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Abstract

A complete classification of degree 2, 3 and degree 4 Pisot-Cyclotomic numbers is given.
Some examples of higher degrees are also given. Pisot-Cyclotomic numbers have applications
to quasicrystals and quasilattices.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We begin by recalling the definition of a Pisot number:

Definition 1. A Pisot number is a real algebraic integer greater than 1, all of whose
conjugates are of modulus strictly less than 1.
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An important subclass of Pisot numbers is the Pisot-Cyclotomic numbers (see for
instance [1,3,5,7]). These have applications to the study of quasicrystals and quasilat-
tices.

Definition 2. Let � = 2 cos
(

2�
n

)
. A Pisot-Cyclotomic number with symmetry of order

n is a Pisot number q such that

Z[q] = Z[�].

It was asked in [5] whether there exists Pisot-Cyclotomic numbers with symmetry of
order �16. We answer this question in the affirmative, and give some examples. Further,
we find all Pisot-Cyclotomic number of particular degrees. Until now all quadratic Pisot-
Cyclotomic numbers were known, and some cubic examples were known. We extend
this to the quartic case, and give some examples for higher degrees.

Results are listed in Table 1. It should be noted that if n is odd then the Pisot-
Cyclotomic numbers with symmetry of order n and with symmetry of order 2n are
exactly the same. For this reason, we do not list 10, 14, 18, 22, etc. All symmetries
are proved to have a finite number of examples, except those with an (a) beside them.
In these cases, all examples are listed. Those entries with an (a) beside them are not
currently proved to have a finite number of examples, and in this case all known exam-
ples are listed. These examples were discovered experimentally, by searching for small
solutions. Those polynomials with a ∗ beside them have been previously discovered,
and can be found in [1,6,7]. Those polynomials with a ∗∗ beside them have been
previously computed by David Boyd.

Section 2 gives some useful comments on solving particular types of Diophantine
equations. Section 3 deals with the quadratic and cubic Pisot-Cyclotomic numbers.
Section 4 deals with the quartic Pisot-Cyclotomic numbers. Section 5 gives some useful
techniques for solving some of the Diophantine equations that arise. Section 6 lists some
open questions.

2. Some notes on Diophantine equations

We will need the solutions to certain Diophantine equations in our analysis of cy-
clotomic Pisot numbers.

Equations of the form

X3 − (n − 1)X2Y − (n + 2)XY 2 − Y 3 = 1 (1)

can be solved completely by the methods of [11].
Equations of the form

X(X − Y )(X + Y )(X − aY ) + Y 4 = ±1 (2)

can be solved completely by the methods of [9].
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Table 1
Pisot-Cyclotomic number of degree at most 6

Symmetry Pisot-Cyclotomic Number

5 x2 − x − 1 *
x2 − 3x + 1 *

7 x3 − 2x2 − x + 1 *
x3 − 20x2 − 9x − 1
x3 − 23x2 + 34x − 13
x3 − 3x2 − 4x − 1
x3 − 6x2 + 5x − 1

8 x2 − 2x − 1 *
x2 − 4x + 2 *

9 x3 − 3x2 + 1 *
x3 − 6x2 − 9x − 3
x3 − 9x2 + 6x − 1

11 (a) x5 − 10x4 − 15x3 − 3x2 + 3x + 1 **
12 x2 − 2x − 2 *

x2 − 4x + 1 *
13 (a) x6 − 15x5 − 20x4 + 6x3 + 18x2 + 8x + 1 **
15 x4 − 24x3 + 26x2 − 9x + 1

x4 − 20x3 − 40x2 − 25x − 5
x4 − 4x3 − 4x2 + x + 1 **

16 None exist
20 x4 − 8x3 − 11x2 − 2x + 1
21 (a) None found
24 x4 − 12x3 − 22x2 − 12x − 2

x4 − 16x3 + 20x2 − 8x + 1
32 (a) None found
36 (a) x6 − 30x5 − 60x4 − 32x3 + 3x2 + 6x + 1

Integer solutions to equations of the form

X2 − 2Y 2 = ±1, (3)

where one of X and Y is a perfect square can be given (see sections A14.1, A14.4,
A14.5, A16.6 of Ribenboim [10]).

Integer solutions to equations of the form

X2 − 5Y 2 = ±1, ±4, (4)

where one of X and Y is a perfect square can be given (see Table 16.1 of [10] and use
the results of [8]).

Equations of the form

X4 − aX2Y 2 ± Y 4 = ±1 (5)

can be solved completely by the methods of [12].
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3. Degree 2 and 3

It was proved in [2] that

Theorem 3. Let r be an algebraic number of degree at most 3. Then there are finitely
many Pisot numbers q such that Z[q] = Z[r].

Furthermore, a constructive method was given to find all such Pisot numbers.
We will demonstrate the basic idea of this method with a degree 3 example. Write

q = u + xr + yr2 and q2 = (u + xr + yr2)2 = u1 + x1r + y1r
2. Here u1, x1 and y1 are

completely determined by u, x, y and the minimal polynomial of r. We can now write

⎡
⎣ 1

q

q2

⎤
⎦ =

⎡
⎣ 1 0 0

u x y

u1 x1 y1

⎤
⎦

⎡
⎣ 1

r

r2

⎤
⎦ .

We see that Z[q] = Z[r] if and only if the above matrix is invertible and the inverse
has integer entries. Equivalently,

det

⎡
⎣ 1 0 0

u x y

u1 x1 y1

⎤
⎦ = ±1.

It is worth observing that this determinant will be independent of u; moreover, since x1
and y1 are homogeneous of degree 2 in x and y, the determinant will be homogeneous of
degree 3 in x and y. At this point it is a matter of solving a homogeneous Diophantine
equation in two variables. After this, a quick check is done to see which of these
solutions give rise to Pisot numbers.

This method was used to find all examples of degrees 2 and 3 (correspondingly
symmetries of orders 5, 8, 12 and 7, 9). These are listed in Table 1.

It should be mentioned that for symmetries of orders 7 and 9 we needed to solve
the two Thue equations

x3 − 2x2y − xy2 + y3 = ±1

and

x3 − 3xy2 + y3 = ±1,

respectively. Notice that if f (x, y) is a homogeneous polynomial of degree 3 (or really
any odd degree) then f (−x, −y) = −f (x, y). Thus it suffices to solve the equations
when +1 is on the right-hand side and then add to the set of solutions to this equation,
all elements of the form (−a, −b), where (a, b) is in our set of solutions. Using the
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substitution Y = −x, X = y in the first equation and X = x, Y = −y in the second
equation we get the two equations

X3 + X2Y − 2XY2 − Y 3 = 1

and

X3 − 3XY2 − Y 3 = 1.

These are equations of type (1) with n = 0 and 1, respectively, and hence all solutions
can be found.

4. Degree 4

The results of [2] can be used as a starting point to show

Theorem 4. If � = 2 cos(2�/n), and deg(�)�4, there are only a finite number of
Pisot numbers q such that Z[q] = Z[�].

The proof of Theorem 4 actually has two components. The first component is proving
that there are a finite number of solutions to a particular Diophantine equation or system
of equations. The second component is to determine which Pisot numbers are associated
with each of these solutions.

It is possible that for other related problems (e.g., finding Pisot numbers q such that
Z[q] is equal to some other ring), that there are an infinite number of solutions to the
corresponding Diophantine equations, and yet it may still be possible for there to be
only finitely many, (or possibly no) Pisot numbers associated with these solutions.

So, although a finite number of solutions to the Diophantine equation implies that
there are only a finite number of Pisot numbers associated with a ring, the converse is
not necessarily true. It would actually be interesting to look at this problem further to
see if there are examples where this is in fact the case.

In all cases, we are assuming that we can write the Pisot number q as q = u+x�+
y�2 + z�3, where � = 2 cos(2�/n) for the n in question.

From this, using the same method as was described in the paragraph after the state-
ment of Theorem 3, we can determine a homogeneous polynomial, in terms of x, y and
z, such that this polynomial must equal ±1 at the integer point (x, y, z), as a necessary
condition for Z[q] = Z[�].

In all four cases, this resulting polynomial factors into two, or three distinct factors
say P1, P2, P3, (where P3 may be 1). In this case we have that P1 = ±1, P2 = ±1
and P3 = ±1. At this point, depending on the values of P1 and P2, we take the
resultant of P1 ± 1 and P2 ± 1 with respect to either x or y, regarding x, y, and z as
indeterminates for the moment. We consider the individual cases resx(P1 ± 1, P2 ± 1).
The resultant must be zero and by finding all integer solutions to this equation, we
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are able to determine all cyclotomic Pisot numbers when Q[2 cos(2�/n)] has degree at
most 4 over Q. The cases when [Q[2 cos(2�/n)] : Q] < 4 have been handled already
and so we only need to look at the case when [Q[2 cos(2�/n)] : Q] = 4. We note that
the degree of this extension is �(n)/2 and so, after exploiting symmetry, we only need
to consider n ∈ {15, 16, 20, 24}.

4.1. Symmetry of order n = 15

We have

P1 = −y2 + xy + x2 + 3yz + 6xz + 9z2

and

P2 = y4 − 26zy3 − 7y3x − 36y2zx − 54z2y2 − 6y2x2 + 69yz2x + 18yzx2

+109z3y + 2yx3 + 233z3x + x4 + 17zx3 + 181z4 + 99z2x2.

Suppose first that P1 = P2 = 1. Consider resx(P1 − 1, P2 − 1), the resultant with
respect to the variable x. The resultant has two factors, one of which must equal 0,

p1 = y4 + 2y2 + 1 + 3zy3 + 3yz − z2y2 − 3z2 − 3z3y + z4

and

p2 = y4 + 3zy3 − z2y2 − z2 − 3z3y + z4.

We see that the equation p1 = 0 has no solutions mod 3, and hence has no integer
solutions.

Using the techniques of Section 5, we see that to solve p2 = 0, it is sufficient to
solve the Thue equation of type (2),

Y (Y + X)(Y − X)(Y ± 3X) + X4 = 1,

where X = gcd(y, z), z = ±X2, y = XY . Using the description of these solutions
given by Mignotte et al. [9], combined with the fact that P1 = P2 = 1, we see that

(x, y, z) ∈ ±{(1, 0, 0), (±1, 1, 0)}.

From this we get the Pisot polynomial q4 − 4q3 − 4q2 + q + 1.
Suppose that P1 = −P2 = 1. Consider resx(P1 −1, P2 +1). We get that the resultant

is equal to 4 mod 5, and hence there are no integer solutions in this case.
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Suppose that −P1 = P2 = 1. Consider resy(P1 + 1, P2 − 1), the resultant of the two
polynomials with respect to y. We get that the resultant has two factors, one of which
must equal 0,

p1 = x4 + 2x2 + 1 + 8x3z + 9xz + 14x2z2 + 6z2 − 23xz3 − 59z4

and

p2 = x4 − x2 + 8x3z − 8xz + 14x2z2 − 16z2 − 23xz3 − 59z4.

We see that the equation p1 = 0 has no solutions mod 3, and hence no integer solutions.
We now consider the equation p2 = 0. Let u = x + 4z. Then we can write this

equation as

u4 − 8u3z + 14u2z2 − 7uz3 + z4 − u2 = 0.

Using the techniques of Section 5, we see it suffices to Thue equation

U4 − 8U3Z + 14U2Z2 − 7UZ3 + Z4 = 1.

By using the substitution Z = U + V we get an equation in U and V of type (2),
namely

u(u − v)(u + v)(u + 3v) + v4 = 1.

Thus there are only finitely many integer solutions in this case and they can be explicitly
computed. The solutions to this Diophantine equation are

(U, V ) ∈ ±{(0, 1), (3, −1), (−1, −3), (1, ±1), (−1, 0)}.

From this we see that

(x, y, z) ∈ ±{(−1, 1, 1), (−3, 1, 1), (1, 2, 0)}.

These solutions give rise to the two Pisot polynomials q4 − 20q3 − 40q2 − 25q − 5 and
q4 − 24q3 + 26q2 − 9q + 1.

Suppose now that P1 = P2 = −1. Consider resx(P1 + 1, P2 + 1). We get that the
resultant is equal to 4 mod 5, and hence there are no integer solutions in this case.

From this we see that there are exactly three Pisot numbers q satisfying Z[q] =
Z[2 cos(2�/15)]. These Pisot numbers have corresponding Pisot polynomials q4−4q3−
4q2 + q + 1, q4 − 20q3 − 40q2 − 25q − 5, and q4 − 24q3 + 26q2 − 9q + 1.
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4.2. Symmetry of order n = 16

We have

P1 = x2 + 2z2 + 4xz

and

P2 = 196z4 + 224xz3 + 92z2x2 − 80z2y2 − 48zxy2 + 16x3z − 8x2y2 + 8y4 + x4.

Observe that P2 ≡ x4 mod 4 and hence we cannot possibly have P2 = −1. We conclude
that P2 = 1 and so we have only two cases to consider.

Suppose first that P1 = 1. Consider resx(P1 − 1, P2 − 1). We get that the resultant
has two factors, one of which must equal 0,

p1 = y4 − 4z2y2 − z2 + 2z4

and

p2 = y4 − 2y2 + 1 − 4z2y2 + 3z2 + 2z4.

For the equation p1 = 0, using the techniques of Section 5 we see that other than the
trivial solution y = z = 0, all solutions to p1 = 0 can be found by solving the Thue
equation

(Y 2 − 2X2)2 − 2X4 = 1,

where z = ±X2 and y = YX . which is an equation of form (3), which can be explicitly
done. The only solutions to this equation are X = 0, Y = ±1. Hence we see that
(x, y, z) = (±1, 0, 0). Thus from the equation p1 = 0 we get no Pisot polynomials.

Now consider the equation p2 = 0. First write u = y2 and v = z2. Then the equation
p2 = 0 is equivalent to

u2 − 2u + 1 − 4vu + 3v + 2v2 = 0.

Solving for u in terms of v, we see that

u = 2v + 1 ±
√

(2v + 1)2 − (2v2 + 3v + 1) = √
2v + 1

(√
2v + 1 ± √

v
)
.

Since v is a perfect square and u is an integer, we deduce that 2v + 1 must also be a
perfect square. Furthermore, observe that

2(
√

2v + 1 + √
v)(

√
2v + 1 − √

v) − (2v + 1) = 1.
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Consequently gcd(
√

2v + 1,
√

v ± √
2v + 1) = 1, and since u is a perfect square, we

conclude that
√

2v + 1 must be a perfect square. Hence 2v + 1 = t4 for some integer
t. Since v = z2 we obtain the Diophantine equation t4 − 2z2 = 1. By the work of
Ribenboim [10], the only integer solutions to this equation occur when z = ±1, ±2.
By assumption P1 = 1. Since z = 0, we have x = ±1. Since P2 = 1, y = 0, ±1.
These values do not give rise to any Pisot numbers.

Suppose that P1 = −1 and consider resx(P1 + 1, P2 − 1). We get two factors, one
of which must equal zero

p1 = y4 − 4z2y2 + z2 + 2z4

and

p2 = y4 + 2y2 + 1 − 4z2y2 − 3z2 + 2z4.

For the equation p1 = 0, using the techniques of Section 5, we see that we need to
solve the equation

(Y 2 − 2X2)2 − 2X4 = −1,

where y = YX, z = ±X2. This is an equation of form (3), and hence we can find all in-
teger solutions to this equation. The solutions to this equation are (X, Y ) ∈ ±{(1, ±1)}.
Thus the only solutions we obtain when p1 = 0 are (x, y, z) ∈ ±{(−3, ±1, 1)}. Thus
from the equation p1 = 0 we get no Pisot polynomials.

We now find all integer solutions to the equation p2 = 0. First we substitute u = y2

and v = z2 to get

u2 − 4uv + 2v2 + 2u − 3v + 1 = 0.

Regarding the left-hand side as a quadratic in u and solving for u we get

u = 2v − 1 ±
√

(2v − 1)2 − (2v2 − 3v + 1) = √
2v − 1(

√
2v − 1 ± √

v).

Arguing as we did in Case 16.1, we see that
√

2v − 1 is a perfect square. Thus
2v − 1 = t4 for some integer t. Since v = z2, we see that

t4 − 2z2 = −1.

From Ribenboim [10], the only integer solutions to this equation occur when z = ±1.
By assumption P1 = −1 and so x2+2z2+4xz = −1. Thus (x, z) ∈ ±{(−1, 1), (−3, 1)}.
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Solving for y we see that the only solutions in integers are

(x, y, z) = ±{(−3, 0, 1), (−3, ±1, 1)}.

None of these values of x, y, z give rise to Pisot numbers.
Hence there are no Pisot numbers q satisfying Z[q] = Z[2 cos(2�/16)].

4.3. Symmetry of order n = 20

We have two factors,

P1 = x2 + 5z2 + 5xz

and

P2 = 400z4 + 400xz3 + 140z2x2 − 100z2y2 − 60zxy2 + 20x3z − 10x2y2 + 5y4 + x4.

Notice that P2 ≡ x4 mod 5. Since x4 ≡ 0, 1 mod 5, we see that P2 must be equal to 1.
This leaves us with two cases to consider, namely P1 = 1 and P1 = −1.

Suppose that P1 = 1. Consider resx(P1 − 1, P2 − 1). This has two factors, one of
which must be zero,

p1 = y4 − 5z2y2 − z2 + 5z4,

p2 = y4 − 4y2 + 4 − 5z2y2 + 9z2 + 5z4.

Using the techniques of Section 5, we see that the equation p1 = 0 can be transformed
into the Thue equation

Y 4 − 5Y 2X2 + 5X4 = 1,

where z = ±X2, y = YX . Factoring this over Z[ 1+√
5

2 ], we see that

(Y 2 − 5X2/2 − √
5X2/2)(Y 2 − 5X2/2 + √

5X2/2) = 1.

Since the unit group of Z[ 1+√
5

2 ] is generated by � = 1+√
5

2 and −1, we see

Y 2 − 5X2/2 − √
5X2/2 = (−1)k�d ,

Y 2 − 5X2/2 + √
5X2/2 = (−1)k�−d .
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Subtracting these two equations gives

X2 = ±Fd

for some d, where Fd is the dth Fibonacci number. Since the only square Fibonacci
numbers are F0 = 0, F1 = 1, F2 = 1, F12 = 144 (see [4]), we see that z ∈ {0, ±1, ±144}.
From this and the assumption that p1 = 0 we get the solutions

(x, y, z) ∈ ±{(1, 0, 0), (−1, ±2, 1), (−4, ±1, 1)}.

This leads to the Pisot polynomial q4 − 8q3 − 11q2 − 2q + 1.
We now solve the equation p2 = 0. First we write u = y2 and v = z2 to obtain the

equation

u2 − 4u + 4 − 5vu + 9v + 5v2 = 0.

Solving for u in terms of v, we get

u = 5v + 4 ± √
v
√

5v + 4

2
.

Since u is an integer and v is a perfect square we see that 5v + 4 must also be a
perfect square. Write

u = √
5v + 4

(√
5v + 4 ± √

v

2

)
.

Then it is easy to see that
√

5v + 4 and
√

v have the same parity and that
√

5v + 4
and (

√
5v + 4 ± √

v)/2 are relatively prime integers. Since u is a square,
√

5v + 4 is
a perfect square. Thus 5v + 4 = t4 for some integer t. Since v = z2, we obtain the
Diophantine equation

t4 − 5z2 = 4.

From McDaniel and Ribenboim [8], we see that this equation has no integer solutions.
Consider the case that P1 = −1 and look at resx(P1 + 1, P2 − 1). The resultant has

two factors, one of which must equal zero

p1 = y4 − 5z2y2 + z2 + 5z4

and

p2 = y4 + 4y2 + 4 − 5z2y2 − 9z2 + 5z4.
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Using the techniques of Section 5 for the equation p1 = 0 we see that we need to
solve the Thue equation

Y 4 − 5Y 2X2 + 5X4 = −1,

with z = ±X2, y = YX . But this has no solutions mod 5, and hence p1 = 0 has only
the trivial solution z = y = 0. If z = 0, since P1 = −1 we get that x2 + 1 = 0 and
hence there are no integer solutions.

We now consider the equation p2 = 0. First let u = y2 and v = z2 to get:

u2 + 4u + 4 − 5vu − 9v + 5v2.

Solving for u in terms of v, we see that

u = 5v − 4

2
±

√
(5v − 4)2 − 4(4 − 9v + 5v2)

2
= 5v − 4

2
±

√
v
√

5v − 4

2
.

Since v is a perfect square and u is an integer, we have that 5v −4 is a perfect square.
Write

u = √
5v − 4

(√
5v − 4 ± √

v

2

)
.

Then, just as in case 20.1, it is easy to see that
√

5v − 4 and
√

v have the same parity
and that

√
5v − 4 and (

√
5v − 4 ± √

v)/2 are relatively prime integers. Since u is a
square,

√
5v − 4 is a perfect square. Thus 5v − 4 = t4 for some integer t. Writing

v = z2, we obtain the Diophantine equation t4 − 5z2 = −4. By the work of McDaniel
and Ribenboim [8], this has only solutions if z = ±1, ±2. Solving for y and then x
using the fact that P1 = −1, we see that

(x, y, z) ∈ ±
{

(−2, 0, 1), (−3, 0, 1), (−2, 1, 1), (−3, 1, 1), (2, 1, −1),

(3, 1, −1), (−3, 2, 2), (−7, 2, 2), (3, 2, −2), (7, 2, −2)

}
.

Analyzing this set, we quickly deduce that in this case there are no Pisot numbers q
which satisfy Z[q] = Z[2 cos(2�/20)].

Thus there is only one Pisot number q satisfying Z[q] = Z[2 cos(2�/20)]. It has
minimal polynomial q4 − 8q3 − 11q2 − 2q + 1.

4.4. Symmetry of order n = 24

We have three factors in this case

P1 = x2 + z2 + 4xz,

P2 = −x2 + 2y2 − 6xz − 9z2,

P3 = −x2 + 6y2 − 10xz − 25z2.
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Notice that P1 ≡ x2 + z2 mod 4 and hence P1 �= −1 when x, y, z are integers. We
conclude if we have integer solutions, then P1 must be equal to 1. Notice also that
P3 −3P2 −2P1 = 0. Since P1 = 1 we have P3 −3P2 = 2. Thus P3 = −1 and P2 = −1.
Consider resx(P1 − 1, P2 + 1). This resultant gives us the factor

p1 = −z2 − 4z2y2 + z4 + y4.

This can be solved by the techniques of Section 5. This requires a solution to the Thue
equation of form (5),

Y 4 − 4Y 2X2 + X4 = 1,

where y = YX, z = ±X2. This can be solved explicitly and we find that

(x, y, z) ∈ ±{(1, 0, 0), (0, ±2, 1), (−4, 0, 1)}.

These solutions give two Pisot polynomials q4 − 12q3 − 22q2 − 12q − 2 and q4 −
16q3 + 20q2 − 8q + 1.

5. Technique for a homogeneous polynomials minus z2

Let

P(y, z) = y4 + a1y
3z + a2y

2z2 + a3yz3 + a4z
4 − bz2,

where b = ±1. We solve P(y, z) = 0.
Write X = gcd(y, z) and y = YX and z = ZX. Then we have

X2(Y 4 + a1Y
3Z + a2Y

2Z2 + a3YZ3 + a4Z
4) = bZ2.

As |b| = 1 we have that X2|Z2. So we can write Z = XZ0. Thus we get

(Y 4 + a1Y
3XZ0 + a2Y

2X2Z2
0 + a3YX3Z3

0 + a4X
4Z4

0) = bZ2
0 .

Now, if p is a prime with p|Z0, we see that p|Y 4 and hence p|Y . By construction
gcd(Z0, Y ) = 1 since Z and Y are relatively prime and so we conclude that Z0 ∈
{±1, 0}. If Z0 = 0 we get either the trivial solutions (y, z) = (±1, 0) or no solutions.
If Z0 = 1, then we get the Thue equation

Y 4 + a1Y
3X + a2Y

2X2 + a3YX3 + a4X
4 = b.
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If Z0 = −1, then we get the Thue equation

Y 4 − a1Y
3X + a2Y

2X2 − a3YX3 + a4X
4 = b.

For the purposes of this paper, these Thue equations always turn out to be of form (2),
(3) or (5). Once we solve these equations, we have

y = XY and z = ±X2 (6)

and so we see that other than the trivial solution, we can find all integer solutions to
our original equation by looking at Thue equations.

6. Conclusions and open questions

All Pisot-Cyclotomic numbers up to degree 4 are determined by this paper. It may
be possible to extend these results to higher degrees, but it will require much more
difficult techniques. Unfortunately, when trying to find examples for degree n, using
these techniques, one ends up with a polynomial P such that there are integer solutions
to P = ±1. Here P has n−1 variables, and is of degree n(n−1)

2 . Even computing these
polynomials is expensive in terms of computer power.

Without lucky factorization (as was the case with degree 4), it is unclear how you
would find all integer solutions. It is worth mentioning that for degree 5, (n = 11) then
the polynomial does factor.

That being said, given the severe restrictions on the values of these variables, first
that they must satisfy P = ±1, and second, that they must give rise to a Pisot number,
it is still plausible that there are only finitely many Pisot-Cyclotomic numbers for
every symmetry. It is even plausible that there are only finitely many Pisot-Cyclotomic
numbers, but a lot more work would have to be done before any reasonable conjecture
could be made in this direction.

So, the main open questions are

• Is there an effective way to compute the Pisot-Cyclotomic numbers of degrees higher
than 4?

• Are there finitely many Pisot-Cyclotomic numbers of any particular symmetry?
• Are there finitely many Pisot-Cyclotomic numbers?
• Under what conditions does the polynomial P (as computed by the determinant)

factor?
• Are there examples where the Diophantine equation associated with the ring allows

for an infinite number of solutions, and yet the number of Pisot numbers associated
with the ring is still finite?
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