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Abstract. The concept of universal integral, recently proposed, gener-
alizes the Choquet, Shilkret and Sugeno integrals. Those integrals admit
a discrete bipolar formulation, useful in those situations where the un-
derlying scale is bipolar. In this paper we propose the concept of discrete
bipolar universal integral, in order to provide a common framework for
bipolar discrete integrals, including as special cases the discrete Choquet,
Shilkret and Sugeno bipolar integrals. Moreover we provide two different
axiomatic characterizations of the proposed discrete bipolar universal
integral.
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1 Introduction

Recently, a concept of universal integral has been proposed [26]. The univer-
sal integral generalizes the Choquet integral [4], the Sugeno integral [35] and
the Shilkret integral [33]. Moreover, in [23, 24] a formulation of the universal
integral with respect to a level dependent capacity has been proposed, in or-
der to generalize the level-dependent Choquet integral [17], the level-dependent
Shilkret integral [3] and the level-dependent Sugeno integral [29]. The Choquet,
Shilkret and Sugeno integrals admit a discrete bipolar formulation, useful in
those situations where the underlying scale is bipolar [11, 12, 18, 16, 20]. In
this paper we introduce and characterize the discrete bipolar universal integral,
which generalizes the discrete Choquet, Shilkret and Sugeno bipolar integrals.

Let us briefly describe the economic motivations of this paper. In the last
three/four decades non-additive integrals - i.e. those integrals based on monotone
measures, non necessarily additive - have been applied to many fields of Decision
Analysis.
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For example, in the field of multiple-criteria decision aid (MCDA), the use of
non-additive integrals (called fuzzy integrals) is nowadays pervasive [7, 13]. The
motivation is due, essentially, to the fact that non-additive integrals, when used
as aggregation functions, allow for a natural representation of the interaction of
criteria.

In decision making under risk and uncertainty for a large time, the dominant
model has been the Expected Utility Theory (EUT) [38]. The EUT value func-
tion is based on the Lebesgue integral, but the additivity of this integral when
applied to real choice (especially in economics) leads to unrealistic conclusions
(see e.g. [1, 5, 22, 36]). For these motivations the development of new theories,
called non-EUT theories, and based on non-additive integrals has increased very
fast (for a seminal survey we recommend [34]). In decision making under risk and
uncertainty, the Choquet integral has firstly received an axiomatic characteriza-
tion [31] and then has been successfully applied to economic models of decision:
over all we remember the Choquet Expected Utility (CEU) of Schmeidler and
Gilboa [6, 32] and the Cumulative Prospect Theory of Kahneman and Tversky
[37].

Very recently, one of the most interesting lines of research has concerned
the bipolarity of choices: the decision maker individuates a reference point and,
then separates gains (alternatives greater than the reference point) from losses
(alternatives smaller than the reference point); symmetric choices with respect
to the reference point are considered. Regarding a general discussion on the use
of bipolarity the reader is referred to [10, 28], while regarding the generalization
of well known integrals, used in MCDM, to the bipolar case, the reader is referred
to [14, 20]. Also in decision under risk and uncertainty, the necessity of new tools
able to model the bipolarity has emerged [27, 39]. In [21] the bipolar Choquet
integral of Grabisch and Labreuche [12] has been used in order to obtain a bipolar
generalization of CPT.

The paper is organized as follows. In section 2 we introduce the basic con-
cepts. In section 3 we define and characterize the bipolar universal integral. In
section 4 we give an illustrative example of a bipolar universal integral which
is neither the Choquet nor Sugeno or Shilkret type. Section 5 shows how the
discrete universal integral can be also characterized in terms of a family of ag-
gregation functions satisfying a set of desired axioms. Finally, in section 6, we
present conclusions.

2 Basic concepts

For the sake of simplicity, in this work we present the results in a multiple
criteria decision making setting. Given a set of criteria X = {1, . . . , n}, an alter-
native x can be identified with a score vector x = (x1, . . . , xn) ∈ [−∞,+∞]

n,
being xi the evaluation of x with respect to the ith criterion. Without loss
of generality, in the following we consider the bipolar scale [−1, 1] to expose
our results, so that x ∈ [−1, 1]

n. For all x = (x1 . . . , xn) ∈ [−1, 1]
n, the set

{i ∈ X | xi ≥ t} , t ∈ [0, 1], is briefly indicated with {x ≥ t}. Similar meaning



have the symbols {x ≤ t}, {x > t} and {x < t}. For all x,y ∈ [−1, 1]n we say
that x dominates y and we write x ≽ y, if xi ≥ yi, i = 1, . . . , n. Let us consider
the set Q =

{
(A,B) ∈ 2X × 2X | A ∩B = ∅

}
of all disjoint pairs of subsets of X,

see [11]. With respect to the binary relation - on Q defined as (A,B) - (C,D)
iff A ⊆ C and B ⊇ D, Q is a lattice, i.e., a partially ordered set in which
any two elements have a unique supremum (A,B) ∨ (C,D) = (A ∪ C,B ∩D)
and a unique infimum (A,B) ∧ (C,D) = (A ∩ C,B ∪D). For all (A,B) ∈ Q
the vector 1(A,B) ∈ [−1, 1]n is the vector whose ith component equals 1 if
i ∈ A, equals -1 if i ∈ B and equals 0 else. A bipolar aggregation function
f : [−1, 1]n → [−1, 1] is a function such that f(x ) ≥ f(y) whenever x ≽ y and
f(1(X,∅)) = 1, f(1(∅,X)) = −1 and f(1(∅,∅)) = 0. We indicate with A[−1,1]n the
set of aggregation functions on [−1, 1]

n.

Definition 1 A function µb : Q → [−1, 1] is a (normalized) bi-capacity [11, 12,
18] on X if

– µb(∅, ∅) = 0, µb(X, ∅) = 1 and µb(∅, X) = −1;
– µb(A,B) ≤ µb(C,D) for all (A,B), (C,D) ∈ Q such that (A,B) - (C,D).

Let us note that, by the sake of simplicity, we use the abbreviated form
µ(A,B) instead of µ((A,B)).

Definition 2 The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1, 1]
n with

respect to the bi-capacity µb is given by [11, 12, 18]:

Chb(x, µb) =

∫ 1

0

µb({x > t}, {x < −t})dt. (1)

The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1, 1]
n with respect to

the bi-capacity µb can be rewritten as

Chb(x , µb) =

n∑
i=1

(
|xσ(i)| − |xσ(i−1)|

)
µb({x ≥ |xσ(i)|}, {x ≤ −|xσ(i)|}), (2)

being σ : X → X any permutation of indexes such that 0 = |xσ(0)| ≤ |xσ(1)| ≤ . . . ≤
|xσ(n)|. Let us note that to ensure that ({x ≥ |t|}, {x ≤ −|t|}) ∈ Q for all t ∈ R, we
adopt the convention - which will be maintained trough all the paper - that in the case
of t = 0 the inequality xj ≤ 0 is to be understood as xj < 0.

In this paper we use the symbol ∨ to indicate the maximum and ∧ to indicate
the minimum. The symmetric maximum of two elements - introduced and discussed in
[8, 9] - is defined by the following binary operation:

a 6 b =


− (|a| ∨ |b|) if b ̸= −a and either |a| ∨ |b| = −a or = −b
0 if b = −a
|a| ∨ |b| else.



Alternatively the symmetric maximum of a, b ∈ R can be written as

a 6 b = sign(a+ b)(|a| ∨ |b|).

The symmetric minimum of two elements [8, 9] is defined as:

a 7 b =

{
− (|a| ∧ |b|) if sign(b) ̸= sign(a)
|a| ∧ |b| else.

Alternatively the symmetric minimum of a, b ∈ R can be written as

a 7 b = sign(a · b)(|a| ∧ |b|).

In [30] it has been shown that on the domain [−1, 1] the symmetric maximum coincides
with two recent symmetric extensions of the Choquet integral, the balancing Choquet
integral and the fusion Choquet integral, when they are computed with respect to the
strongest capacity (i.e. the capacity which takes the value zero on the empty set and one
elsewhere). However, the symmetric maximum of a set X cannot be defined without any
ambiguity, being > non associative. Suppose that X = {3,−3, 2}, then (3 6 −3)62 = 2
or 36 (−3 6 2) = 0, depending on the order of aggregation. Several possible extensions
of the symmetric maximum for dimension n, n > 2, have been proposed (see [9, 15] and
also the relative discussion in [30]). One of these extensions is based on the splitting
rule applied to the maximum and to the minimum as described in the following. Given
X = {x1, . . . , xm} ⊆ R, the bipolar maximum of X, shortly

∨b X, is defined as∨b
X =

(∨
X
) > (∧

X
)
. (3)

In the same way and for an infinite set X, it is possible to define the concept of
bipolar supremum of X, supbip X, as the symmetric maximum applied to the supremum
and the infimum of X:

supbipX = supX > infX,

with the convention that ±∞ > l = ±∞ for all l ∈ R and +∞ > (−∞) = 0.

Definition 3 The bipolar Shilkret integral of x = (x1, . . . , xn) ∈ [−1, 1]n with respect
to the bi-capacity µb is given by [20]:

Shb(x, µb) =
∨
i∈X

b
{|xi| · µb({x ≥ |xi|}, {x ≤ −|xi|})} . (4)

Definition 4 The bipolar Sugeno integral of x = (x1, . . . , xn) ∈ [−1, 1]n with respect
to the bi-capacity µb on X is given by [20]:

Sub(x, µb) =
∨
i∈X

b{
|xi| 7 µb({x ≥ |xi|}, {x ≤ −|xi|})

}
. (5)

The discrete bipolar Choquet Shilkret and Sugeno integrals defined in (1), (4) and (5)
are aggregation functions from A[−1,1]n and they have been axiomatized in [20]. Next
sections provide a general framework for these discrete bipolar fuzzy integrals.



3 Discrete universal integrals and discrete bipolar
universal integrals

In order to define universal integrals it is necessary to introduce the concept of semi-
copula [2].

Definition 5 A semicopula is a function ⊗ : [0, 1]2 → [0, 1] such that for all x, y, t
and z ∈ [0, 1] the following axioms are satisfied:

– monotonicity: x⊗ y ≤ t⊗ z, whenever x ≤ t and y ≤ z;
– 1 is a neutral element: 1⊗ x = x⊗ 1 = x.

Note that a semicopula has 0 as annihilator. Indeed 0 ≤ a ⊗ 0 ≤ 1 ⊗ 0 = 0 and
0 ≤ 0 ⊗ a ≤ 0 ⊗ 1 = 0. A commutative and associative semicopula is called a t-norm.
Typical examples of t-norms are the minimum (∧), the product (·), and the Lukasiewicz
t-norm defined by TL(x, y) = (x+ y − 1) ∨ 0.

The concept of universal integrals, which can be defined for arbitrary monotone
measures on arbitrary measurable spaces (S;A) and for arbitrary measurable functions
f : S → [0,∞], was axiomatically introduced in [26]. Here we use the concept of
[0, 1]−valued discrete universal integral [25], defined on the union of all measurable
spaces (Xn, 2

Xn), where the finite space Xn = {1, . . . , n} is considered for all n ∈ N
and is equipped with the σ−algebra 2Xn . Functions from Xn to [0, 1] are identified
with n−dimensional vectors of [0, 1]n. Let Mn denotes the set of all capacities on Xn

i.e., the set of all monotone set functions m : 2Xn → [0, 1] such that m(∅) = 0 and
m(Xn) = 1. For all n ∈ N, and E ⊆ Xn the characteristic function 1E is identified with
the vector 1E ∈ [0, 1]n whose ith component equals 1 if i ∈ E and equals 0 otherwise.

Definition 6 A function I :
∪

n∈N(Mn × [0, 1]n) → [0, 1] is a [0, 1]−valued discrete
universal integral [25] if it satisfies the following axioms:

(I1) I(m,x) is nondecreasing with respect to m and with respect to x;
(I2) I(m,1E) = m(E), for all n ∈ N, m ∈ Mn and E ⊆ Xn;
(I3) I(m, c · 1Xn) = c, for all n ∈ N, m ∈ Mn and c ∈ [0, 1];
(I4) I(m1,x1) = I(m2,x2), for all (m1,x1) ∈ Mn1 × [0, 1]n1 , (m2,x2) ∈ Mn2 × [0, 1]n2 ,

n1, n2 ∈ N, such that for all t ∈ [0, 1], m1 ({x1 ≥ t}) = m2 ({x2 ≥ t}).

In [25] the following proposition has been stated.

Proposition 1 Let I be a [0, 1]−valued discrete universal integral. Then there exists
a semicopula ⊗ such that we have I(m, c · 1A) = c ⊗ m(A) for all n ∈ N, m ∈ Mn,
c ∈ [0, 1] and A ⊆ Xn.

Due to Proposition 1 in Definition 6, axioms (I2) and (I3) can be equivalently
substituted with the following axiom

(I5) there exists a semicopula ⊗ such that I(m, c · 1A) = c ⊗ m(A) for all n ∈ N,
m ∈ Mn, c ∈ [0, 1] and A ⊆ Xn.

The following theorem represents an alternative axiomatic characterization of the
[0, 1]−valued discrete universal integral.



Theorem 1 A function I :
∪

n∈N(Mn × [0, 1]n) → [0, 1] is a [0, 1]−valued discrete
universal integral if and only if it satisfies the following axioms:

(I5) there exists a semicopula ⊗ such that I(m, c · 1A) = c ⊗ m(A) for all n ∈ N,
m ∈ Mn, c ∈ [0, 1] and A ⊆ Xn.

(I6) I(m1,x1) ≥ I(m2,x2) for all (m1,x1) ∈ Mn1 × [0, 1]n1 and (m2,x2) ∈ Mn2 ×
[0, 1]n2 , n1, n2 ∈ N, such that for all t ∈ [0, 1], m1 ({x1 ≥ t}) ≥ m2 ({x2 ≥ t}).

Proof. The sufficiency part is obvious since it is easily checked that (I6) implies (I1)
and (I4) while (I5) implies (I2) and (I3). Now we prove the necessity part.

Let us suppose that axioms (I1)-(I4) hold. Axiom (I5) is true by Proposition 1
and, then, we only have to prove axiom (I6). Let us suppose that for some n1, n2 ∈ N,
Xn1 = {c1, . . . , cn1} and Xn2 = {d1, . . . , dn2} are two sets of disjoint criteria, i.e.
Xn1 ∩ Xn2 = ∅. Consider (m1,x) ∈ Mn1 × [0, 1]n1 and (m2,y) ∈ Mn2 × [0, 1]n2

such that for all t ∈ [0, 1], m1 ({x ≥ t}) ≥ m2 ({y ≥ t}). If x = (x1, . . . , xn1) and
y = (y1, . . . , yn2) let us consider vector z = (x1, . . . , xn1 , y1, . . . , yn2) ∈ [0, 1]n1+n2 and
the two capacities m,m : 2Xn1∪Xn2 → [0, 1] defined for all E ⊆ Xn1 ∪Xn2 by

m(E) = ∨{m1(E ∩X1),m2(E ∩X2)}

and
m(E) = ∧{m1(E ∩X1),m2(E ∩X2)}.

By axiom (I4) we have that I(m1,x1) = I(m, z) and I(m2,x2) = I(m, z) and by
axiom (I1), being m ≥ m, I(m, z) ≥ I(m, z). Note that the condition Xn1 ∩Xn2 = ∅
does not represent a limitation, since by axiom (I4), the value I(m,x) does not depend
on the underlying measurable space (Xn, 2

Xn) but only on the values of m ∈ Mn on
the correspondent subsets {x ≥ t} from Xn.

�

Remark 1 Observe that the necessity in Theorem 1 can be shown also alternatively
by means of [26, Proposition 2.7].

Now let us generalize the concept of discrete universal integral from the scale [0, 1]
to the symmetric scale [−1, 1] by extending definition 6 and generalizing the definition
of bipolar universal integrals given in [19]. Again the finite space Xn is considered for
all n ∈ N and similarly, the lattice Q, which will be denoted with Qn and the set of all
normalized bi-capacities on Xn, which will be denoted with Mb

n. Functions from Xn

to [−1, 1] are identified with n−dimensional vectors of [−1, 1]n.

Definition 7 A function Ib :
∪

n∈N(M
b
n × [−1, 1]n) → [−1, 1] is a [−1, 1]−valued dis-

crete bipolar universal integral if it satisfies the following axioms:

(U1) Ib(µb,x) is nondecreasing with respect to µb and with respect to x;
(U2) Ib(µb,1(A,B)) = µb(A,B), for all n ∈ N, µb ∈ Mb

n and (A,B) ∈ Qn;
(U3) Ib(µb, c · 1(Xn,∅)) = −Ib(µb, c · 1(∅,Xn)) = c, for all n ∈ N, µb ∈ Mb

n, c ∈ [0, 1];
(U4) if Ib(µb1 ,1(A1,B1)) = −Ib(µb2 ,1(A2,B2)) for some n1, n2 ∈ N, µb1 ∈ Mb

n1
, µb2 ∈

Mb
n2

, (A1, B1) ∈ Qn1 and (A2, B2) ∈ Qn2 , then

Ib(µb1 , c · 1(A1,B1)) = −Ib(µb2 , c · 1(A2,B2));



(U5) Ib(µb1 ,x1) = Ib(µb2 ,x2) for all pairs (µb1 ,x1) ∈ Mb
n1

× [−1, 1]n1 and (µb2 ,x2) ∈
Mb

n2
× [−1, 1]n2 , n1, n2 ∈ N, such that for all t ∈]0, 1],

µb1 ({x1 ≥ t} , {x1 ≤ −t}) = µb2 ({x2 ≥ t} , {x2 ≤ −t}) .

The following proposition holds

Proposition 2 Let Ib :
∪

n∈N(M
b
n × [−1, 1]n) → [−1, 1] be a [−1, 1]−valued discrete

bipolar universal integral. Then there exists a semicopula ⊗ such that for all n ∈ N,
µb ∈ Mb

n, c ∈ [0, 1] and (A,B) ∈ Qn,

Ib(µb, c · 1(A,B)) = sign(µb(A,B))(c⊗ |µb(A,B)|).

Proof. First of all let us observe that for any c ∈ [0, 1] and for any n ∈ N, n ≥ 2 we can
define a bi-capacity µb ∈ Qn by setting µb(A,B) = 0 if A ∩ B ̸= ∅, µb(A, ∅) = c and
µb(∅, A) = −c if A ∈ 2Xn \ {∅, Xn}.

Now, for all a, c ∈ [0, 1], let us define the function a ⊗ c = Ib(µ, a1(A,B)) =
−Ib(µ

∗, a1(A∗,B∗)), for all n, n∗ ∈ N, µb ∈ Mb
n, µ∗

b ∈ Mb
n∗ and (A,B) ∈ Qn, (A∗, B∗) ∈

Qn∗ such that µb(A,B) = c and µ∗
b(A

∗, B∗) = −c. Due to axiom (U4) and (U5) and
to the remark at the beginning of the proof,this definition is well posed.

Now we check that ⊗ is a semicopula, starting by proving monotonicity. Suppose
that a1, a2 ∈ [0, 1] with a1 < a2, then by monotonicity of Ib we have that a1 ⊗ c =
Ib(µb, a11(A,B)) ≤ a2 ⊗ c = Ib(µb, a21(A,B)) for all c ∈ [0, 1] and for some n ∈ N,
µb ∈ Mb

n such that µb(A,B) = c. If b1, b2 ∈ [0, 1] with b1 < b2 there exists an n ∈ N,
n ≥ 3, µb ∈ Mb

n, E ⊆ F ⊆ Xn such that µb(E, ∅) = b1 and µm(F, ∅) = b2 (see the
beginning of the proof). Now, for all a ∈ [0, 1] we have that a⊗b1 = Ib(µb, a1(E,∅)) =≤
a⊗ b2 = Ib(µb, a1(F,∅)), by monotonicity of Ib. We conclude that ⊗ is nondeacreasing
in both components.

Now we prove that 1 is a neutral element for ⊗. For all a ∈ [0, 1], a ⊗ 1 =
Ib(µb, a1Xn) = a by (U3) and 1 ⊗ a = Ib(µb,1(A,B)) = a for all n ∈ N, and µb ∈ Mb

n

such that µb(A,B) = a, by (U2).
Finally, it is obvious, by definition of ⊗, that for all n ∈ N, µb ∈ Mb

n, c ∈ [0, 1] and
(A,B) ∈ Qn, Ib(µb, c · 1(A,B)) = sign(µb(A,B)) (c⊗ |µb(A,B)|).

�

Due to Proposition 2 in Definition 7, axioms (U2), (U3) and (U4) can be equiva-
lently substituted with the following axiom

(U6) there exists a semicopula ⊗ such that for all n ∈ N, µb ∈ Mb
n, c ∈ [0, 1] and

(A,B) ∈ Qn, Ib(µb, c · 1(A,B)) = sign(µb(A,B)) (c⊗ |µb(A,B)|).

Note that the discrete bipolar Choquet, Shilkret and Sugeno integrals (1), (4) and
(5) are [−1, 1]−valued discrete bipolar universal integrals in the sense of Definition 7.
Observe that the underlying semicopula ⊗ is the standard product in the case of the
bipolar Choquet and Shilkret integrals, while ⊗ is the minimum (with neutral element
β = 1) for the bipolar Sugeno integral. Note also that for the bipolar Sugeno integral
Sub(µb, c · 1(A,B)) = c 7 µb(A,B) is the symmetric minimum.

The following theorem represents an alternative axiomatic characterization of the
[−1, 1]−valued discrete bipolar universal integral.



Theorem 2 A function Ib :
∪

n∈N(M
b
n×[−1, 1]n) → [−1, 1] is a [−1, 1]−valued discrete

bipolar universal integral if and only if it satisfies the following axioms:

(U6) there exists a semicopula ⊗ such that for all n ∈ N, µb ∈ Mb
n, c ∈ [0, 1] and

(A,B) ∈ Qn, Ib(µb, c · 1(A,B)) = sign(µb(A,B)) (c⊗ |µb(A,B)|).
(U7) Ib(µb1 ,x1) ≥ Ib(µb2 ,x2) for all pairs (µb1 ,x1) ∈ Mb

n1
× [−1, 1]n1 and (µb2 ,x2) ∈

Mb
n2

× [−1, 1]n2 , n1, n2 ∈ N, such that for all t ∈]0, 1],

µb1 ({x1 ≥ t} , {x1 ≤ −t}) ≥ µb2 ({x2 ≥ t} , {x2 ≤ −t}) .

Proof. The sufficiency part is obvious, since it is easily checked that axiom (U7) implies
axioms (U1) and (U5) while axiom (U6) implies (U2), (U3) and (U4). Now we prove
the necessity part.

Let us suppose that axioms (U1)-(U5) hold. Axiom (U6) is true by Proposition 2
and, then, we only have to prove axiom (U7).

Let us suppose that for some n1, n2 ∈ N, X1 = {c1, . . . , cn1} and X2 = {d1, . . . , dn2}
are two sets of criteria with Xn1 ∩ Xn2 = ∅ and X = Xn1 ∪ Xn2 . Let us indicate
Q1 = {(A,B)|A,B ∈ 2X1 , A ∩ B = ∅}, Q2 = {(A,B)|A,B ∈ 2X2 , A ∩ B = ∅} and
Q = {(A,B)|A,B ∈ 2X , A ∩ B = ∅}. If x = (x1, . . . , xn1) and y = (y1, . . . , yn2)
let us consider z = (x1, . . . , xn1 , y1, . . . , yn2) ∈ [−1, 1]n1+n2 and the two bi-capacities
µb, µb

: Q → [−1, 1] defined for all (A,B) ∈ Q by

µb(A,B) = ∨{m1(A ∩X1, B ∩X1),m2(A ∩X2, B ∩X2)}

and
µ
b
(E) = ∧{m1(A ∩X1, B ∩X1),m2(A ∩X2, B ∩X2)}.

By axiom (U4) we have that Ib(m1,x) = Ib(µb, z) and Ib(m2,y) = Ib(µ
b
, z) and by

axiom (U1), being µb ≥ µ
b
, Ib(µb,z) ≥ Ib(µ

b
,z). Note that the condition Xn1∩Xn2 = ∅

does not represent a limitation, since by axiom (U4), the value Ib(µb,x) does not depend
on the underlying space (Xn,Qn) but only on the values of µb on the correspondent
element of Qn.

�

4 An illustrative example

The following is an example of a bipolar universal integral, which is neither the Choquet
nor Sugeno or Shilkret type. Let Ib :

∪
n∈N(M

b
n × [−1, 1]n) → [−1, 1] be given by

I(µb,x) = supbip

{
t · µb ({x ≥ t} , {x ≤ −t})

1− (1− t) (1− |µb ({x ≥ t} , {x ≤ −t}) |) | t ∈]0, 1]
}
. (6)

Note that (6) defines a bipolar universal integral. Indeed let us define for all (µb,x) ∈
Mb

n×[−1, 1]n and for all t ∈ [0, 1], h(µb,x)(t) = µb ({x ≥ t} , {x ≤ −t}). Then if µb ≥ µ′
b

and x ≥ x′, we have h(µb,x) ≥ h(µ
′
b,x

′) and being the function t ·h/[1− (1− t)(1−|h|)]
non decreasing in h ∈ R, we conclude that I(µb,x) ≥ I(µ′

b,x
′) using the monotonicity

of the bipolar supremum. Moreover for all n ∈ N, µb ∈ Mn, c ∈ [0, 1] and (A,B) ∈ Qn,



I(µb, c · 1(A,B)) = sign(µb(A,B))
c · |µb (A,B) |

1− (1− c) (1− |µb (A,B) |) =

= sign(µb(A,B))(c⊗ |µb(A,B)|). (7)

Here the semicopula ⊗ underlying the bipolar universal integral (6) is the Hamacher
product

a⊗ b =

{
0 if a = b = 0
a·b

1−(1−a)(1−b)
else.

Now let us compute this integral in the simple situation of X2 = {1, 2}. In this case
the functions we have to integrate can be identified with a two dimensional vector
(x, y) ∈ [−1, 1]2 and we should define a bi-capacity on Q2. For example

µb ({1} , ∅) = 0.6, µb ({2} , ∅) = 0.2, µb ({1} , {2}) = 0.1,

µb ({2} , {1}) = −0.1, µb (∅, {1}) = −0.3 and µb (∅, {2}) = −0.5.

First let us consider the four cases |x| = |y|. If x ≥ 0:

I (µb, (x, x)) = x, I (µb, (x,−x)) =
0.1x

0.1 + 0.9x
,

I (µb, (−x, x)) =
−0.1x

0.1 + 0.9x
and I (µb, (−x,−x)) = −x.

For all the other possible cases, we have the following formula

I (µb, (x, y)) =



∨b
{
y , 0.6x

0.6+0.4x

}
x > y ≥ 0

∨b
{

0.1|y|
0.1+0.9|y| , 0.6x

0.6+0.4x

}
x ≥ 0 > y > −x

∨b
{

0.1x
0.1+0.9x

, −0.5|y|
0.5+0.5|y|

}
x ≥ 0 ≥ −x > y

∨b
{
x , −0.5|y|

0.5+0.5|y|

}
0 > x > y

∨b
{
x , 0.2y

0.2+0.8y

}
y > x ≥ 0

∨b
{

−0.1|x|
0.1+0.9|x| , 0.2y

0.2+0.8y

}
y ≥ 0 > x > −y

∨b
{

−0.1y
0.1+0.9y

, −0.1|x|
0.1+0.9|x|

}
y ≥ 0 ≥ −y > x

∨b
{
y , −0.3|x|

0.3+0.7|x|

}
0 > y > x.

(8)

Observe that for arbitrary two bipolar integrals I1 and I2 related to semicopulas
⊗1 and ⊗2, respectively, also their convex combination is a bipolar universal integral,
i.e., for each λ ∈ [0, 1], I = λI1 + (1 − λ)I2 is a bipolar universal integral related to
semicopula ⊗ = λ ⊗1 +(1 − λ)⊗2. For example, convex combinations of Sugeno and
Choquet bipolar integrals can be useful when fitting bipolar integrals to some real data,
forming a parametric class of bipolar universal integrals.



5 Bipolar universal integrals and axiomatic foundation in
terms of aggregation functions

Suppose Ib :
∪

n∈N(M
b
n × [−1, 1]n) → [−1, 1] is a [−1, 1]−valued discrete bipolar

universal integral and for some n ∈ N, consider a fixed µ∗
b ∈ Mb

n. The function
Iµ∗

b
: [−1, 1]n → [−1, 1] defined by Iµ∗

b
(x) = Ib(µ

∗
b ,x) for all x ∈ [−1, 1]n, is a bipolar

aggregation function from A[−1,1]n . Thus any [−1, 1]−valued discrete bipolar universal
integral can be viewed as a family of aggregations functions, Iµb(·) ∈

∪
n∈N A[−1,1]n , one

for each bi-capacity µb ∈
∪

n∈N M
b
n. In this section we shall characterize [−1, 1]−valued

discrete bipolar universal integrals, starting from a family of aggregation functions of∪
n∈N A[−1,1]n satisfying some desired properties.

Consider a family Fb ⊆
∪

n∈N A[−1,1]n with Fb ̸= ∅ and consider the following
axioms on Fb:

(B1) For all f ∈ Fb ∩ A[−1,1]n1 , g ∈ Fb ∩ A[−1,1]n2 and x ∈ [−1, 1]n1 , y ∈ [−1, 1]n2 ,
n1, n2 ∈ N, such that for all t ∈]0, 1]

f
(
1({x≥t},{x≤−t})

)
≥ g

(
1{(y≥t},{y≤−t})

)
,

then f (x ) ≥ g (y).
(B2) Every f ∈ Fb is idempotent, i.e., for all n ∈ N, c ∈ [−1, 1] and f ∈ Fb ∩ A[−1,1]n ,

f
(
c · 1(Xn,∅)

)
= −f

(
c · 1(∅,Xn)

)
= c.

(B3) For all n ∈ N and for all µb ∈ Mb
n there exists f ∈ Fb ∩ A[−1,1]n such that

f(1(A,B)) = µb(A,B) for all (A,B) ∈ Qn.
(B4) For all n1, n2 ∈ N, f ∈ Fb ∩ A[−1,1]n1 , g ∈ Fb ∩ A[−1,1]n2 , and (A1, B1) ∈

Qn1 , (A2, B2) ∈ Qn2 , such that

f(1(A1,B1)) = −g(1(A2,B2)),

then for all c ∈ [0, 1],

f(c · 1(A1,B1)) = −g(c · 1(A2,B2)).

Observe that the above introduced axioms (B1)-(B4) are independent.

Theorem 3 Axioms (B1)-(B4) hold for a family Fb ⊆
∪

n∈N A[−1,1]n , if and only if
there exists a [−1, 1]−valued discrete bipolar universal integral Ib with a semicopula ⊗
such that, for all n ∈ N and f ∈ Fb ∩ A[−1,1]n there exists a bi-capacity µb(f) ∈ Mb

n

such that
f(x) = Ib(µb(f),x) for all x ∈ [−1, 1]n. (9)

More precisely,

(a) for all n ∈ N, f ∈ Fb ∩ A[−1,1]n and (A,B) ∈ Qn, µb(f)(A,B) = f(1(A,B));
(b) for all x, y ∈ [0, 1], x ⊗ y = f(x1(A,B)), with f(1(A,B)) = y, (A,B) ∈ Qn and

f ∈ Fb ∩ A[−1,1]n for some n ∈ N.



Proof. First we prove the sufficiency part, i.e. we suppose that axioms (B1)-(B4) hold
for the family Fb and we prove the existence of a [−1, 1]−discrete bipolar universal
integral satisfying equation (9).

Our first step is to prove that for any n ∈ N and f ∈ Fb ∩A[−1,1]n we can define a
bi-capacity by means of the relationship

µb(f)(A,B) = f(1(A,B)) for all (A,B) ∈ Qn.

Being f a bipolar aggregation function, µb(f)(Xn, ∅) = f(1(Xn,∅)) = 1, µb(f)(∅, Xn) =
f(1(∅,Xn)) = −1 and µb(f)(∅, ∅) = f(1(∅,∅)) = 0. Moreover, if (A,B), (C,D) ∈ Qn

with (A,B) - (C,D) then 1(A,B) ≼ 1(C,D) and by monotonicity of f we have that
µb(f)(A,B) = f(1(A,B)) ≤ f(1(C,D)) = µb(f). Thus for any f ∈ Fb, µb(f) is a bi-
capacity.

Our second step is to prove that a semicopula is defined by setting for all x, y ∈
[0, 1], x ⊗ y = f(x1(A,B)), with f(1(A,B)) = y, (A,B) ∈ Qn and f ∈ Fb ∩ A[−1,1]n

for some n ∈ N. First of all observe that the definition of ⊗ is well posed. Indeed,
for any b ∈ [0, 1] there exist n ∈ N, f ∈ Fb ∩ A[−1,1]n and (A,B), (C,D) ∈ Qn such
that f(1(A,B)) = b and f(1(C,D)) = −b by (B3) (see also the beginning of the proof
of Proposition 2). Moreover, if for some f ∈ Fb ∩ A[−1,1]n1 , g ∈ Fb ∩ A[−1,1]n2 and
c ∈ [0, 1] we have that f(1(A,B)) = g(1(C,D)) with (A,B) ∈ Qn1 and (C,D) ∈ Qn2 ,
then f(c1(A,B)) = g(c1(C,D)) by (B1), because

f(1({c1(A,B)≥t},{c1(A,B)≤−t})) = g(1({c1(C,D)≥t},{c1(C,D)≤−t})) for all t ∈]0, 1].

Thus, ⊗ is well defined and we must prove that it is a semicopula.
To prove that ⊗ is nondecreasing, let us consider x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2

and y1 ≤ y2. By definition there exist f ∈ Fb ∩A[−1,1]n1 , g ∈ Fb ∩A[−1,1]n2 such that
we have that x1 ⊗ y1 = f(x11(A,B)) with (A,B) ∈ Qn1 such that f(1(A,B)) = y1
and x2 ⊗ y2 = g(x21(C,D)) with (C,D) ∈ Qn2 such that g(1(C,D)) = y2. It results
f(x11(A,B)) ≤ g(x21(C,D)) by (B1), because

f(1({x11(A,B)≥t},{x11(A,B)≤−t})) ≤ g(1({x21(C,D)≥t},{x21(C,D)≤−t})) for all t ∈]0, 1].

Now we prove that 1 is a neutral element for ⊗. For all a ∈ [0, 1] we have that for
any f ∈ Fb ∩ A[−1,1]n , a ⊗ 1 = f(a1(Xn,∅)) = a by idempotency of f . Moreover, by
definition of ⊗ we have that 1⊗ a = f(1 · 1(A,B)) = a for some f ∈ Fb ∩ A[−1,1]n and
(A,B) ∈ Qn. We conclude that ⊗ is a semicopula.
Let us note that, due to axiom (B4), we could equivalently define ⊗ by setting for
all x, y ∈ [0, 1], ⊗(x, y) = −f(x1(A,B)), with f(1(A,B)) = −y with (A,B) ∈ Qn,
f ∈ Fb ∩ A[−1,1]n for some n ∈ N.

For any n ∈ N and f ∈ Fb ∩ A[−1,1]n we have defined a bi-capacity by means
of µb(f)(A,B) = f(1(A,B)) for all (A,B) ∈ Qn. On the converse for any n ∈ N and
µb ∈ Mb

n, by (B3) there exists an f ∈ Fb ∩A[−1,1]n such that f(1(A,B)) = µb(A,B) for
all (A,B) ∈ Qn. Axiom (B1) ensures that function f is unique, indeed: suppose that
f(1(A,B)) = g(1(A,B)) for all (A,B) ∈ Qn, then by (B1) for all x ∈ [−1, 1]n we have
that f(1({x≥t},{x≤−t})) = g(1({x≥t},{x≤−t})) for all t ∈]0, 1] and then f(x) = g(x).
Due to the proved uniqueness we indicate with fµb the function from Fb such that
fµb(1(A,B)) = µb(A,B) for all (A,B) ∈ Qn and, obviously, µb(fµ∗

b
) = µ∗

b .
Aggregation functions from Fb define a function Ib :

∪
n∈N(M

b
n× [−1, 1]n) → [−1, 1]

by means of Ib(µb,x) = fµb(x) for all (µb,x) ∈
∪

n∈N(M
b
n × [−1, 1]n). Let us prove

that the function Ib is a bipolar universal integral with respect to semicopula ⊗.



We use the characterization of Theorem 2, then we have to prove that Ib satisfies
axioms (U6) and (U7).
For all n ∈ N, µb ∈ Mb

n, c ∈ [0, 1] and (A,B) ∈ Qn, Ib(µb, c · 1(A,B)) = fµb(c · 1(A,B)).
If fµb(1(A,B)) = µb(A,B) ≥ 0, then by definition of ⊗, fµb(c · 1(A,B)) = c⊗ µb(A,B),
while if fµb(1(A,B)) = µb(A,B) < 0, then, again by definition of ⊗ and by axiom (B4),
fµb(c·1(A,B)) = −c⊗|µb(A,B)|. Thus, in any case Ib(µb, c·1(A,B)) = sign(µb(A,B))(c⊗
|µb(A,B)|) and (U6) is proved.
Consider (µb1 ,x1) ∈ Mb

n1
× [−1, 1]n1 and (µb2 ,x2) ∈ Mb

n2
× [−1, 1]n2 , n1, n2 ∈ N,

such that for all t ∈]0, 1], µb1 ({x1 ≥ t} , {x1 ≤ −t}) ≥ µb2 ({x2 ≥ t} , {x2 ≤ −t}). By
definition this means fµb1

(x1) = Ib(µb1 ,x1) ≥ fµb2
(x2) = Ib(µb2 ,x2), which proves

(U7) and concludes the sufficiency part.
Now we prove the necessity part. Suppose that Ib :

∪
n∈N(M

b
n × [−1, 1]n) → [−1, 1]

is a bipolar universal integral with respect to some semicopula ⊗. For fixed n ∈ N,
µb ∈ Mb

n the Iµb : [−1, 1]n → [−1, 1] defined by Iµb(x) = Ib(µb,x) for all x ∈ [−1, 1]n,
is a bipolar aggregation function. Let us prove that the family of aggregation functions
Fb = {Iµb | µb ∈

∪
n∈N M

b
n} satisfies axioms (B1)-(B4). Since Ib is a discrete universal

integral, it satisfies axioms (U6) and (U7) of Theorem 2 and then (B1) follows directly
by definition of Fb and by (U7) while (B2), (B3) and (B4) follow by definition of Fb

and by (U6).

�

6 Conclusions

In this paper we have defined and axiomatically characterized the [−1, 1]−valued dis-
crete bipolar universal integral, thus providing a common frame including the discrete
bipolar Choquet, Shilkret and Sugeno integrals. Moreover, an axiomatic characteriza-
tion of bipolar universal integrals in the framework of bipolar aggregation functions
was introduced, too. We believe that the concept of bipolar universal integral will al-
low new theoretical developments, where the bipolarity of choices is involved, both in
MCDA as well as in decision under risk and uncertainty.
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