Full-Stack Performance Model Evaluation using
Probabilistic Garbage Collection Simulation

Felix Willnecker
Andreas Brunnert
fortiss GmbH
Guerickestr. 25
80805 Miinchen, Germany

{willnecker,brunnert}@fortiss.org

ABSTRACT

Performance models can represent the performance relevant
aspects of an enterprise application. Corresponding simu-
lation engines use such models for simulating performance
metrics (e.g., response times, resource utilization, through-
put) and allow for performance evaluations without load
testing the actual system. Creating such models manually
often outweighs their benefits. Therefore, recent research
created performance model generators, which can generate
such models out of Application Performance Management
software. However, a full-stack evaluation containing all rel-
evant resources of an enterprise application (Central Pro-
cessing Unit, memory, network and Hard Disk Drive) has
not been conducted to the best of our knowledge. This work
closes this gap using a pre-release version of the next gen-
eration industry benchmark SPECjEnterpriseNEXT of the
Standard Performance Evaluation Corporation as example
enterprise application, the Palladio Component Model as
performance model and the performance model generator
of the RETIT Capacity Manager. Furthermore, this work
extends the generated model with a probabilistic garbage
collection model to simulate memory allocation and releases
more accurately.

Categories and Subject Descriptors

C.4 [Performance of Systems|: measurement techniques,
modeling techniques

Keywords

Performance Evaluation, Palladio Component Model, Java,
Enterprise Applications, I/O Performance Simulation, Gar-
bage Collection Simulation

1. INTRODUCTION

Evaluating the performance of an enterprise application
(EA) requires either load testing this application or creat-

Bernhard Koch-Kemper
Helmut Krcmar
Technische Universitat Minchen
Boltzmannstr. 3
85748 Garching, Germany
{kochkemp,krcmar}@in.tum.de

ing a performance model to simulate the performance met-
rics (e.g., response times, resource utilization, throughput)
of a system. Simulations are often less cost intensive as
they do not require a full scale deployment environment
[5]. Performance models and corresponding simulation en-
gines have been introduced to the scientific community [1].
Resource profiles based on the Palladio Component Model
(PCM) have demonstrated to accurately represent the Cen-
tral Processing Unit (CPU) and network demand of EAs
[1, 3]. Resource profiles are generated using a performance
model generator, as a manual creation of such profiles often
outweighs their benefits [5]. These profiles already introduce
heap, as the most relevant aspect of memory in EAs, and
contain a Hard Disk Drive (HDD) representation [3]. How-
ever, these concepts have not been evaluated. This work
demonstrates the heap and HDD modeling and simulation
capability of resource profiles using the industry benchmark
SPECjEnterpriseNEXT"! as EA and the performance model
generator of the RETIT? Capacity Manager .

An accurate model needs to take all relevant resources
(CPU, network, memory, and HDD) into account. The gen-
eration of such a model requires to monitor a running ar-
tifact using Application Performance Management (APM)
software [8]. This data can be collected during small scale
test runs and scaled to the expected workload [3]. In this
work we use the RETIT Java EE Monitoring and extend it
with HDD demand measurements for Linux based systems.
Furthermore, the heap model of resource profiles is extended
using a young and old generation garbage collection (GC)
model and corresponding simulation to increase the correct-
ness of the heap simulation.

2. GARBAGE COLLECTION MODEL

The RETIT performance model generator already con-
tains a heap representation. This representation is based
on a simple memory model where allocated heap is imme-
diately freed when the contained objects are released [2].
The PCM entity Passive Resource is used for this purpose
[1]. Each model contains one component called Heap that
contains one Passive Resource called HeapSpace with the

!SPECjEnterpriseNEXT is a trademark of the Standard
Performance Evaluation Corp. (SPEC). The SPECjEnter-
priseNEXT results or findings in this publication have not
been reviewed or accepted by SPEC, therefore no compari-
son nor performance inference can be made against any pub-

lished SPEC result.
*http://www.retit.de/

available memory in the Java Virtual Machine (JVM) heap
space. Before and after each operation invocation an allo-
cation and free operation is called with the number of bytes
allocated or released. The values are derived from moni-
toring and represent the mean bytes used in this operation
invocation. This implementation has certain disadvantages:
(i) each JVM manages its own heap space, therefore each
JVM instance in the performance model needs a separate
Heap component (ii) the memory in a JVM is only cleaned
when GC occurs. Only after such a GC run a certain amount
of heap is freed.

We change the model in order to address the aforemen-
tioned disadvantages. Each JVM representation uses its own
Heap component representing its own heap space. We mea-
sure the mean time between different GC runs and the av-
erage number of bytes released. We distinguish between
two types of GC: young and old generation GC [6]. Even
though GC implementations may vary throughout different
JVM versions and types, these two GC types occur in most
of the GC implementations [6]. For each GC type we add an
Open Workload Scenario that calls the GC operation in the
Heap component. The inter-arrival time between these sce-
narios is the mean time between two GC runs of the same
type. The operation call has one parameter: the average
number of bytes released per GC run. The operation re-
leases the provided number of bytes in the HeapSpace. This
probabilistic approach converges the generated performance
model to the real memory management in the JVM.

3. EVALUATION

The SPECjEnterpriseNEXT industry benchmark is the
successor of the SPECjEnterprise2010 benchmark. Both are
Java Enterprise Edition (EE) applications typically used to
benchmark the performance of different Java EE application
servers. We use a pre-release version® of the SPECjEnter-
priseNEXT as example EA. This application represents an
insurance policy holder that manages car insurances. The
application consists of three different components (Insurance
Domain, Vehicle Service, Insurance Agent) as depicted in
Figure 1. Each component is deployed as one deployment
unit in one application server running in a virtual machine
(VM). Each VM has 4 CPU cores, runs the Java EE appli-
cation server Wildfly 8.1.0, the embedded database Derby
10.11.1.1, and has 8 GB of heap for the JVM. The operation
system is OpenSuse 13.2 (x86_64) and a 1 GBit/s network
connection is used for communication between the different
VMs.

The Insurance Customer Driver is based on Faban® and
executes five different business transactions on the Insur-
ance Domain server, which triggers JAX-RS® REST calls
on the other two servers [4]. We executed a measurement
run without the RETIT Java EE monitoring to minimize in-
strumentation overhead and use the results to validate our
simulation. The response times of the business transactions
were measured on the driver. CPU and heap utilization
were measured using Java Management Extensions (JMX)
and the HDD demand using IOTop®. These measurements
have been executed for 100, 120, 140 and 160 users in a 17

3version from 29.06.2015
‘http://faban.org/
Shttps://jax-rs-spec.java.net/
Shttp://guichaz.free.fr/iotop/

~VM #3

Insurance

Insurance Domain

- IAX-Rs——» Insurance Agent
Customer Driver

~VM #4

Vehicle Service
L g

Figure 1: SPECjEnterpriseNEXT deployment

min interval with 5 min ramp up and 2 min ramp down
phase. The model generation is based on a run with 100
users and activated RETIT Java EE monitoring on system-
entry-point level. The monitoring is extended to derive the
resource demand of the HDD. Therefore, the procfs” system
is used, a pseudo file system containing the read and write
bytes per thread.

To calculate the resource capacity of the HDD we use the
bonnie++ 1.97 benchmark®. For calculating the network la-
tency and bandwidth we use LMBench 3.0 [7]. The number
of CPU cores is stored in the resource environment replicas
setting for each Resource Container and the available heap
is stored in the Passive Resource of the corresponding heap
component for each JVM.

The usage model is based on an Open Workload Scenario.
The inter-arrival time per business transaction [ATgr is
calculated based on the SteadyStateTime of 600s, the total
number of calls per business transaction TotalCallspr and
the 100 users of the generation run (UsersGeneration) as
depicted in Equation 1. The number of users in the simula-
tion UsersSimulation is up-scaled from 100 to 160 users in
steps of 20.

SteadyStateTime

TotalCallsgT
UsersGeneration

IATgr =

x UsersSimulation

The inter-arrival time for the garbage collection IATgc is
calculated in a similar way. Instead of the total number
of business transactions we use the number of GC events
Total Eventsgc intercepted during the generation run as
shown in Equation 2. The calculation is conducted for each
GC type (young and old generation GC). Again, the num-
ber of users UsersSimulation in the simulation is up-scaled
from 100 to 160 users in steps of 20.

SteadyStateTime

TotalBvent - ;
S LAZVERSGC [TsersSimulation
UsersGeneration

Table 1 shows the results for 100 and 160 users. The com-
plete results are available online’. The heap simulation has
only been conducted for the Insurance Domain and the Ve-
hicle Service as the heap demand for the Insurance Agent
server is almost 0. The relative error of the heap simu-
lation is between 10.93% and 1.03%. HDD demands only

IATqe =

"https://wuw.kernel.org/doc/Documentation/
filesystems/proc.txt
Shttp://www.coker.com.au/bonnie++/
%http://download.fortiss.org/public/pmwt/SSP2015/
FullStack_EvaluationResults. (x1sx/pdf)

Table 1: Measurement and simulation results
Resource | User | Metric Insurance Domain | Vehicle Service | Insurance Agent
Measured utilization 43.80% 51.57% 46.13%
100 Simulated utilization 40.48% 48.29% 43.04%
CPU Relative error 7.58% 6.38% 6.70%
Measured utilization 70.19% 77.91% 71.73%
160 Simulated utilization 64.75% 77.25% 68.88%
Relative error 7.75% 0.85% 3.97%
Measured demand 1458.58 MB 1435.41 MB -
100 Simulated demand 1299.22 MB 1319.41 MB -
Relative error 10.93% 8.08% -
Heap
Measured demand 1360.19 MB 1304.46 MB -
120 Simulated demand 1296.29 MB 1317.88 MB -
Relative error 4.70% 1.03% -
Measured demand 0.23% 0% 0%
100 Simulated demand 0.21% 0% 0%
HDD Relative error 10.72% 0% 0%
Measured demand 0.34% 0% 0%
160 Simulated demand 0.35% 0% 0%
Relative error 0.65% 0% 0%

occur on the Insurance Domain server. Even though, the
utilization for the HDD is relative low the simulation deliv-
ers accurate results for this resource. The relative error here
is between 10.72% and 0.65%. The relative CPU utilization
error is below 10%. The utilization in the GC models im-
proves the CPU utilization simulation compared to previous
research [9]. The response time error based on the median of
simulation and measurements is between 0.16% and 51.65%
depending on the business transaction and user scale.

4. CONCLUSIONS

The improvements and extensions to the model generated
by the RETIT performance model generator prove to be ac-
curate for all resources. Even though the resource utilization
simulation is accurate, the response time error leaves room
for improvement. The parameter of a request as well as the
number of available database and server threads have im-
pact on the response time simulation. In total the response
times of the deployment are quite high, as the embedded
database is not very scalable. A setup with an dedicated
database server appears to be a better solution but requires
additional APM measurement tools or resource demand esti-
mations [9]. The probabilistic GC model delivers promising
results, however the average number of bytes could be elim-
inated as an input parameter for the GC operations. This
requires, that the actual number of bytes ready to be freed
is stored in a variable of the model. Furthermore, the cur-
rent evaluation is based on system-entry-point level. The
performance model generator of the RETIT Capacity Man-
ager provides component-level model generation which could
improve the simulation results presented in this work.

5. ACKNOWLEDGMENTS

This work has been supported by the DevOps Perfor-
mance Working Group of the Standard Performance Evalu-
ation Corporation (SPEC).

6. REFERENCES

[1] S. Becker, H. Koziolek, and R. Reussner. The Palladio
Component Model for Model-Driven Performance
Prediction. Journal of Systems and Software,

2

82(1):3-22, 2009. Special Issue: Software Performance -
Modeling and Analysis.

F. Brosig, F. Gorsler, N. Huber, and S. Kounev.
Evaluating approaches for performance prediction in
virtualized environments. In Modeling, Analysis
Simulation of Computer and Telecommunication
Systems (MASCOTS), 2018 IEEE 21st International
Symposium on, pages 404—408, Aug 2013.

A. Brunnert and H. Krcmar. Continuous Performance
Evaluation and Capacity Planning Using Resource
Profiles for Enterprise Applications. Journal of Systems
and Software, 2015, http://dx.doi.org/10.1016/j.
jss.2015.08.030.

R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

S. Kounev. Performance Engineering of Distributed
Component-Based Systems - Benchmarking, Modeling
and Performance Prediction. PhD thesis, Technische
Universitidt Darmstadt, Germany, Aachen, Germany,
2005.

P. Libi¢, L. Bulej, V. Horky, and P. Tuma. Estimating
the impact of code additions on garbage collection
overhead. In Computer Performance Engineering,
volume 9272 of Lecture Notes in Computer Science,
pages 130—145. Springer International Publishing, 2015.
L. W. McVoy, C. Staelin, et al. Imbench: Portable tools
for performance analysis. In USENIX annual technical
conference, pages 279-294. San Diego, CA, USA, 1996.
F. Willnecker, A. Brunnert, W. Gottesheim, and

H. Krcmar. Using Dynatrace Monitoring Data for
Generating Performance Models of Java EE
Applications. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering
(ICPE 2015), pages 103-104, New York, NY, USA,
2015. ACM.

F. Willnecker, M. Dlugi, A. Brunnert, S. Spinner,

S. Kounev, W. Gottesheim, and H. Krcmar. Comparing
the accuracy of resource demand measurement and
estimation techniques. In Computer Performance
Engineering, Lecture Notes in Computer Science, pages
115-129. Springer International Publishing, 2015.

