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ABSTRACT
Multi-Objective Optimization of a benchmark cogeneration 
problem known as CGAM cogeneration system has been 
carried out from Exergetic, Economic and Environmental 
aspects simultaneously. CGAM Problem designs a 
cogeneration plant which delivers 30 MW of electricity and 14 
kg/s of saturated steam at 20 bars. Since multi-objective 
calculus based optimization of real energy systems involves 
very complicated process, one of the most suitable techniques 
which uses a particular class of search algorithms known as 
Particle Swarm Optimization (MOPSO) is utilized and the 
advantages of this method is shown. This approach has been 
applied to find the set of Pareto optimal solutions with respect 
to the competing objective functions. In this study, the MOPSO 
algorithm uses 100 particles and 200 iterations. In order to 
facilitate the problem, the environmental objective function has 
been defined and expressed in cost terms. The thermodynamic 
modeling has been implemented comprehensively while 
economic analysis of this system conducted. Consideration of 
Five decision variables in modeling process made the final 
optimal solutions more realistic in comparison with previous 
studies in this field. Finally the result of optimization is 
introduced with 100 points on Pareto frontier.

INTRODUCTION
Cogeneration is the production of electrical energy and useful 
thermal energy from the same energy source. Cogeneration is 
important for numerous reasons. The first is that capturing the 
waste heat from power generation can result in an increase in 
efficiency [1]. This offers significant potential savings in energy 
costs. Additionally cogeneration is also more environmentally 
friendly than conventional fossil fuel power plants [2]. 

Optimization of thermal systems is one of the most important 
subjects in the energy engineering field [3]. Among the thermal 
systems, combined cycle cogeneration systems are analyzed by 
advanced thermodynamic topics. These topics include exergy, 
thermoeconomics and environment. Exergy analysis, which is 
the combination of first law and second law of thermodynamics, 
helps to highlight the thermodynamic inefficiencies of a system. 
It is clear that improving a system thermodynamically without 
considering economics and environment is misleading. Hence 
in design of thermal systems an integrated procedure should be 
performed to consider all these aspects. 
Many researchers have started to develop links between exergy 
and economics. As a result, a new area called thermoeconomics 
or exergoeconomics has been formed [4]. The aim of the 
thermoeconomic analysis is to calculate the cost of each product 
of the systems and investigate the cost formation process in the 
systems. An example for comparison of different 
thermoeconomic methodologies to design optimization of a 
cogeneration plant has been presented as a test case, known as 
the CGAM problem [5-9]. These works initially represent a 
paradigmatic application of a single optimization problem.  
They utilized mathematical approaches in their optimization in 
which these methods suffer from the difficulty to find the final 
global optimum. Moreover single objective optimization in 
thermal systems is not excellent. We can not only consider the 
cost objectives and forget other aspects. In many cases system 
performance and environmental impacts are as important as cost 
effects and for small increase in cost term; more effective 
solutions will be reached.   
In multi-objective optimization problems mathematical 
approaches are unsuccessful in finding the global optimum and 
most of them terminate at local optimum. Application of multi-
objective optimization method in thermal systems is not very 
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old. In 2002, Toffolo et al [10], considered two-objectives:
energetic and economic objectives in optimization of CGAM 
problem. In their work shortcoming of the conventional 
mathematical optimization approaches in finding global 
optimum was relatively maintained; they used evolutionary 
algorithms (MOEAs) with a MATLAB Simulink model and 
presented a Pareto optimum frontier instead of single optimum 
solution of the conventional single objective optimization.
 They improved their work by adding the environmental impact 
and introduced a three objectives optimization problem [11]. 
Unit damage costs were devoted to NOx and CO2 emissions
and environmental objective was introduced in cost term.
However their work still suffers some shortcoming arose from 
simplification in selecting of decision variables and constraints. 
To reduce the number of non-feasible solutions that their 
optimization algorithm may be faced during the optimization 
procedure, variable apε was preferred to exit temperature on air 

side of the Air Preheater 3T (variable used in the original 
CGAM problem). Furthermore among the five decision 
variables in original CGAM problem, they chose three of them 
( apcp Tr ε,, 4 ) while other two were held constant. 
In 2008 sayyaadi [12], used a more suitable method in 
economic modeling (TRR method). He added environmental 
objective with cost objective function and introduced a 
Thermoenvironomic objective function and utilized this 
objective with exergetic aspect in two multi-objective 
optimization approaches. In comparison with previous studies 
in this field ([10, 11, 12]), this work utilizes faster and more 
confidant algorithm in optimization procedure (MOPSO)
without any simplification with all five decisions variables. 
MOPSO algorithm can overcome the problem of non feasible 
solution which has been faced in previous studies. No decision 
variables are changed or fixed and all variables and constraints 
are in accordance with the original CGAM problem. These 
improvements lead to results which are more realistic than 
corresponding results obtained before.

PARTICLE SWARM OPTIMIZATION
It is common when working with design of energy systems to 
have situations with more than one objective. For instance, the 
objectives can simultaneously be to minimize the negative 
environmental impact of the process, maximize the profit and to 
maximize the safety of the process. These problems are referred 
to as multi objective Mathematical programming problems. 
Equation (1) shows how a multi objective optimization problem 
can be formulated mathematically:

}{ LXtosubjectkjXf j ∈∈∀ ,....3,2,1)(min
Where we have 2≥k objective functions.

(1) 
 

Particle swarm optimization; (PSO) is an exciting new 
methodology in evolutionary computation that is somewhat 
similar to a genetic algorithm in that the system is initialized 
with a population of random solutions. Unlike other algorithms, 
however, each potential solution (called a particle) is also 
assigned a randomized velocity and then flown through the 
problem hyperspace. Particle swarm optimization has been 
found to be extremely effective in solving a wide range of 
engineering problems. It is very simple to implement and solves 
problems very quickly.
In this work we develop a Multi-Objective Particle Swarm 
Optimizer with a dynamic fitness inheritance technique [13] to 
decrease the computational cost dealing with some multi-
objective optimization test problems taken from literature. An 
external archive is used in this method to store the non-
dominated solutions which are found along the process of 
optimization. The leaders of other particles that guide them to 
the Pareto-front are selected from the top portion of this archive
in each iteration. Moreover, the concept of non-dominated 
sorting and crowding distance [14] is applied as NSPSO 
approach [15] to improve the convergence and diversity of the 
Pareto-optimal solutions. The comparison among the particles 
and their pbests is based on fully connected approach [16] to 
increase the selection pressure toward the true Pareto-front. In 
order to reduce the cost of computation during the process, we 
use a dynamic fitness inheritance technique which is proposed 
in [17]. The following formula calculates the new position of a 
particle in the objective space using fitness inheritance 
technique:

( ) ( 1) ( )i i iF t F t VF t= − +

1 1 2 2( ) ( ( )) ( ( ))i pbest i i gbest i iVF t c r F F t c r F F t− −= − + −

(2) 
 

(3) 
 
Where ( )iF t , pbest iF − and gbest iF −  are i th−  objective function 

value for the current particle, and its pbest and gbest objective 
function values, respectively. The parameter ip  , called
inheritance or approximation proportion, indicates the 
proportion of particles that their objective function values must 
be inherited or approximated instead of evaluation in each 
iteration. As the Pareto-optimal solutions at the end of the 
optimization process must be true values of the objective 
functions, no inherited objective values can enter into the final 
external archive. To determine the amount of ip , following 
nonlinear function is used:

2( )ip f x x= =  ; genx
Gen

= (4) 
 

Where gen is the number of current iteration and Gen is the 
total number of iterations.
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APPLICATION OF ALGORITHM TO A CASE STUDY
In 1990, a group of concerned specialists in the field of 
Thermoeconomics (C. Frangopoulos, G. Tsatsaronis, A. Valero, 
and M. von Spakovsky) decided to compare their 
methodologies by solving a predefined and simple problem of 
optimization: the CGAM problem, which was named after the 
first initials of the participating investigators [5]. The CGAM 
problem originally is an economic optimization of a simple 
cogeneration system which involves physical, thermodynamic, 
and economic models. It assumes ideal gas behavior and
constant heat capacities. The CGAM Problem designs a 
cogeneration plant which delivers 30 MW of electricity and 14 
kg/s of saturated steam at 20 bars. The installation consists of 
an air compressor (AC), air preheater (APH), combustion 
chamber (CC), gas turbine (GT), and HRSG. Air preheater uses 
thermal energy from the combustion gas leaving gas turbine to 
heat the air entering the combustion chamber. Structure of this
cogeneration plant is shown in Fig. 1. HRSG is composed of an 
economizer (EC) section where the feed water is heated and an 
evaporator (EV) section where the heated water is vaporized 
into steam. Other specifications and operating condition of the 
CGAM problem for base case design are [4]:

T1=298.15K, P1=1.01325bar; T8=298.15K, P8=20bar;   
T10=298.15K, P10=12bar;
T3=850K; T4=1520K; P2/P1=10; ηsc=0.86; ηst=0.86

Figure 1. SCHEMATIC FLOW DIAGRAM OF THE CGAM [4].

THERMODYNAMIC MODEL
Thermodynamic modeling has been carried out in accordance to 
the procedure presented in [5, 10, 11]. Utilized thermodynamic 
model is developed based on the following basic assumptions 
[10, 11, 5]:

- All processes are steady state.

- Principle of ideal-gas mixture is applied for air and 
combustion products.

- Fuel is natural gas and it is assumed to be 100%
methane. Methane is an ideal gas. 

- Heat loss from the combustion chamber is considered 
to be 2% of the fuel lower heating value. All other 
components are considered adiabatic. 

- Constant pressure loss ratios are considered in 
components.

- Restricted dead state is P0=1.013 bar and T0=25°C.
- 3% and 5% pressure losses are assumed for air and 

gases in the air preheater, respectively.
- 5% pressure losses are assumed for gases in HRSG 

and combustion chamber.

THERMOECONOMIC MODEL
The economic model takes into account the cost of components, 
including amortization and maintenance, and the cost of fuel 
consumption. In order to define a cost function which depends 
on the optimization parameters of interest, component costs 
have to be expressed as functions of thermodynamic variables 
[4, 5]. In the CGAM problem, purchase cost functions for each 
plant component are already supplied. In this research, these 
equations with their related constants have been considered in 
accordance with [4, 5]. 
Governing equation of thermoeconomic model for the cost 
balancing of a component of an energy system is as follow [4]:

∑∑
==

=++
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CI
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,
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, )()( &&&& (5) 

 
Where cj is the unit cost of exergy for the jth stream to/from the 
component, jE& is exergy flow for the jth stream to/from the 

component and CI
kZ& and OM

kZ& are related cost of capital 
investment and operating and maintenance for the component 
kth obtained in economic model. In Eq. (5), n and m are total 
number of inlet and outlet exergy to/from the component kth, 
respectively. Developing Eq. (5) for each component of CGAM 
problem along with auxiliary costing equations (according to P 
and F rules, see [4]) leads to the following system of equations.
The system of 12 equations and 12 unknowns as indicated by 
Eq. 6 is solved to obtain the cost of streams 1 to 12 for CGAM 
problem.
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COMBUSTION POLLUTANTS
The original CGAM problem does not perform calculations on 
formation of pollutants within the combustion chamber. A 
simple model, based on semi-analytical correlations [18], is 
added here to determine pollutant emissions to setup of an 
environmental objective function. Adiabatic flame temperature 
in the primary zone of the combustion chamber is derived from 
the expression by Gulder [19]:

zyx
pz AT ψθπλσβσ α ))(exp( 2+= (7) 

 

where π is a dimensionless pressure p/pref (p being the 
combustion pressure p3, and pref = 101325 Pa); θ is a 
dimensionless temperature T/Tref (T being the inlet temperature 
T3, and Tref = 300 K); ψ  is the H/C atomic ratio ( 4=ψ , fuel 
being pure methane); φσ =  for 1≤φ (φ  being the fuel to air 
equivalence ratio) and 7.0−= φσ  for 1>φ . φ  is equivalent 
fuel to air ratio that is considered equal 0.64 in this work[11]. x, 
y and z are quadratic functions of σ in accordance with the 
following equations [19]:

2
111 σσ cbax ++= (8) 

2
222 σσ cbay ++= (9) 

2
333 σσ cbaz ++= (10)

In Eq. (7) to (11) parameters denoted as 
A,α , β ,λ , ia , ib and ic are constants presented in [19]. In order 
to have an accurate prediction, four sets of constants have been 
determined for the following ranges [18]:

0.13.0 ≤≤ φ  and 0.292.0 <≤ θ
0.13.0 ≤≤ φ  and 2.30.2 ≤≤ θ
6.10.1 ≤< φ  and 0.292.0 <≤ θ
6.10.1 ≤< φ  and 2.30.2 ≤≤ θ

(11)

The values of constants for each range classification are listed 
in [18].
The adiabatic flame temperature is used in the semi-analytical 
correlations proposed by Rizk and Mongia [18] to determine 
the pollutant emissions in grams per kilogram of fuel:

5.0
33
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5.0

)/(
)/71100exp(1615.0
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−
=

τ
(12)

5.0
33
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)/7800exp(9179.0
ppp

TE
CO pz

∆
=

τ (13)

Where τ is residence time in the combustion zone (τ is 
assumed constant and is equal to 0.002 s [11]). Tpz is primary 
zone combustion temperature, p3 is combustor inlet pressure,
∆p3/p3 is non-dimensional pressure drop in the combustor 
(∆p3/p3 = 0.05 as in the CGAM problem [5]).
Note that the primary zone temperature is used in NOx
correlation instead of the stochiometric temperature, since the 
maximum attainable temperature in premixed flames is Tpz, as 
pointed out by Lefebvre [19].

OBJECTIVE FUNCTIONS, DECISION VARIABLES AND 
CONSTRAINTS
Three objective functions of the multi-criteria optimization 
problem are the total exergetic efficiency (to be maximized), the 
total cost rate of products (to be minimized) and the 
environmental impact (to be minimized). Third objective 
function expresses the environmental impact as total pollution 
damage cost ($/s) due to CO2 and NOx emissions by 
multiplying their respective flow rates by their corresponding 
unit damage cost [20] (

2COc and 
xNOc are equal to 0.02086 

$/kgCO2 and 6.853 $/kgNOx, respectively [11]). Mathematical
formulation of objective functions is as following,

Exergetic: 

fuelfuel

steamNET
tot em

eemW
&

&& )( 89 −+
=ε

(14)

Cost:
OM
tot

CI
tottotFtotP ZZCC &&&& ++= ,,

(15)

Environmental:

XX NONOCOCOenv mcmcC &&& +=
22

(16) 
 

In this paper, for keeping the consistency with the original 
CGAM problem [4-9], same decision variables have been 
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selected as follows. With employing this algorithm there is no 
need to change of the decision variables for overcoming the 
occurrence of non feasible solutions as previous works do.
Decision variables are:

- Compressor pressure ratio p2/p1
- Isentropic efficiency of the compressor ηsc
- Isentropic efficiency of the turbine ηst
- Temperature of the air entering the combustion 

chamber T3
- Temperature of the combustion products entering the 

gas turbine T4
Although the decision variables may be varied in optimization 
procedure, each decision variable is normally required to be 
within a given range as follow:

16/6 12 ≤≤ pp  (17) 
9.06.0 ≤≤ scη (18) 
92.06.0 ≤≤ stη (19) 
KT 1000700 3 ≤≤ (20)
KT 15501200 4 ≤≤ (21) 

 
Heat exchange between hot and cold streams in air preheater 
and HRSG should satisfy the following feasibility constraints: 

Air preheater:
T5 > T3 (22) 
T6 > T2 (23) 

 
HRSG: 

∆TP= T7P - T9 > 0 (24) 
T6 ≥ T9+ ∆TP (25) 
T7 ≥ T8+ ∆TP (26) 
T7P > T8P (27) 

T7 ≥ 378.15K (28) 
 
Last constraint is an additional constraint with respect to the 
original CGAM problem imposed on exhaust gases 
temperature, which must not fall below 378.15K (105 ºC). This 
limitation is considered to prevent the condensation of water 
vapor exist in the combustion products at outlet section of 
economizer. The condensation of water vapor in presence of 
carbon dioxide may leads to formation of carbonic acid which
is corrosive material and can damage the economizer surface.

RESULTS AND DISCUSSION
In this study, the MOPSO algorithm uses 100 particles and 200 
iterations. The constant coefficients of  21 =c  and 22 =c  are 
applied to consider both social and cognitive characteristics of 
each particle equally. The inertia factor value 1=w  is used to 
control the exploration and exploitation of the swarm in the 
search space.  This value presents a reasonable global search 

characteristic of the swarm during the process of optimization. 
To control the magnitude of velocity, maximum amount of 
velocities are adjusted to the subtraction of lower boundaries 
from upper boundaries multiplied by 0.1. If a particle goes 
beyond the variables' boundaries, then its value is reintegrated 
into the lower or upper boundary and its velocity is multiplied 
by -1 having the effect of searching the opposite direction.
First in order to evaluate advantages and robustness of the 
MOPSO approach, the results are compared to the original 
CGAM problem [9] solved using conventional mathematical 
optimization approach. In this regard, the thermodynamic and 
economic model is built based on simple thermodynamic and 
economic models utilized in [5]. As we mentioned before, in 
original CGAM problem the economic objective had been 
considered alone without considering the environmental or 
efficiency aspects and an optimum point from the sight of 
economics was introduced. In Tab.1 the comparison between 
original CGAM problem and a point on Pareto domain witch 
has the least cost is shown: 

Table 1. COMPARISON OF RESULTS FOR OPTIMIZATION OF
ORIGINAL CGAM PROMLEM OBTAINED IN THIS PAPERWITH

THOSE OBTAINED BY CONVENTIONAL OPTIMIZATION 
APPROACHES IN [9] 

 

Objective function, 
decision variables, 

costing and operating 
parameters ,etc

Conventional 
optimization 
approaches 

presented in [9] 

Optimization via 
MOPSO 

Algorithms 
presented in this 

work

Total Cost Rate ($/s) 0.362009 0.36379691

Environmental Cost 
Rate ($/s) 0.10955 0.10492247

Exergetic efficiency 
(%) 50.664 51.261090

)(3 KT 914.28 920.19

)(4 KT 1492.63 1492.47

scη 0.8468 0.8306

stη 0.8786 0.8456

12 / pp 8.52 7.70

As it can be seen from Tab.1, the point introduced from 
MOPSO algorithm is totally more effective, while the cost was 
increased a bit; exergetic efficiency and environmental effects 
are improved.
In multi-objective optimization, comprehensive 
thermodynamic, economic and environmental models are 
implemented and all results are summarized in two figures 
below. Fig. 2, 3 presents the Pareto optimum solutions in two 
different view for CGAM problem with three objective 
functions indicated in Eq. (14,15 , 16) and constraints 
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represented in Eq. (17) to (28). Points on the surfaces of the 
Pareto fronts (Figs. 2, 3) represent the best possible tradeoffs
among the three objectives. Points in the space bounded by 
these surfaces represent solutions that are not Pareto optimal 
because at least one of their objective functions takes a worse
value than that of a solution on the Pareto front, the others
possibly being equal.

Figure 2. THE SET OF PARET OPTIMAL SOLUTIONS VIEW1

Figure 3. THE SET OF PARET OPTIMAL SOLUTIONS VIEW2

As we can see, problems of non feasible solutions are overcome 
and the shape of Pareto optimal solution with MOPSO
algorithm is more appropriate in contrast with previous studies.
During the optimization procedure this algorithm dos not stop 
on marginal points. With the aid of this method we can 
introduce 100 optimal points on Pareto frontier in the decision 
making space. Each of them have a special priority and can be 
selected from a special view point. Moreover in optimization 
procedure all decision variables and constraints are selected in 
accordance with the original CGAM problem and there is no 
necessity for changing decision variables or range of constraint. 
[10, 11]
In Figs 4 to 6, for better understanding of the trend of Pareto 
optimal solutions, Pareto frontier has been seen from the view 
point of two objectives. Among these three objective functions, 

each pair of them are selected and drawn separately. At first we 
select “exergetic efficiency” with “cost” and show them in one 
diagram. The shape of the Pareto optimal solution is clearly in 
accordance with previous study in this field [10, 12]. 

Figure 4. THE SET OF PARETO OPTIMAL FOR COST AND
EFFICIENCY

Also the trend for environment-cost and environment-
efficiency are shown in Figs below. 

Figure 5. THE SET OF PARETO OPTIMAL FOR COST AND 
ENVIRONMENT

Figure 6. THE SET OF PARETO OPTIMAL FOR ENVIRONMENT 
AND EFFICIANCY
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The information related to minimum cost, minimum 
environmental impacts and maximum exergetic efficiency and 
other connected data for each of them, are  summarized in Tab.2 
to Tab.4. As we can see these selected three points, among the 
Pareto front, have a special priority in one of the objectives and 
are suitable when one of the objectives are more important in 
decision making process. In Tab.2, we summarize the 
information related to cost optimum point on Pareto front and 
value of other two objectives in this point. Table 3, 4 are 
devoted to minimum of environmental damage cost and 
maximum of exergetic efficiency respectively. 

Table 2. COST OPTIMUM POINT AND THE VALUE OF TWO 
OBJECTIVES IN ACCORDANCE WITH THIS POINT

Objective function, 
decision variables, 

costing and operating 
parameters ,etc

Cost optimum 
point and the 
value of two 
objectives 

Total Cost Rate ($/s) 0.36379691

Environmental Cost 
Rate ($/s) 0.10492247

Exergetic efficiency 
(%) 51.26109

)(3 KT 890
)(4 KT 1490

scη 0.852

stη 0.883

12 / pp 10.2 

Table 3. ENVIRONMENT OPTIMUM POINT AND THE VALUE OF 
TWO OBJECTIVES IN ACCORDANCE WITH THIS POINT

Objective function, 
decision variables, 

costing and operating 
parameters ,etc

Environmental 
optimum point 
and the value of 
two objectives

Total Cost Rate ($/s) 1.0819765

Environmental Cost 
Rate ($/s) 0.092795284

Exergetic efficiency 
(%) 53.801762

)(3 KT 804
)(4 KT 1540

scη 0.899 

stη 0.914

12 / pp 12.8 

Table 4. EXERGETIC OPTIMUM POINT AND THE VALUE OF 
TWO OBJECTIVES IN ACCORDANCE WITH THIS POINT

Objective function, 
decision variables, 

costing and operating 
parameters ,etc

Exergetic 
optimum point 
and the value of 
two objectives

Total Cost Rate ($/s) 0.63225007

Environmental Cost 
Rate ($/s) 0.093254651

Exergetic efficiency 
(%) 53.826441

)(3 KT 813
)(4 KT 1550

scη 0.891

stη 0.913

12 / pp 13.2 

CONCLUSION
An alternative to previously presented calculus based 
optimization approaches named MOPSO algorithm was utilized 
for multi-objective optimization of typical cogeneration system 
called CGAM problem. The proposed evolutionary algorithm 
was shown to be a powerful and effective tool in finding the set 
of the optimal solutions for the choice of optimum design 
variables in the CGAM cogeneration plant in comparison to the 
conventional mathematical optimization algorithm. One of the 
main advantages of presented method was obtained from the 
comprehensive thermodynamic and economic modeling with no 
need for simplification and change of decision variables or 
constraints that was implemented along with the MOPSO 
algorithm which was shown that is able to achieve better result 
than conventional mathematical approach and other 
evolutionary algorithm. It was shown that multi-criteria 
optimization approach, which is a general form of single 
objective optimization, enables us to consider various and ever 
competitive objectives.
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