≥

1

T
· C ′(inf Yt0) · (s− x̂n0,t0)

†(p̂n0,t0 − p̄n0,t0)

(37)

where Equality (a) holds by the construction of p̄. Equality

(b) holds by the mean values theorem for random variables

[32], where Yt0 is a positive random variable (see also the

proof of Theorem 4). Inequality (c) follows by taking inf of

the random variable Yt0 while noting that C ′ is a positive

function, and taking the expectation of the sum. The vectors s

and x̂n0,t0 are constructed respectively as s := (S(m))m, and

x̂n0,t0 := (x̂n0,t0(m))m, and the notation x† is the transpose

of x.

Now, it suffices to show that the RHS of (37) is positive.

To do so, we construct another collection of demand profiles

p̆ = (p̆n,t)n,t with p̆n,t = p̂n,t for all (n, t) 6= (n0, t0) and

p̆n0,t0 = p̃n0,t0 . Also, we use P̆n,t(m) as the probability that

a binary random variable Ĭn,t(m) equals one.

By the optimality of (p̂, x̂), the difference between the costs

incurred under (p̂, x̂) and (p̆, x̂) must be negative. That is,

D :=

1

T

T−1
∑

t=0

E

[

C

(

Lt +

N
∑

n=1

M
∑

m=1

x̂t+1(m)− x̂t(m)În,t(m)

)

−

C

(

Lt +

N
∑

n=1

M
∑

m=1

x̂t+1(m)− x̂t(m)Ĭn,t(m)

)]

< 0.

(38)

After conducting a similar analysis to this used in deriving

(37), we obtain the following necessary condition on the local

optimality of (p̂, x̂):

(s− x̂n0,t0)
†(p̂n0,t0 − p̃n0,t0) < 0. (39)

Now, by the construction of p̄, where p̄n0,t0 , p̂n0,t0 , and

p̃n0,t0 lie on the same line, ∃ ξ > 1 such that

p̄n0,t0 − p̃n0,t0 = ξ · (p̂n0,t0 − p̃n0,t0).

Hence, we can write

p̂n0,t0 − p̄n0,t0 = (1− ξ)(p̂n0,t0 − p̃n0,t0).

Substituting with this result in the RHS of (37), it turns out

that

1

T

T−1
∑

t=0

E

[

C

(

Lt +
N
∑

n=1

M
∑

m=1

x̂t+1(m)− x̂t(m)În,t(m)

)

−

C

(

Lt +

N
∑

n=1

M
∑

m=1

x̂t+1(m)− x̂t(m)Īn,t(m)

)]

> 0

since ξ > 1. This, therefore, contradicts the optimality condi-

tion (35). As a result, (p̂, x̂) must satisfy (28).
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