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Abstract— Evolutionary optimization of a gait for a bipedal
robot has been studied, combining structural and parametric
modifications of the system responsible for generating the
gait. The experiment was conducted using a small 17 DOF
humanoid robot, whose actuators consist of 17 servo motors.
In the approach presented here, individuals representing a
gait consisted of a sequence of set angles (referred to as
states) for the servo motors, as well as ramping times for
the transition between states. A hand-coded gait was used as
starting point for the optimization procedure: A population of
30 individuals was formed, using the hand-coded gait as a seed.
An evolutionary procedure was executed for 30 generations,
evaluating individuals on the physical robot. New individuals
were generated using mutation only. There were two different
mutation operators, namely (1) parametric mutations modifying
the actual values of a given state, and (2) structural mutations
inserting a new state between two consecutive states in an
individual. The best evolved individual showed an improvement
in walking speed of approximately 65%.

I. INTRODUCTION

This paper is concerned with evolutionary optimization
of a gait for a bipedal robot. In the coming era of au-
tonomous robots, it is generally believed that humanoid
robots, i.e. walking robots with an approximately human-like
shape, will play an important role, since such robots can be
more naturally adapted to environments primarily designed
for people and are also likely to be easier to interact with
than wheeled robots with non-humanoid characteristics [1].

However, there are many difficult issues associated with
humanoid robots as well, one of the most important being
their complex dynamics: In general, humanoid robots require
a complex coordination of limbs while walking as well as
active balancing even at standstill.

During the last two decades, a large amount of work has
been carried out regarding the generation of stable bipedal
gaits. A variety of methods have been used, one of the most
popular being the ZMP method [2], [3]. Evolutionary meth-
ods have also been applied to the problem of gait generation
[4], [5], [6], [7], with the aim of generating, for example,
gaits that are more responsive to sudden perturbations or
other unexpected events that may cause significant trouble
for more traditional gaits based on reference trajectories.
However, evolutionary methods generally require that a
large number of candidate soluations (individuals) should be
tested, a procedure that is very time-consuming if it is carried
out in physical robots. Thus, simulations have commonly
been used in connection with evolutionary gait generation
[4], [5], [6], [7], [8], [9], [10].
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However, simulations come with a significant drawback,
namely the difficulty of accurately modeling the humanoid
robot, which, in turn, leads to severe problems when trans-
ferring generated gaits to a physical robot. No matter how
carefully a humanoid robot is modelled, there will always be
discrepancies between the simulated robot and the physical
robot. Thus, evolution directly in hardware does carry an
advantage. Incidentally, the difficulty in modeling humanoid
robots may be seen as another motivation in favor of the
use of evolutionary methods (if applied directly to physical
robots), since such methods normally do not require a
dynamic, or even kinematic, model of the physical robot.

It is thus clear that, if only the evolutionary procedure
can be made sufficiently rapid to allow for the generation of
a satisfactory bipedal gait after, say, a few hundred (rather
than thousands) of evaluated individuals, evolution directly
in hardware would be an attractive alternative. A method for
speeding up the evolutionary process is, of course, to start
from a rough, hand-coded gait that can at least make the
robot move, and then proceed to optimize this gait using
an evolutionary algorithm (EA). Indeed, such a method was
applied successfully by Wolff and Nordin [11]. However,
their approach suffered from a significant drawback: The
representation of individuals was such that the EA could only
modify the parameters of the gait, not its structure. If no
structural modifications are allowed, as in Wolff and Nordin
[11], the structure of the initial hand-coded gait (i.e. the
starting point for the EA) must be completely accurate in
order for the EA to be able to find an optimal gait through
parametric optimization. In this paper, the analysis of Wolff
and Nordin [11] will be extended to the case of combined
structural and parametric evolution.

II. EXPERIMENT DESCRIPTION

A. The robot

The experiment was executed using a small, 17-DOF
humanoid robot manufactured by Kondo Kagaku Co. Ltd.
[12]. The robot is shown in Fig. 1. Fig. 2 shows a schematic
view of the robot, with the definition of the 17 joint angles.
The height of the robot is 0.33 m. The actuators of the
bipedal robot consist of 17 KRS 786 ICS servo motors with
integrated closed-loop control, manufactured by Kondo [12].
Each servo motor has a nominal output torque of 0.85 Nm,
and a maximum rotation speed of 6.16 rad/s (0.17 s/ 60
degrees). The controller consists of two RCB-1 boards, also
manufactured by Kondo. The RCB-1 board is based on the
PIC 16F873A chip from Microchip Technology Inc. [13],
and each controller board can control up to 12 servo motors.
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Fig. 1. The Kondo robot.

Fig. 2. A schematic view of the Kondo robot used in the experiment. The
axes of rotation of the eight joints shown as filled disks in the figure are
orthogonal to the frontal plane. These joints rotate in the clockwise direction
for increasing set values. With the exception of the joint actuating the head,
the remaining joints generate motion in the sagittal plane.

B. Experimental setup

The arena in which the robot was evaluated is shown in
Fig. 3. The evaluation of an individual consisted of placing
the robot at the starting point (the black line shown in the
left part of the picture), uploading the gait onto the robot and
then running it, starting at time T0. A photocell was used for
measuring passage of the finish line (the black line shown
in the right part of the picture) at time T1. When the finish
line was reached, the time T = T1 − T0 was recorded. In
case of failure, i.e. if the robot fell over or strayed too much
from the intended path (such that it would not pass the finish
line between the measurement points shown in the picture),
the evaluation was interrupted. The distance L between the
starting line and the finish line was 0.53 m, i.e. around 1.6
times the height of the robot. This value was chosen due

Fig. 3. The arena used in the experiment.

to hardware limitations that restrict the number of executed
states to 100 in any given evaluation, i.e. a maximum of 16
cycles for a gait with 6 states (see below).

C. Gait architecture

In the architecture used here, a gait consists of a sequence
of set angles (henceforth referred to as states) for the servo
motors, as well as ramping times for the transition between
states. An example of a gait, namely the standard, hand-
coded gait, is shown in Table I. In this table, each row
represents a state. The final column of each row shows
the ramping parameter, i.e. the speed of the transition from
the current state to the next one. The ramping parameter
takes values in the range [0, 7], where 0 indicates the fastest
possible transition, and 7 the slowest possible transition.

1) The standard gait: The gait used as a starting point
for the optimization procedure described below, is given in
Table I. As can be seen from the table, the gait consists
of six states. When executing the gait, the states are used
cyclically, starting from state 1.1 Since the standard gait
(hereafter: SG) is specified using only six states, it is not very
smooth. However, it allows the robot to cover the distance L
in around 36.4 seconds. A sequence of images, showing the
robot in each of the six states, is given in Fig. 4. Note that
the SG is statically stable, so that the robot can stay balanced
indefinitely in any of the six available states.

D. The evolutionary algorithm

The EA employed in this study was a fairly standard one,
except for (1) the absence of a crossover operator and (2)
the presence of structural mutations. No crossover operator
was used, since crossover between individuals with different

1However, since the robot starts from the stance shown in Fig. 1, it must
first take one step to reach state 1 in the gait. Thus, before the cyclical gait
is executed, both the SG and all other evaluated gaits begin by a hand-coded
step of the kind just mentioned.



TABLE I
THE STANDARD GAIT, CONSISTING OF SIX STATES THAT ARE EXECUTED CYCLICALLY. THE PARAMETERS SHOWN IN ITALICS ARE KEPT CONSTANT

DURING THE EVOLUTIONARY OPTIMIZATION PROCEDURE, I.E. THEY ARE UNAFFECTED BY PARAMETRIC MUTATIONS, SEE ALSO SUBSECT. II-D.1.

State ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 R

1 9 11 90 120 150 169 90 97 85 49 127 80 103 69 114 46 78 6
2 9 11 90 120 175 169 90 97 85 49 127 79 103 107 172 23 78 3
3 30 11 90 90 175 169 90 97 85 49 127 79 102 116 128 73 76 3
4 30 11 90 90 175 169 90 73 119 82 124 104 79 88 111 67 102 6
5 9 11 90 60 175 169 90 73 72 15 150 104 79 88 111 64 102 3
6 9 11 90 90 150 169 90 73 65 66 93 107 75 102 124 64 102 3

number of states is unlikely to produce improved results. In
this subsection, the encoding scheme, the genetic operators,
and the fitness measure will be described.

1) Encoding scheme: The genome of each individual was
represented as 18 chromosomes. Each of the first 17 chromo-
somes encodes the sequence of set angles for a given servo
motor j, i.e. the transitions ϕ

[i]
j → ϕ

[i+1]
j , i = 1, . . . , N −1,

where N is the number of states. Due to hardware limitations,
the maximum value of N was equal to 10. The final
chromosome encodes the speed of transition between the
different states, using an integer ramping parameter R as
described in Subsect. II-C.

2) Genetic operators: In the formation of new individu-
als, which took place on a host computer, only mutations
were used. Since the evolutionary algorithm started from a
functioning gait, it was unlikely that a search involving large
mutation steps would generate improved gaits. Thus, creep
mutations were used instead. In the case of the chromosomes
encoding angles (chromosomes 1-17), the mutation operator
changed a given gene (set angle) ϕ

[i]
j to a new value

according to
ϕ

[i]
j ← ϕ

[i]
j + ∆, (1)

where ∆ is a random number in the range [−∆max, ∆max].
Thus, with small values of ∆max the mutation generates
a new value near the old value. A ∆max value of 5 was
used throughout the experiment. In case the new set angle
exceeded the allowed limit of variation ([0, 225]) for the servo
in question, the set angle was adjusted to the limiting value.

Similarly, for chromosome 18, the mutation operator
changed a given ramping parameter R according to

R← R± 1, (2)

with equal probability for either sign, except for the limiting
cases R = 0, where only an increase was allowed, and
R = 7, where only a decrease was allowed.

The parameteric mutations of servo angles and ramping
parameters were carried out on gene-by-gene basis, i.e. for
each gene a random number r ∈ [0, 1] was generated, and if
r was smaller than the parametric mutation probability pp,
the gene in question (servo angle or ramping parameter) was
modified.

However, for four servos, namely 8, 12, 13 and 17, the
variation in the servo angles described by the SG was kept,

i.e. mutations were not allowed for these particular servos.
This restriction was introduced since it was found that any
mutation of these servo values led to situations in which
a foot would touch the ground at an angle (rotation in the
frontal plane), causing the robot to fall. Thus, in the end the
EA was allowed to specify the angular variation of 13 servos
and one ramp value, for each state, so that the total number
of parameters was equal to 14N .

Structual mutations were allowed as well. Such mutations
may, in principle, either decrease or increase the length
of the chromosomes. However, during tests preceding the
experiment, it was found that removal of states generally led
to disastrous results (the robot would fall), except in those
rare cases where the removed state was one that had just
been added. Thus, removal of states was not used, and the
chromosomes were thus only allowed to increase in length.

Structural mutations were used in such a way that, with
probability ps a new state was inserted between states i and
i+1, i = 1, . . . , N−1. In order to avoid destroying the gait,
the set angles of the new state were given as

ϕnew
j =

ϕ
[i]
j + ϕ

[i+1]
j

2
. (3)

Similarly, the gene representing the ramping parameter (in-
serted in the 18th chromosome) was generated in the same
way as the set angles.

3) Fitness measure: In this investigation, the speed of
walking combined with strong punishment for instability,
has been taken as the measure of quality of a gait. More
specifically, the fitness of an individual was taken as

f =
TSG

T
, (4)

where T and TSG are the times taken to traverse the distance
L for the individual in question and for an individual
executing the SG, respectively. This fitness measure was
used for individuals that actually reached the finish line, thus
obtaining a value for the time taken. Individuals that fell
over were given fitness 0, whereas individuals that walked
in a strongly curved path (such that they would not break
the light beam between the two measurement points on the
finish line), were somewhat arbitrarily given fitness 0.1. Such
individuals were given a non-zero fitness since an inability
to walk in a straight line was considered less severe than
an outright instability of the gait in question. However, it



Fig. 4. The six states of the standard gait. The upper row shows the robot seen from the front, and the lower row shows a side view.

should be noted that the fitness values (defined in Eq. (4)) of
individuals that reached the finish line was much higher than
0.1. The SG was evaluated 10 times, leading to a value of
TSG of 36.4± 0.3 s (95% confidence interval). During this
time interval the robot executed approximately 16 steps.

III. RESULTS

The experiment was carried out using a population size
of 30 individuals. In the formation of the initial population,
the genomes of all individuals were first set manually so as
to encode the SG. Next, the individuals were mutated, using
the procedure that normally takes place after the evaluation
of a generation, and the resulting set of individuals formed
the initial population.

The evolutionary procedure was carried out for a total of
30 generations. Thus, in all, 900 individuals were evaluated.
Elitism was employed, i.e. one copy of the best individual
in generation g was transferred, unchanged, to generation
g + 1. Each individual was evaluated once, and its fitness
value was then stored. When all individuals in a given
generation had been evaluated, the next generation was
formed using the genetic operators described above. The
parametric mutation rate was set to 2/K , where K = 14N is
the number of parameters. The structural mutation rate was
set to 1/3(N − 1).

The results are shown in Figs. 5 and 6. Fig. 5 shows the
maximum fitness as a function of generation. Note that the
(average) fitness of the SG is equal to 1. From the figure, it
is clear that the fitness values rise quite rapidly, from around
1.276 to 1.638 over the first 17 generations. Then there is
a sudden drop, followed by oscillatory best fitness values
roughly in the range 1.5 ± 0.1. In fact, the best individual
appeared already in generation 15 where it obtained fitness
1.616. In generation 16 this individual obtained a fitness of
1.634, again making it the best individual in the population.
Finally, in generation 17 it reached a fitness value of 1.638,
the global maximum fitness value obtained during the EA
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Fig. 5. Fitness of the best individual as a function of generation. Note that
the maximum fitness value was obtained in generation 17.

run. However, in generation 18, the individual fell, and was
therefore eliminated from the population. Note that, despite
the use of elitism, the maximum fitness value may thus drop
from one generation to the next, since the performance of
any given individual may vary between evalutions.

The average fitness values are shown in Fig. 6. As is
evident from the figure, there is no trend in the average fitness
value.

Even though each individual was only evaluated once
during the EA run, the genetic material of all individuals
was stored so that any individual could be re-evaluated after
the completion of the run. Such a re-evaluation was indeed
carried out for the best individuals in each generation, and it
was found that fitness values (at least for these individuals)
typically remained quite stable during re-evaluations: Typical
variations were around 2%. However, it should also be noted
that, occasionally, even a rather good individual would fall.
Of the 30 individuals that were re-evaluated, five fell during
at least one re-evaluation.

In general, there was an increasing trend in the number



TABLE II
THE BEST GAIT, CONSISTING OF EIGHT STATES. NOTE THAT THE PARAMETERS SHOWN IN ITALICS ARE UNAFFECTED BY PARAMETRIC MUTATIONS.

State ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 R

1 10 11 90 120 150 169 90 97 85 49 127 80 103 69 114 46 78 5
2 9 11 90 120 175 169 90 97 85 49 127 79 103 113 172 23 78 0
3 31 11 90 90 175 169 90 97 82 49 127 79 102 121 128 73 76 0
4 30 11 90 89 175 169 90 85 99 65 125 91 90 104 122 71 89 3
5 30 11 90 90 175 169 90 79 108 73 124 97 84 96 119 68 95 4
6 30 11 90 90 175 169 90 73 117 82 124 104 79 88 116 67 102 3
7 9 12 90 60 178 172 87 73 72 15 154 104 79 88 111 64 102 3
8 9 11 95 90 147 174 90 73 65 71 94 107 75 102 124 64 102 0
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Fig. 6. Average fitness as a function of generation.

of states. This is not surprising per se, since, as described
above, states could not be removed. The number of states
increased from an average of 6.5 in the first 10 generation
to an average of 8.9 in the last 10 generations.

The best gait, generated in generation 15 (but obtaining
maximum fitness in generation 17, as mentioned above),
is described in Table II. As is indicated in the table, this
gait consisted of eight states, i.e. two states were added in
addition to the six states present in the SG. The added states
were inserted at positions 4 and 5. When the EA run had been
completed, the best individual was re-evaluated 10 times,
leading to a fitness value of 1.643± 0.112 (95% confidence
interval). Note that, in order to carry out 10 successful re-
evaluations for this individual, 12 attempts were needed. In
other words, even the best individual would sometimes fail.

The sideways deviation over the distance L was also
measured and was found to be, on average, 0.09 m (always
in the same direction), compared to 0.08 m for the SG.

IV. DISCUSSION AND CONCLUSION

The most important conclusion that can be drawn from
the experiment described above is that it is indeed possible
to obtain significant improvements of a functioning but
non-optimized bipedal gait using an EA running directly
on a physical robot. It is interesting to note that, already
after 17 generations, i.e. after the evaluation of around 500
individuals, an improvement in walking speed of around 65%

could be obtained.
From Table II, it is clear that the values of the ramping

parameter have been somewhat reduced (on average), com-
pared to the values used in the SG, so that the transition
between states becomes faster than for the SG. A reasonable
hypothesis, in the light of this result, may be that the SG
could perhaps be improved simply by reducing the values of
the ramping parameter. However, this approach was tested
and was shown to lead to a highly unstable gait. Thus, in
order for the gait to be improved, an increase in transition
speed must be accompanied by modifications of the set
angles and, possibly, the number of states, and is thus very
difficult to obtain by manual tuning.

The dip in fitness values after generation 17 was caused by
an unfortunate failure (in generation 18) of the best individual
in generation 17: The robot fell, and the corresponding
individual was thus eliminated. If multiple evaluations had
been used to form a reliable average performance of each
individual, this particular individual may have survived and
even higher fitness values might then have been obtained.
However, the choice of using a single evaluation was moti-
vated by the fact that, even with this limitation, the evaluation
of 900 individuals took quite a long time (around 3-4 full
working days). It is doubtful whether the use of, say, 3 re-
evaluations per individual would have led to a better final
result, since then only 300 individuals could have been
evaluated unless, of course, the experiment was extended
in time. Nevertheless, it is important to note that a strong
improvement of the original gait (the SG) was obtained
even though a single evaluation was carried out for each
individual.

An interesting possibility for future work would be to base
the fitness value on the heritage of a given individual, i.e. to
form its final fitness value as a sum of the current fitness
value and that of its ancestors, perhaps using a discounting
factor for individuals from earlier generations. In this way,
the elimination of a good individual based on a single
failure could be avoided, without having to carry out time-
consuming re-evaluations of each individual.

At a first glance, the absence of a trend in the average
fitness values may seem surprising, particularly since the best
fitness values do improve. However, one must keep in mind
that the initial population consists of individuals executing a
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Fig. 7. Average fitness as a function of generation, taken over those
individuals that successfully (without falling) traversed the whole distance
L, without excessive sideways deviation. See the main text for a further
discussion of this figure.

slightly modified version of the rather stable standard gait
(with an average fitness of 1), whereas later generations
will contain individuals whose gaits are more significantly
modified compared to the SG. Some of these individuals will
have gaits that outperform the SG whereas other individuals
will fail altogether, thus obtaining a fitness value of 0 or
0.1, depending on the mode of failure, as described above.
Thus, the numerical average value may be misleading, since
it depends on the somewhat arbitrary fitness values (0 and
0.1) assigned to failed individuals. A better measure of the
actual average performance can be obtained by measuring
the average fitness value of those individuals that do not fail.
A plot of these values is shown in Fig. 7. As can be seen
from this figure, there is indeed an increase in the average,
from 1.036 in the first generation to 1.303 in the last, with a
maximum of 1.345 in generation 18. Admittedly, this is an
overestimate of the average performance, since the number
of failed individuals also rises, from an average of 3.0 in the
first 10 generations to 7.2 in the last 10 generations, but it
does indicate that the EA is able to improve the performance
of those individuals that do not fail completely.

As for the walking speed, the best individual walked a
distance of 0.53m in approximately 22.2s, i.e. with a speed
of only 0.024 m/s. Scaling from the height of the robot (0.33
m) to the height of a typical human (1.75 m), this would
correspond to a speed of roughly 0.12 m/s which, of course,
is quite slow. However, what matters is the improvement
compared to the SG, with an average speed of only 0.015
m/s. The low absolute speed can be attributed to hardware
limitations. In fact, even though the robot has a humanoid
shape, the placements of joints differs quite significantly
from those of a human. Furthermore, the body of the robot
is, of course, much more rigid.

As for the robustness of the generated gaits, it was found
(as mentioned in Sect. III) that even the best individuals

would sometimes fall. Thus, the evolved gaits displayed
somewhat lower robustness than the SG. An interesting topic
for future work would be to optimize the SG while placing
even higher emphasis on the robustness of the generated
gaits. In order to be successful, such a study would probably
require the use of several re-evaluations of each individual
for the formation of the fitness value.

The initial motivation for carrying out the gait genera-
tion in physical robots rather than in simulations can be
strengthened further by noting that the sideways deviation
of the best individual always occurred in the same direction,
as a result of the peculiarities of the particular components
(and their placement) used in that robot. Had simulations
been used, it is unlikely that such an effect would have
been correctly modelled, at least without extensive and time-
consuming detailed system identification. Thus, even though
evolution in physical robots is a complex procedure, in view
of the direct applicability of the results obtained, it appears to
be well motivated in the case of gait optimization in bipedal
robots.
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