
This article was downloaded by: [Weng Kin Ho]
On: 18 July 2012, At: 22:38
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Mathematical
Education in Science and Technology
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tmes20

Exponential function and its derivative
revisited
Weng Kin Ho a , Foo Him Ho a & Tuo Yeong Lee b
a Department of Mathematics and Mathematics Education,
National Institute of Education, Nanyang Technological University,
1 Nanyang Walk, Singapore 637616, Singapore
b Department of Mathematics, NUS High School of Math & Science,
20, Clementi Avenue 1, Singapore 129957, Singapore

Version of record first published: 18 Jul 2012

To cite this article: Weng Kin Ho, Foo Him Ho & Tuo Yeong Lee (2012): Exponential function and its
derivative revisited, International Journal of Mathematical Education in Science and Technology,
DOI:10.1080/0020739X.2012.703341

To link to this article:  http://dx.doi.org/10.1080/0020739X.2012.703341

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tmes20
http://dx.doi.org/10.1080/0020739X.2012.703341
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Mathematical Education in
Science and Technology, 2012, 1–6, iFirst

CLASSROOM NOTE

Exponential function and its derivative revisited
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(Received 3 February 2012)

Most of the available proofs for d
dx ðe

xÞ ¼ ex rely on results involving either
power series, uniform convergence or a round-about definition of the
natural logarithm function ln(x) by the definite integral

R x
1

1
t dt, and are

thus not readily accessible by high school teachers and students. Even
instructors of calculus courses avoid showing the complete proof to their
undergraduate students because a direct and elementary approach is
missing. This short article fills in this gap by supplying a simple proof of the
aforementioned basic calculus fact.

Keywords: exponential function; calculus; teaching of calculus

1. Introduction

The definition of the exponential function

ex :¼ lim
n!1

�
1þ

x

n

�n

originated from Leonhard Euler [1, p. 363]. Apart from Euler himself, several
authors based their proofs of d

dx ðe
xÞ ¼ ex on this definition; the unfortunate state of

affairs being that most of these are spawned with gaps. It is impossible to be
encyclopaedic in documenting all such incomplete (but nonetheless published)
proofs. But for illustration’s sake, we quickly supply some evidence of such
inadequacy. For instance, in [2], apart from the incomplete proof of the monoto-
nicity of ð1þ x

nÞ
n when x5 0, the justification for exþy¼ ex � ey, crucial in the proof of

the result d
dx ðe

xÞ ¼ ex, is missing. In another work [3], the result ex ¼ limn!1ð1þ
x
nÞ
n

was proven only for 0� x� 1. However, it does not appear to work in general due to
the limitation of the functional equation (10) in [3, p. 843]. Furthermore, a careful
reading of the works [3,4] reveals that the density of Q in R has been exploited – this
approach, in our view, cannot be considered as elementary.

Our article uses a simple proof of d
dx ðe

xÞ ¼ ex, free of the aforementioned
deficiencies, that can be demonstrated even to (and easily understood by) a freshman
calculus audience. To the best of the authors’ knowledge, this proof is new.
Such a demonstration, we believe, is beneficial to a calculus student as it weaves
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together many previously acquired notions and results into one meaningful mathe-

matical fabric. In the ensuing development, the only two pre-requisites we assume of

the reader are the squeeze theorem and the Archimedean property of real numbers.

2. Some crucial lemmata

In a typical calculus or real analysis course, Bernoulli’s and arithmetic-mean

geometric-mean inequalities (AM-GM inequality, for short) are often included in

foundational materials. For self-containment, we record them below:

Proposition 2.1 (Bernoulli’s inequality): For any integer n� 0 and any real x��1, it

holds that (1þx)n� 1þ nx.

Proposition 2.2 (Arithmetic–geometric inequality): For any non-negative x1, . . . ,

xn2R, it holds that x1þx2þ���þxn
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � � � � xnn
p

.

These famous inequalities collaborate to justify the following crucial lemma:

Lemma 2.3: If N2N then

1þ
1

N

� �N

� 4:

Proof: The above inequality follows from the observation that for N� 3,

ffiffiffi
1

4

N

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�
1

2
� 1N

� �
N

s
�

1

N

1

2
þ
1

2
þ ðN� 2Þ � 1

� �
�

N

Nþ 1
,

owing to AM-GM inequality, and that the first two terms are less than 4. h

Lemma 2.4: If x� 0 and n2N, then ð1þ x
nÞ
n
� 41þbxc.

Proof: By the Archimedean property there exists N2N so large that if n�N then

1þ
x

n

� �n
�

�
1þ

1þ bxc

n

�n

�

�
1þ

1þ bxc

Nð1þ bxcÞ

�Nð1þbxcÞ

�

��
1þ

1

N

�N�1þbxc

¼ 41þbxc ðby Lemma 2.3Þ:

The proof is complete. h

Lemma 2.5: If c2R, then limn!1

�
1þ c

n2
Þ
n
¼ 1.

Proof: In view of Lemma 2.4 and the squeeze theorem, it suffices to prove that

1þ
c

n
�

�
1þ

c

n2

�n

41�
1

n
þ
1

n

�
1þ

c

n2

�n2
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for all sufficiently large integers n. Indeed, if n is any positive integer satisfying
1þ c

n2
4 0 (thanks to the Archimedean property), Bernoulli’s inequality immediately

justifies the first inequality:�
1þ

c

n2

�n

51þ n �
c

n2
¼ 1þ

c

n
:

The second inequality follows from the AM-GM inequality:

�
1þ

c

n2

�n

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1n�1 �

�
1þ

c

n2

�n2
n

s
4

1

n
�

�Xn�1
k¼1

1þ

�
1þ

c

n2

�n2�
:

As a consequence of Lemma 2.5, we obtain the following corollary:

Corollary 2.6: If ðxnÞ
1
n¼1 is a bounded sequence of real numbers, then

lim
n!1

�
1þ

xn
n2

�n

¼ 1:

3. Elementary properties of (x � ex)

This section is devoted to some elementary properties of the exponential function
(x � ex), and to do so we must first establish its functional status.

Proposition 3.1: If x2R, the sequence

1þ
x

n

� �n� �1
n¼1

ð1Þ

converges.

Proof: Based on the observation that for any n2N, limn!1

�
1� x2

n2

�n
¼ 1 by virtue

of Lemma 2.5, once the convergence of the sequence (1) on x� 0 is proven it then
follows that

lim
n!1

1�
x

n

� �n
¼ lim

n!1

1� x2

n2

� �n
1þ x

n

� �n
exists, thus accounting for the convergence of the sequence (1) on x5 0. It thus
remains to prove that the sequence (1) converges on x� 0. Now for any n2N,
we have ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
x

n

� �n
nþ1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

x

n

� �n
�1

nþ1

r
�

1

nþ 1
1þ n 1þ

x

n

� �� �
¼ 1þ

x

nþ 1
,

where the second-to-last inequality is the AM-GM inequality. Thus, the sequence (1)
is monotone. Because every bounded monotone sequence converges, the proof is
complete. h

Crucially, the preceding proposition justifies the existence of

lim
n!1

�
1þ

x

n

�n
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which is denoted by ex. Interested readers can find an alternative (but more

complicated) proof of this convergence in [5, p. 193] using power series.
We now establish the following for the exponential function (x � ex):

Theorem 3.2:

(i) e0¼ 1.
(ii) If a, b2R, then ea � eb¼ eaþb. In particular, ex4 0 for all x2R.
(iii) If a, b2R, then ea � eb¼ ea�b.
(iv) If a, b2R , then ea(b� a)4 eb� ea4 eb (b� a).
(v) The function x � ex is strictly increasing; in particular, it is injective.
(vi) The function x � ex is continuous on R.

Proof: (i) is obvious. To prove (ii), we observe that if n2N then

�
1þ

a

n

�n

�

�
1þ

b

n

�n

¼

�
1þ

aþ b

n

�n

�

�
1þ

ab

n2 � ð1þ aþb
n Þ

�n

:

Consequently, (ii) follows from Lemma 2.6 and (i). It is also clear that (iii) follows

from (ii). We now establish (iv). Without loss of generality, we suppose that b� a.

Then for any n2N satisfying 1þ a
n 4 0, we have 1þ b

n � 1þ a
n and hence

ðb� aÞ

�
1þ

a

n

�n�1

4
b� a

n

Xn�1
k¼0

�
1þ

b

n

�n�1�k�
1þ

a

n

�k

¼

�
1þ

b

n

�n

�

�
1þ

a

n

�n

4
b� a

n

Xn�1
k¼0

�
1þ

b

n

�n�1

¼ ðb� aÞ �

�
1þ

b

n

�n�1

:

Letting n!1 completes the argument.
It is easy to check that (v) is an immediate consequence of (iv) and (ii). Also, (vi)

follows from (iv). h

4. An elementary proof of d
dx
ðexÞ^ex

Theorem 4.1: The exponential function (x � ex) is differentiable on R and

d

dx
ðexÞ ¼ ex ðx 2 RÞ:

Proof: Let x2R be given. Then, for any real number h 6¼ 0, we use Theorem 3.2(iv)

with a¼ x and b¼ xþ h to get

ex � h � exþh � ex � exþh � h
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or equivalently,

exþh � ex

h
� ex

				
				 � exþh � ex

		 		:
Letting h! 0 and invoking (vi) complete the argument. h

5. Concluding remarks

In a (currently on-going) survey1 conducted in 2011 among Singapore secondary
school and junior college teachers, preliminary findings revealed that over 80% of
the participants has either no or incomplete (i.e., poorly or wrongly justified)
knowledge of the definition of the exponential function (x � ex). As a result, a
number of classroom approaches based the proof of d

dx ðe
xÞ ¼ ex on the unjustified

fact limh!0
eh�1
h ¼ 1. There were also a number of teachers who conveniently chose a

sufficiently convincing but inadequately justified proof of

d

dx
ðexÞ ¼

d

dx

X1
k¼0

xk

k!
¼
X1
k¼0

d

dx

xk

k!

� �
¼
X1
k¼1

xk�1

ðk� 1Þ!
¼
X1
k¼0

xk

k!
¼ ex:

The rest of the participants, forming the majority, supplied no proofs at all.
A direct disaster of this deficiency in the mathematical pedagogical content

knowledge (mpck, for short) is the emergence of recent generations of mathematics
students memorizing d

dx ðe
xÞ ¼ ex as a meaninglessly isolated fact. Repercussions

abound; for instance, there is a widespread lack of understanding as to why e is
called the natural base (especially when the decimal representation 2.718281828 � � � is
far from being natural) since the special role of y¼ ex as a fixed point of the naturally
occurring differential equation dy

dx ¼ y is completely removed from the student’s
learning experience.

Responding to this gap in the teachers’ mpck, our article delivers an elementary
proof of that the derivative of exponential function is itself – starting from Euler’s
original definition of the exponential function (x � ex). Because our simple proof
does not rely on any results of power series and uniform convergence, it is easily
accessible by both instructors and learners of calculus.

Note

1. The results of this survey will be analysed and reported in greater detail in an upcoming
report.
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