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Plasmon dispersion in layered transition-metal dichalcogenides
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Motivated by recent experiments, we perform a microscopic analysis of the dynamical charge response of
layered transition-metal dichalcogenides that display a low-temperature charge-density wave (CDW) order. In
agreement with measurements, our parameter-free results show a negative in-plane plasmon dispersion that
switches to positive slope upon electron (or hole) doping. This finding is explained by the peculiar behavior of
the intraband transitions, which are partially suppressed under doping, and it is not linked to the CDW order.
Finally, in the direction perpendicular to the layers, we predict the reappearance around the Bragg reflections of
the spectra of the first Brillouin zone, a clear effect of the crystal local-field impact. Our results give a general
picture of the collective excitations in these materials suggesting a simpler reinterpretation of the experiments.
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I. INTRODUCTION

Layered transition-metal dichalcogenides (TMDC)1 have
attracted considerable interest for the coexistence of competing
electronic orders: notably, charge-density wave (CDW) and
superconductivity. In particular, an intense debate has been
created over the years about the origin of the CDW order.2

Several explanations have been put forward: from Fermi-
surface nestings3 to van Hove singularities (saddle points) in
the density of states (DOS),4 until a recent theoretical work
that pointed to the role of electron-phonon coupling, ruling
out a pure electronic mechanism for the CDW instability.5

Moreover, similarities with cuprates, in both the competition
between CDW and superconductivity and the presence of a
pseudogap, have driven further interest in these compounds on
a fundamental level (see for example Ref. 6).

The dynamical charge-density response is a key quantity
for setting both the CDW and superconductivity orders,
because it provides the renormalization of the electron-electron
and electron-phonon interactions. Thus, its investigation is
of the utmost importance for understanding the electronic
properties of these materials. In fact, a very recent experimental
study has reported an intriguing result.7 Electron energy-
loss spectroscopy (EELS), which measures the loss function
L(q,ω) = −Imε−1

M (q,ω) (εM is the macroscopic dielectric
function and q is the momentum transfer), provides a direct
access to the dynamical response of the materials. EELS
spectra have revealed a negative dispersion of the plasmons—
the collective charge-density modes of the material—in three
prototypical TMDC (2H-TaS2, 2H-TaSe2, and 2H-NbSe2).7–9

This is in clear contrast with the expectation deriving from
the homogeneous electron gas (HEG), where the plasmon
energy, in the random-phase approximation (RPA), has a
positive parabolic dispersion: ωp(q) = ω0 + αq2, where ω0

is proportional to the square root of the carrier density and
α > 0 to the square of the Fermi velocity.10 By introducing
a macroscopic semiclassical Ginzburg-Landau model, it was
concluded that the negative dispersion in TMDC is the
consequence of the collective charge fluctuations associated

to the CDW order that are capable to reverse the positive
dispersion of the “bare” plasmons.7

Actually, negative plasmon dispersions have been demon-
strated in several other materials: from a heavy alkali metal
such as Cs11–13 to doped molecular crystals.14 In many
cases, deviations from the standard HEG behavior have been
reported.11,15–20 In fact, real metals are often far from a HEG
model with a single band and a spherical Fermi surface.
Therefore, these observations call for a microscopic analysis
of the dynamical response of the real compounds, beyond a
HEG model. This is especially true in materials like the TMDC
under study, which display multiple narrow d bands crossing
the Fermi level (EF ) with anisotropic effective masses. The
question is to quantify the impact of band structure effects in
the dynamical response of TMDC.

Thus, here we perform an ab initio calculation of the
loss function of four TMDC (those measured in Ref. 7 plus
2H-NbS2), by making use of parameter-free time-dependent
density-functional theory (TDDFT).21 We reproduce the in-
plane plasmon dispersion in agreement with experiment.7–9

Our analysis shows that the unusual dispersion in TMDC
is due to the peculiar behavior of the intraband transitions
that contribute to build the plasmon. Hence, there is no
need to invoke a coupling with the CDW order. In fact,
when intraband transitions are suppressed, e.g., by electron
doping, the dispersion becomes positive. Finally, we predict
that the loss function in the direction perpendicular to the
layers displays the reappearance around the Bragg reflections
of the spectra of the first Brillouin zone, a manifestation of the
coupling between excitations at small and large momentum
transfers.18,22

II. RESULTS AND DISCUSSION

The microscopic dielectric function ε is directly related to
the susceptibility χ :23 ε−1 = 1 + vχ (v is the Coulomb poten-
tial). In TDDFT, χ is the solution of a Dyson-like equation:
χ = χ0 + χ0(v + fxc)χ , where χ0 is the Kohn-Sham (KS)
susceptibility and fxc is the nonlocal frequency-dependent
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FIG. 1. (Color online) Calculated loss functions of the four
TMDC calculated for momentum transfers along the in-plane �K

direction.

exchange-correlation kernel, for which we use the adiabatic
local-density approximation (ALDA). When fxc = 0 the usual
RPA is retrieved. All these microscopic quantities in a solid
are matrices in reciprocal lattice vectors G. The macroscopic
dielectric function εM is given by εM (q,ω) = 1/ε−1

G,G(qr ,ω),
where q = qr + G and qr belongs to the first Brillouin zone.
The loss function L(q,ω) is −Imε−1

M (q,ω).
In Fig. 1 we show the loss function of the TMDC calculated

in RPA for different momentum transfers q along the �K

direction.24 The main peak in the spectra at ω ∼ 0.9–1.1 eV
(at q = 0.2 Å−1) is related to a zero of the real part of the
dielectric function ε1 = ReεM . Thus it is a plasmon. From our
analysis, we find that it is due to excitations between the two
narrow d bands that cross EF (in the following, we will call
them “intraband transitions”), which give rise to a peak in
ε2 = ImεM at ω ∼ 0.30–0.38 eV with q = 0.2 Å−1. The band
structure is similar in all the TMDC (see Appendix A). There
is also a third dispersive pz band that does not contribute to
this in-plane plasmon.

In all the TMDC, by increasing q, we observe a negative
shift of the plasmon peak, which looses intensity and becomes
broader, entering the particle-hole continuum. Those results
are in very good agreement with the recent experiments,7–9

in both the position and the shape of the spectral structures,
except for 2H-NbS2 where an old experiment29 measured a
positive plasmon dispersion (we will set back to this point
below). We can now address in detail the issue of under-
standing the origin of the negative dispersion of this intraband
plasmon.

Several possibilities to explain deviations from the HEG
RPA result have been put forward in the past for different
materials. Increasing the momentum transfer q may induce
the activation of dipole-forbidden interband transitions above
the plasmon energy, which in turn shifts to lower energies
the zero crossing of ε1 and hence the plasmon.12 Also crystal
local-field effects (LFE),23 which are related to induced spatial
charge fluctuations (quantified by the off-diagonal components
of ε), may alter considerably the plasmon dispersion in inho-
mogeneous materials.15–18 Finally, correlation effects beyond
RPA (i.e., for fxc �= 0) tend to reduce the plasmon dispersion.13

However, none of those effects is actually at play in the TMDC.
Increasing q, no new peaks above the plasmon energy appear
in the spectra, LFE are not relevant for in-plane q (within the
layers, TMDC are pretty homogeneous15), and also the ALDA
results (see Appendix B) are very similar to RPA.

From all these observations it would seem that the d

electrons that give rise to the plasmon in the TMDC behave
like a HEG. However, contrary to the HEG, the d bands are
narrow and not parabolic. We now show how the peculiar
properties of those bands are rightly at the origin of the negative
plasmon dispersion. By using the Kramers-Kronig relations,
we introduce12,14

D−(q,ω) = 2

π

∫ ω

0
dω′ ω

′ε2(q,ω′)
ω2 − ω′2 ,

(1)

D+(q,ω) = 2

π

∫ ∞

ω

dω′ ω
′ε2(q,ω′)

ω′2 − ω2
.

In the present case, the D− term corresponds to intraband
transitions and the D+ term to interband transitions. The fre-
quencies ωp = ωp(q) for which ε1(q,ωp) = 1 − D−(q,ωp) +
D+(q,ωp) = 0 define the plasmon dispersion. In the ab-
sence of interband transitions above ωp (like in the HEG),
D+(q,ωp) = 0. Moreover, in the HEG ε2 is proportional to
the joint density of states (JDOS): ε2(q,ω) ∝ JDOS(q,ω)/|q|2.
The presence of a wide parabolic energy band gives rise to a
sharp peak in the JDOS with strong positive dispersion with q

[see Fig. 2(a)]. In turn, D−(q,ωp) is an increasing function of q,
and the zeros of ε1 = 1 − D− are shifted to higher frequencies
progressively with q (ε1 < 0 for ω � ωp). The plasmon has a
positive dispersion. A completely different behavior is found
in the TMDC. The narrow d bands, which are flat in a wide
region of the first Brillouin zone (see Appendix A), give rise to
an intense and nondispersive peak in the JDOS [see Fig. 2(a)].
As a consequence, the D−(q,ωp) term is a decreasing function
of q. Therefore the plasmon dispersion is negative. In fact, the
consideration of oscillator strength matrix elements (ME) in
the calculation of ε does not affect this behavior. The ME have
a weak positive dispersion and decrease in amplitude with q.
Finally, higher energy interband transitions, contained in the
D+(q,ωp) term in Eq. (1), screen the intraband plasmon. This
has two main effects: (i) a redshift of the plasmon frequency
and (ii) a reduction of the negative dispersion due to the
fact that the screening becomes weaker as q increases [i.e.,
D+(q,ωp) is a decreasing function of q]. Thus, interband
transitions act to suppress the negative dispersion and switch
it to a positive slope. However, in this case, due to the large
intraband peak in ε2, interband transitions do not give a
remarkable contribution and the intrinsic negative plasmon
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FIG. 2. (Color online) (a) Joint density of states JDOS(q,ω)/|q|2
for 2H-NbSe2 (solid lines) from intraband transitions between d

bands and for an equivalent electron number for the HEG (rs = 3.73)
(dashed lines). Both are normalized to the intensity of the respective
highest peak. The JDOS of the HEG is dispersing with q, while
for 2H-NbSe2 it is not. (b) Plasmon dispersion along �M in
2H-TaSe2 (black lines) and potassium intercalated 2H-K0.64TaSe2

(red lines), normalized to the onset value at q = 0.1 Å−1. Results of
our calculations (solid lines) are compared with experimental data
(dashed lines) from Ref. 8. The negative dispersion is switched to
positive upon doping. A similar qualitative picture holds for the other
three TMDC studied in this work.

dispersion is preserved. The present analysis is general and
shows that the negative plasmon dispersion is a basic property
of the TMDC, directly related to the shape of the bands
crossing EF .

To corroborate our analysis, we simulate electron doping of
2H-TaSe2 by shifting upwards the Fermi level, according to a
simple rigid-band model. In this way, previously empty bands
are populated, suppressing intraband transitions. Due to its
intraband origin, electron (or hole) doping decreases the plas-
mon energy.30 More important for the present discussion is that
under doping the plasmon dispersion is switched to a positive
slope [see Fig. 2(b)]. In fact, under doping the spectral weight
in ε2 is transferred from the intraband towards the interband
transitions, so that the interband contribution becomes strong
enough to completely suppress the negative dispersion of the
intraband plasmon. This result is in agreement with recent
measurements on potassium-intercalated 2H-TaSe2.8 Also in
the real doped material the plasmon dispersion becomes
positive in agreement with our calculations [see Fig. 2(b)].
Moreover, this provides a hint to explain the observed positive
dispersion in 2H-NbS2.29 In that case, the sample could have
been not perfectly stoichiometric (in fact, 2H-NbS2 is unstable
during the process growth; see Ref. 8, p. 82).

Instead, rotating the momentum transfer q to be perpendic-
ular to the TMDC planes (i.e., along the �A direction), we can
now predict a different behavior (which has not been measured
yet). Here we just consider 2H-NbSe2, but the other TMDC are
similar. We find three main structures in the spectra calculated
including crystal local fields (A, B, and C in the right panel of
Fig. 3).

We first discuss the structures A and B, which are very
similar in the calculations with or without local fields (left

FIG. 3. (Color online) Loss function of 2H-NbSe2 along the �A

direction, perpendicular to the layers, up to the 4th Brillouin zone,
calculated without and with LFE (left and right panels, respectively).
The labels A, B, and C mark the main structures in the spectra as
discussed in the main text.

panel of Fig. 3).31 Both structures are plasmon excitations,
related to zeros (or minima) of ε1, located at energies around
0.16 eV (structure A) and 0.89 eV (structure B) for q =
0.04 Å−1. The structure A derives from d → d transitions
(with a peak in ε2 at 0.05 eV), and the structure B from
pz → pz and pz → d transitions at 0.2 eV. Thus, we call “d
plasmon” the former and “p + d plasmon” the latter. Contrary
to the in-plane direction, here both d and p + d plasmons
show a positive dispersion along �A. In particular, in the
absence of interband transitions the p + d plasmon has a
negative dispersion, since also in this case the JDOS does not
disperse. However, screening effects arising from interband
transitions above the plasmon frequency are strong enough to
change its slope. The d plasmon has the same nature of the
in-plane plasmon. However, now it is strongly screened by the
p + d plasmon. In fact, its positive dispersion and its increase
in intensity at small q are related to the interference with
pz → d transitions, which are absent for in-plane momentum
transfer. Interestingly, at higher q crossing the second Brillouin
zone, the dispersion of the d plasmon turns its slope becoming
negative. This result is due to the behavior of the ME of
d → d transitions, which draw back the imaginary part of
the dielectric function.

The third peak (structure C in right panel of Fig. 3) appears
at momentum transfers in the third Brillouin zone at the same
energy of the p + d plasmon (structure B), only when LFE
are taken into account. A similar effect has been found and
discussed in the case of graphite.18,22 Thus here we can follow
that analysis. We write the dielectric function at q = qr +
G0 with small qr in a 2×2 matrix approximation, similarly
to the two-plasmon-band model33 [i.e., we assume that all
off-diagonal matrix elements εG,G′(qr ,ω) are negligible with
respect to ε0,G0 (qr ,ω)]:

ε−1
G0,G0

(qr ,ω) = 1

εG0,G0 (qr ,ω)

+ εG00(qr ,ω)ε0,G0 (qr ,ω)

[εG0,G0 (qr ,ω)]2
ε−1

0,0(qr ,ω). (2)

The first term in Eq. (2) is the result that we would obtain
neglecting LFE and represents the contribution arising from
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FIG. 4. (Color online) Band structure of the four transition-metal dichalcogenides studied in this work. The labels in the top-left panel
indicate the character (at the � point) of the electronic states that give rise to the plasmon (analogously for the other materials).

independent electron-hole excitations with high momentum
transfer, being the p + d plasmon completely suppressed in
the higher Brillouin zones (see left panel of Fig. 3). The second
term, on the other hand, is related to the dielectric function
evaluated in the first Brillouin zone (where the spectrum is
dominated by the p + d plasmon) and causes the reappearance
of the spectrum ε−1

0,0(qr ,ω), weighted by a coupling term related
to the off-diagonal part of the dielectric matrix. Thus, from
Eq. (2) the effect of crystal local fields is clear: They are
responsible for the coupling between the p + d plasmon at q =
qr in the first Brillouin zone and the independent electron-hole
excitations with momentum transfer q = qr + G0 belonging
to the higher Brillouin zone identified by G0. If LFE are
strong enough and the coupling term has a weak energy
dependence, the second term becomes dominant and the
spectrum at small momentum transfer reappears in higher
Brillouin zones.16,18,22,34 This is just what happens in TMDC
when G0 = (0,0,2) (third Brillouin zone). In fact ε−1

G0,G0
(qr ,ω)

is very similar, up to a renormalization constant, to ε−1
0,0(qr ,ω).

The small difference between the two spectra arises from the
weak frequency dependence of the coupling term and from
the contribution of the other off-diagonal matrix elements
neglected in Eq. (2). Moreover, the coupling term in Eq. (2)
is zero when G0 identifies a plane in the reciprocal space
where the Bragg reflection is forbidden.18,22 In the TMDC,
Bragg reflections along the z axis are allowed only when
G0 = (0,0,2m) (with m integer). Thus, in the second Brillouin
zone when G0 = (0,0,1), the coupling term in Eq. (2) is zero
and LFE derive only from the small contribution of the other
off-diagonal matrix elements. In fact, the spectrum in the

second Brillouin zone around G0 = (0,0,1) is similar to that
obtained without LFE.

III. CONCLUSIONS

In conclusion, the onset of the CDW order at low tem-
perature is known to affect the dynamical response of the
TMDC. By changing the underlying band structure, new
electron-hole transitions appear, leading to an antiscreening of
the plasmon,30 and a concomitant increase of its bandwidth.7–9

However, our ab initio analysis has shown that the origin
of the measured negative in-plane plasmon dispersion in the
disordered phase of TMDC stems from the peculiar behavior
of the intraband transitions that give rise to the plasmon.
Therefore, there is no need to invoke an effect of the CDW
to explain it. This has allowed us to understand also why
under doping the slope of the plasmon dispersion is switched
to positive, which is verified experimentally by intercalating
2H-TaSe2 with K.8 Finally, we have predicted the plasmon
dispersion along the direction perpendicular to the layers, with
the reappearance around Bragg reflections of the plasmon of
the first Brillouin zone. Our analysis is very general and allows
a simpler reinterpretation of the experiments. We expect to find
similar results in other TMDC with narrow bands crossing EF .
Thus it represents a step forward in the understanding of this
challenging class of materials. In fact, the dynamical response
and the screening of the Coulomb interaction are essential
for describing photoemission spectra and the electron-electron
and electron-phonon renormalizations for the onset of CDW
and superconductivity.
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along the �K line evaluated in two different approximation: RPA
and ALDA.
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APPENDIX A: BAND STRUCTURES

In Fig. 4 we show the band structures calculated in LDA for
NbS2, NbSe2, TaS2, and TaSe2. They are very similar in all the
four cases. We also indicate the three bands around the Fermi
energy that determine the low-energy dynamical response of
the four materials, as discussed in the previous sections (see
also Ref. 5).

APPENDIX B: ALDA RESULTS

In Fig. 5 we compare the loss function calculated in RPA
and ALDA for NbSe2. We see that the two results are very
similar, showing that exchange-correlation effects beyond RPA
are not changing the conclusions discussed in the previous
sections.
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