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We demonstrate which kind of information on the electronic struc-

ture one can get from one-dimensional profiles, interpreted in terms of two-

-dimensional reconstructed densities. The conversion from one-dimensional

to two-dimensional is applied to one-dimensional angular correlation of anni-

hilation radiation profiles of divalent hexagonal close packed metals Mg and

Cd. On the example of Mg we show that one should be very careful while

studying the Fermi surface from electron–positron (e–p) densities folded into

the first Brillouin zone.

PACS numbers: 71.18.+y, 13.60.Fz, 87.59.Fm

1. Introduction

One-dimensional (1D) spectra, representing plane integrals of 3D electron
momentum densities ρ(p), are measured either in the Compton scattering or 1D
angular correlation of annihilation radiation (ACAR) experiment. In principle the
reconstruction of 3D densities from their plane projections [1–6] demands a large
number of profiles. Thus, for 1D data, we recommended also the reconstruction
of 2D density [7, 8], defined as

ρL(pz, py) ≡ J(pz, py) =
∫ ∞

−∞
ρ(p)dpx, (1)

where 1D spectrum, being a plane integral of 3D density ρ(p), is treated as a line
integral of the 2D density ρL

J(pz) =
∫ ∞

−∞

∫ ∞

−∞
ρ(p)dpxdpy =

∫ ∞

−∞
ρL(pz, py)dpy. (2)

To reproduce ρL efficiently from the smallest number of projections (the same
mathematical problem as in transverse tomography), one should measure J(pz)

(586)
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for pz perpendicular to the main rotation axis ([001] direction). It allows us to
reconstruct ρL=[001] ≡ ρ001 from a small number of profiles. It has been checked for
yttrium profiles (even three 1D ACAR profiles were quite sufficient to reproduce
properly ρ001 [7]) and next applied to Compton profiles in Cr [8] and Be [9] while
using the Cormack reconstruction algorithm [10]. In the Cormack method data are
expanded into orthogonal polynomials — the uniqueness of this expansion (with
some practical formulae) is described in the Appendix.

Finally, to obtain momentum densities in the reduced space k, the Lock–
Crisp–West (LCW) transformation was performed [11], i.e. a conversion from the
extended p to reduced k space. In the case of electron density ρL(k) represents
the sum (over occupied bands) of line dimensions of the electron Fermi surface
(FS) along L. However, in the case of e–p densities line dimensions of the electron
FS in the band jth must be modified by some function fj(k) which contains both
many-body and positron wave function effects. We will demonstrate that when
fj(k) is strongly momentum dependent (as e.g. in Mg), one should be very careful
drawing the FS from ρL(k).

2. Results

1D ACAR spectra for magnesium and cadmium were created from 2D ACAR
data [12] measured for pz along [100] and [110] directions and with full width at
half of maximum (FWHM) of 0.1 in atomic units of momentum (a.u.). From
two 1D profiles J(pz) (with pz along [100] and [110]) 2D e–p momentum densities
ρ001(p) were reconstructed and LCW densities ρ001(k), presented in Fig. 1 for the
models and the real data, were created.

The free-electron FS of divalent hcp metals with the axial ratio r = c/a

lower than rc = (3.375
√

3)/π = 1.860735 contains the following elements [13]:
1st zone holes around H points (caps); 2nd zone hole (monster); 3rd zone elec-
trons around: Γ (lens), L (butterflies), K (needles) and 4th zone electron pockets
around L. In the case of Mg the free-electron FS contains all these elements while
for Cd the needles do not exist due to r higher than the critical value rc at which
they disappear. However, because these needles (in Mg, Be, and Zn) are small,
free-electron densities ρ001(k) in all divalent hcp metals are very similar (as dis-
played in Fig. 1a). There is no such similarity for the “real” densities — compare
in Fig. 1 parts (b) and (c) with (a).

According to the band structure results [14], in Cd there is a lack of but-
terflies and pockets when compared to the free-electron model, clearly seen also
from reconstructed densities ρ001

e−p(k) (if they exist, densities along ML line should
be higher than along ΓA — compare Fig. 1c and c′). Meanwhile, in the case of
Mg, where the results should be very similar to the free electron ones [14, 15],
2D densities ρ001(k) are very surprising (Fig. 1b). Namely, it seems that ρ001

e−p(k),
reconstructed from two 1D ACAR spectra, either do not contain the lens around Γ
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Fig. 1. ρ001(k) in Mg (a, b) and Cd (c) for models and real e–p reconstructed densities.

For Mg: (a) — free electron model; (a′) — model (a) with a Kahana-like enhancement

and convoluted with the experimental FWHM = 0.1 a.u.; (b) — reconstructed from

two 1D ACAR profiles; (b′) — isotropic part of the densities (b). For Cd: (c) —

densities reconstructed from two 1D ACAR spectra; (c′) — free-electron model (without

enhancement) after convoluting. All isodensities are drawn by 11 contour lines.

or it is much reduced in comparison with the free-electron model. Our tests showed
that it is connected with a strongly momentum dependent e–p enhancement factor
as well as smearing effects (resolution broadening and, the most likely, electron–
electron (e–e) correlations) drawn in Fig. 1a′. The e–e correlations, similar to the
Daniel and Vosko effect [16], were observed for Mg also in Compton profiles [17]
(the Lam–Platzman correction [18] partly improved agreement between theory and
experiment). These effects that, of course, do not change the FS itself but only
densities, minimize a relative contribution of lens around the Γ point. As a result,
model densities in Fig. 1 without (a) and with both Kahana-like e–p enhancement
and smearing (a′) differ essentially from each other and (a′) becomes more similar
to the reconstructed densities (b′). Thus, particularly in the case of ACAR data,
which contain also “positron effects” (positron wave-function and e–p correlation
effects), we should be very careful drawing the FS from either 1D or 2D densities,
even though in the case of 3D densities there is an enough high jump of ρ(k) on
the FS [19] (in our case this jump was even enhanced by the e–p correlations).

3. Conclusions

We point out that sometimes interpretation of 1D or 2D ACAR data (in
terms of FS derived from LCW folded densities) can make some difficulties, demon-
strated here on the example of Mg and observed also for Cr [8]. Dugdale et al. [8]
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got for Cr a discrepancy between 2D electron (ρ011(k) reconstructed from seven
1D Compton profiles) and e–p densities (2D ACAR data folded into the 1st Bril-
louin zone). Because in both cases (Compton and positron annihilation) smearing
effects (resolution broadening and e–e correlations) should be the same [20], one
could expect this being connected either with e–p correlations or positron wave
function effects. However, since in Cr the effective enhancement factor is not mo-
mentum dependent [20, 21], it seems that the observed effect [8] follows from either
a positron wave function (this can be checked by simple calculations within the
independent particle model) or selectivity of the enhancement — in both cases
selectivity of positron annihilation with d- and s-like states.

Appendix

The uniqueness of expanding some function into Chebyshev polynomials
series is connected with the fact that they are the only polynomials which zeros
are known analytically. So, the coefficients of the expansion can be calculated
not only with a high accuracy (applying analytically the Gauss quadratures of
the arbitrarily high order) but also in a very simple way. Moreover, these are
orthogonal polynomials, so they have mean-squares approximation properties —
it is very important for real data which contain experimental noise.

In Cormack’s method data are expanded into a series of even Chebyshev
polynomials of the 2nd kind, U2n(p), multiplied by their weight:

f(p) =
∞∑

n=0

an

√
1− p2U2n(p). (A1)

The coefficient an can be evaluated from the orthogonality relation, i.e.

an =
2
π

∫ 1

0

f(p)U2n(p)dp. (A2)

In the unit system [0,1], i.e. for p ∈ [0, pz/pmax
z ] where pmax

z denotes a momen-
tum for which f(pz) is close to zero, one can introduce a new unit system where
p = cos(α) with α changing from 900 to 00. Now Eqs. (A1) and (A2) become:

f(p ≡ cos(α)) =
∞∑

n=0

an sin ((2n + 1)α) , (A3)

an =
2
π

∫ 1

0

f(cos(α)) sin ((2n + 1)α) dα (A4)

and instead of calculating the integral (A2) with a function U2n(p) which zeros
are not equally spaced, we have the integral (A4) with a function sin whose zeros
are equidistant. Such an integral can be simply replaced by the sum:

an =
2
M

[
M−1∑

i=1

f(cos (i∆α)) sin ((2n + 1)i∆α) +
1
2
(−1)Mf(0)

]
(A5)
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with a constant value of ∆α where (for ∆α in degree) M = 900/∆α. In this case
also derivatives (with respect to p) can be evaluated in a simple way:

f ′(p) = − 1
sin α

∞∑
n=0

anm cos(mα) and − f ′(p)
p

=
2

sin 2α

∞∑
n=0

anm cos(mα),

f ′′(p) = − 1
sin3 α

∞∑
n=0

anm [cos(mα) cos α + m sinα sin(mα)] ,

f ′′′(p) =
1

sin3 α

∞∑
n=0

anm

[
cos(mα)

(
m2 − 1− 3

cos2 α

sin2 α

)
− 3m

cos α

sin α
sin(mα)

]

with m = 2n + 1. All these quantities are not determined only for p close to the
unity (pz close to pmax

z ). However, for p ≈ 1 they must be equal to zero.

Fig. 2. Model function (part (a) and solid line in (b)) and its 1st derivative (part

(c)), described by 30, 60, and 150 polynomials U2n(p) — open circles, solid triangles,

and solid circles, respectively. In the case (c) the model function contains simulated

noise and is smeared by FWHM = 0.1 (the smeared function is perfectly described by

60 polynomials).

Derivatives (see Fig. 2) could help us to observe the similarity between theory
and experiment (all details of J(pz) are bulged by its derivatives) as well as to
estimate the most efficient number of the expansion coefficients, particularly for
experimental data which always contain statistical noise. The 1st derivative of
some model function, calculated in the way proposed in the paper is presented in
Fig. 2c. It shows that in our case (the model with simulated statistical noise) it
is reasonable to use 60 polynomials to both describe the model function and to
“remove” the noise.



Fermi-Surface Mapping from 2D Positron Annihilation Data 591

References

[1] P.E. Mijnarends, Phys. Rev. 160, 512 (1967).

[2] N.K. Hansen, P. Pattison, J.R. Schneider, Z. Phys. B, Condens. Matter 66, 305

(1987).

[3] Y. Tanaka, N. Sakai, Y. Kubo, H. Kawata, Phys. Rev. Lett. 70, 1537 (1993).
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