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Viscoplastic Behavior and 
Moderation of an Austenitic 
Stainless Steel (17-12 SPH) at 
High Temperature (T = 600°C), 
Under In and Out of Phase Cyclic 
Tension-Torsion Loading 
The results of experiments performed on an austenitic stainless steel of the type 
316L at a temperature of 600°C are presented. The tests were made under both 
unidirectional (ID) andbidimensional (2D) cyclic tension-torsion loading, both in 
and out of phase with one (case of 2D ratchet) or two cyclic components. For the 
2D loadings, it is shown that a weak supplementary hardening AH+ appears which 
is mostly a function of the degree of phase difference <p between the strain components 
and the ratio R between the maximum amplitudes of these components. These 
observations conform qualitatively to those already reported for ambient temper­
ature but quantitatively it is shown that the maximum amplitude of this supple­
mentary hardening is a strongly decreasing function of the temperature. A simple 
phenomenological formulation is proposed which, when integrated into a unified 
viscoplastic model developed elsewhere, leads to a correct representation of the 
experimental results. 

I Introduction 
Since the advent of hydraulic tension-torsion machines ten 

years ago, experimental studies of the behavior of metallic 
materials under cyclic biaxial loadings [1-19] have developed 
significantly. Paradoxically, nearly all this work has been per­
formed at ambient temperature [1-9], [12-15], [19]. This fact 
is certainly due to the difficulty of designing and fabrication 
a high temperature extensometer. 

In the case of austenitic stainless steels [4-7], [10-19], it has 
been shown that a very significant supplementary hardening 
appears under cyclic biaxial loadings that is directly due to the 
phase difference between the components of the strain and to 
the ratio between the maximum amplitudes of these compo­
nents. However, these steels are principally used under high 
temperature conditions and it seems interesting to study what 
happens at elevated temperatures to the different properties 
related to the biaxial state and observed at ambient temper­
ature. It is thus proposed to study and model the cyclic behavior 
of this steel at 600°C for uniaxial and biaxial loadings. Since 
the effects of viscosity are present at this temperature, the 
influence of the loading rate on the stabilized state will also 
be studied. 
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II Experimental Methods 
1) The Test Samples. The test pieces are obtained from 

slices taken from a 30 mm thick sheet, hyper-quenched from 
1200°C. The microstructure is entirely austenitic and the av­
erage diameter of the grains is 45 fim. The weight composition 
of this steel is given in Table 1. 

The tension-torsion specimens have a tubular geometry. Their 
outside and inside radii are, respectively, 5 and 4 mm and they 
have a gage length of 40 mm. 

2) The Test Machines. The various biaxial tests have been 
conducted on a Schenck hydraulic tension-torsion machine 
whose maximum force and torque capacities are respectively 
63 KN and 1000 Nm. The two analogical control signals are 
delivered by a H.P. function generator which itself can be 
controlled by a micro-computer. In this way, any periodic 
signal can be generated. The command of the strain is effected 
from signals delivered by a high temperature extensometer 
directly attached to the specimen [20], 

The tension-torsion ratchet tests and certain cyclical torsion 

Table 1 Weight composition of the 17-12 Mo SPH steel 

c 
<0.03 

S P Si Mn Ni Cr Mo N B Co Cu 
< 0.001 <0.021 0.441.08412.317.542.470.0750.0010.150.175 

Ti 
< 0.005 

Nb 
0.015 

Al Ta 
0.100 — 

Fe 
Bal. 
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Fig. 1 Various cyclic loading paths in the equivalent Von-Mises strain 
space ((2/V5)<4 e£) 

tests have been performed on a controlled electrodynamic ma­
chine. 

3) The Experimental Procedure. All the tests have been 
performed at imposed total strains. For the uniaxial tests, a 
triangular signal is generated and the period is varied in a 
discrete manner in the ratio 103. For a part of the biaxial tests, 
the strain signals for the tension and torsion components are 
sinusoidal and such that: 
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Fig. 2(a) Influence 
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cyclic hardening curve. 

of the phase difference on the cyclic hardening curve 
Influence of the ratio R = (2(Lm)/(V3eLm), on the 

e'ze = e'zems\n($t->p) 

u is the angular frequency equal to 1.88 10" , which corre­
sponds to an equivalent strain rate, in the sense of Von-Mises, 
on the order of 4.8 10"5 s"'. <p is the phase difference between 
the two components and ezzm, e^m are the maximum ampli­
tudes. In order to study the respective influences of <p and of 
the ratio R = (2ejm/v3 ejw), two series of tests have been 
performed with: R - 1 and <p = 0, 25, 50, 75, 90 deg, (Fig. 
1(a)) and with: <p = 75° and R = 0, 0.25, 0.61, 1 (Fig. 1(b)). 
In addition, while conserving these characteristics, each spec­
imen has been tested with two levels of maximum strain am-

Nomenclature 
X = derivative of the variable X with respect to 

time 
bij = Kronecker delta 

H(X) = Heaviside function, H(X) = 1 if X > 0 and 
H(X) = 0 if X < 0 

(X~> = Macauley brackets, {X) = XH(X) 

Multiaxial strains: 
efj, efj, e"j = total, elastic, viscoplastic components of the 

_ strains tensors 
e" = j " = [2/3(ej-e,"))1/2, Von Mises equivalent 

strain rate 
q* = q* = SdV2/3 (e£e£)1/2rir, cumulated viscoplas-

tic deformation 
e« _ £ = e" _ £ = (2/3(eS - fy) (e& ~ Si/))"2, second 

invariant of the e - g tensor 
e" = e" = (2/3(ey e,"))1/2, Von Mises equivalent 

rin = rtr, •u 
to G 

/2/3((e,y - £j/)/e" - £). exterior normal 

Multiaxial stresses: 
ay = applied stress components 
a'u = ay = o-,j - (5jj/3)okk, deviatoric stress compo­

nents 
a = a = (3/2(ff,y<j,̂ ))1/2, Von Mises equivalent stress 

„<<> 

strain 

a = a - a = [3/2(c7,y - alj)(pu - a,y))1/2, Von 
Mises equivalent effective stress 
internal kinematical variables components (/th 
variable) 

a = a = (3/2(a,ya,y))1/2, Von Mises equivalent kine­
matic variable 

nu = ny = (V572 (ay - ay)/a - a), normal exte­
rior to the equipotentiel surfaces 

Other used symbols are defined in the text, when introduced. 
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Fig. 3 Influence of loading rate on the stress at the stabilized cyclic, 
(a) Experiments and simulations, (b) Idem for the monotonic tension 
curve. 

plitudes, successively increasing and such that a ratio of 
approximately 1.5 is maintained between the components of 
the two levels. One hundred cycles are performed at each level 
in such a way as to clearly define the stabilized state. 

The influence of an arbitrary cyclic loading, where the notion 
of phase difference is not clearly defined, has also been tested 
by using imposed cycles in the form of squares or butterflies 
with, as previously, R - 1. The waveform of the imposed 
signals is generated from ramps defining triangles and trape­
zoids (Fig. 1(c)). 

For the 2D ratchet tests, the experimental sequence consists 
in applying a weak axial tensile stress azz and in the super­
position of a cyclic torsional strain of constant amplitude Ae{e 

and for a fixed strain rate e j . This type of nonradial loading 
has the advantage of making a progressive strain appear along 
the axial direction, which can lead, as will be seen later, to 
some conclusions concerning the formulation of nonradial ef­
fects. The test parameters are such that: azz = 50 MPa, AeJ/ 

± 0.35 percent and e'z 4.6 lO^s" 

III Experimental Results 

1) Uniaxial Tests. It is well-known that austenitic stain­
less steels present, even at high temperatures, a strong cyclic 
hardening. The experimental data points reported in Fig. 2(a) 
result from tension or torsion tests with an equivalent strain 
rate of the order of 4^6 10"5 s~' and define the cyclic hardening 
curve: A5M/2 = /(Ae^/2). For the stabilized cycle, the coor­
dinates of the points A<xM/2 and Ae"M/2 are the maximum equiv­
alent stress and plastic strain in the sense of Von-Mises, 
respectively, i.e., for torsion: AoM/2 = V3 Aaze/2 and Aep

M = 
(2A/3) Ae&/2. 

In Fig. 3(a), the influence of the loading rate e j on the 

equivalent stress at the stabilized cycle (V3~ Atf$72) is repre­
sented in the case of a torsion test (1.4 10~6 < e j < 1.4 10~3 

s_1). The effects of viscosity are thus made apparent, the 
sensitivity coefficient of the stress to the strain rate, n* = 
((dA(j/2)/dhn e J ) , being positive. However, for higher loading 
rates, the slope has the tendency to change sign, this effect 
being confirmed by the results of monotonic tests obtained on 
a very similar steel [21] and reported in Fig. 3(b). At lower 
temperatures (200 < T < 500°C) and for the same series of 
loading rates, the coefficient n* is in fact negative [22-24]. 
This behavior is directly related to the Portevin-Le Chatelier 
effect and is attributed to the short distance interactions be­
tween the dislocations and the point defect configurations [23-
24], For this study, it is necessary to take into account the rate 
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Fig. 4 Test under sinusoidal sollicitations, such that <p = 75 deg and 
R = 1.05. (a) Evolution of the maximum stresses (<rSaxi "£"")as a function 
of the number of cycles N. Experiments and simulations; (b) Evolution 
of the cycles, \[Zaa = /(ei) and aa = /(e£) for the same loading. Exper­
iment and simulations; (c) Stress paths in the plane (v'Sa ,̂, <rZ2). Experi­
ment and simulation; (d) Plastic strain paths in the plane (2/V3e£,, <:£,)• 
Experiment and simulation 

effects for a precise description of the sinusoidal tests in which 
the strain rates vary in a significant manner. Note that, for 
other isotherms, this rate dependence is generally different [24]. 
Though the omission of these rate effects would lead to errors 
of only a few percent (< 5 percent) in this particular study, 
this would not be the case for anisothermal loadings where the 
rate factor is an important parameter, particularly in the neigh­
borhood of 550°C [24]. Since the modelization presented here 
is meant to be fairly general and the case of anisothermal 
loading is currently under development, the previously de­
scribed effects should not be neglected. 

2) The Biaxial Tests 
/) Case of Imposed Cyclic Strains. The simultaneous ev­

olutions of the various test characteristics are enregistered dur­
ing the hardening in both an analogical and numerical fashion. 
Three examples corresponding to an elliptical, a butterfly and 
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Fig. 5 Loading path in the form of a butterfly with R = 1.15. (a) Evolution 
of the cycles (\IZax = <(e») and aa = fc£)). Experiments and modeli-
zations. (b) Stress paths in the plane (VSu^,, crj . Experiment and simu­
lation, (c) Plastic strain paths in the plane (2/V3eS>, <£z)- Experiment and 
simulation. 

Fig. 6 Loading path in the form of a square with R = 1. (a) Evolution 
of the cycles QZaa = f(el,) and a2z = /(e£)). Experiments and modeli-
zation. (b) Stress paths in the plane (\'3(ja,, CT„). Experiment and model-
ization. (c) Plastic strain paths in the plane (2/V3«J,, e£). Experiment and 
modelization. 

a square paths are respectively presented on Fig. 4 to 6. The 
following parameters can thus be determined: 

—The maximum attained stress in each direction (<r™ax and 
o^3") as a function of the number of cycles N (Fig. 4(a)). 

—The evolution of the tension and torsion cycles, which 
allows the form of the loops for the stabilized cycles to be 
obtained (Fig. 4(b), 5(a) and 6(a)). 

—The path, for the stabilized cycles, of the components of 
the stress in the equivalent Mises plane (Fig. 4(c), 5(b), and 
Hb)). 

—The path, for the stabilized cycles, of the components of 
the plastic strain in the equivalent Mises plane (Fig. 4(d), 5(c), 
and 6(c)). The plastic strains efj(t) are determined from the 
simultaneous knowledge of the imposed total deformations 
ejj(t) and the stresses <jjj(t), hence: 

<£(0=ea(0-
--eT

ze(t) 4(0 
•oa(t)/E 

(2) 

E and G are, respectively, Young's modulus and the shear 
modulus. Thus, for the stabilized cycles and in the two equiv­
alent Mises planes, the maximum stress AaM/2 and strain Aej^/ 
2 correspond geometrically to the radii of the two smallest 
circles containing the paths. The couples AaM/2 = f(A<?M/2) 
for all the tests described precedently are reported in Fig. 2. 

In this way it is shown that a supplementary hardening due 
to the phase difference between the strain components appears, 
as it did for ambient temperature. This supplementary hard­
ening is quantified by the parameter AH+, which is equal to 
the difference between (AaM(<P, R)/2), for tp and R fixed, and 
AaM/2 for a uniaxial test (tension or torsion) for the same 
equivalent plastic strain. Figure 7 shows the influence of <p and 
R on AH+ for two levels of plastic strain (Ae^/2 = 2 10 - 3 

and 3.7 10"3). The points obtained by Murakami et al. [17] 
at 600°C on a similar steel are also reported. 

Like at ambiant temperature, AH+ is nearly zero for <p = 
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Fig. 7(a) Evolution of the parameter AH + with the phase difference v>. 
(b) Evolution of the parameter AH* with the ratio ft Experiments and 
simulations. 

0 and maximum for <p = 90 deg. In the same way, for <p fixed, 
AH is maximum for R ~ 1 (R = 2/-JI) [5-6] [12-15]. It is 
also shown that the shape of the curve conforms to those 
reported at 20°C [12] [15] and that the maximum hardening 
is nearly obtained from <p — 50° and upwards. It can be also 
shown that this hardening is totally evanescent when the phase 
difference is eliminated. For the square path, AH+ is on the 
order of the maximum hardening, which also corroborates the 
remarks made for ambient temperature [5-6], [13], [15]. In 
conclusion, it has just been shown that, qualitatively, the re­
sponses of this steel to biaxial loading are identical at 20°C 
and 600°C. However, while the maximum supplementary 
hardening is on the order of 230 MPa at 20°C for A<&/2 -
4 10 3 [12], [15], it only reaches 60 MPa at 600°C for the same 
strain amplitude. 

From a physical point of view, this supplementary hard-
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Fig. 8(a) Evolution of the progressive strain t'a with the number of 
cycles W. Experiments and modelization. (b) Evolution of the maximum 
stress <r3axwith the number of cycles W. Experiments and moderat ions. 

ening, caused by the rotation of the stresses, is certainly due 
on the one hand, to the activation of new secondary gliding 
systems favorably oriented with respect to the stress compo­
nents and, on the other hand, to the interactions between the 
different activated systems [19], [25]. However, for these steels 
the stacking fault energy is an increasing function of the tem­
perature and thus the escape by cross-slip becomes possible. 
In addition, taking into account the elevated levels of the 
developed internal stresses, the climbing escape is also possible. 
These two mechanisms, can explain the strong decrease of AH+ 

with the temperature. 

(ii) Case of Tension-Torsion Ratchet. The response of 
a material submitted to this type of loading consists in the 
appearance of a progressive axial strain er

zz (Fig. 8(a)) due to 
the axial and shear stresses and in a cyclic hardening in the 
direction of the shear component (Fig. 8(b)). It can be remarked 
that the ratchet strain is permanent and that the stress for the 
stabilized cycle corresponds in the limits of experimental ac­
curacy to the stress obtained in pure torsion. This last point 
shows the insensitivity of the non-radiality effect to the pro­
gressive strain since this weakly non-radial loading remains 
during the span of the test. The theoretical definition of the 
notion of nonradiality should take into account this property. 

IV Phenomenological Modelization 
In this section, a phenomenological formulation is proposed 

of the two principal effects described in Section III. These 
equations are then integrated into a unified viscoplastic model 
developed elsewhere and already identified at the isotherm 
600 °C for diverse monotonic and cyclic unidirectional loadings 
[23-24], [18]. The meaning of the different terms or parameters 
of the equations is given in the nomenclature. 

IV.1. Review of the Initial Formulation of the Model 
(/) The Strain Rates. The total strain tfj can be decom­

posed into two components, respectively, elastic e# and vis­
coplastic e"j. The rates of these components are such that: 

(3) 

(4) 
_____ 

E 
" g 8ij(7kk, 

2 a 
and f(a - a) 

• « o 
N(I) 

sinh -a 
_V(i) 

(5) 
o-o 

N(i) = CY+C+Y+ (6) 

e0, ao> n, C and C+ are five material constants fixed for a 
given isotherm and N(e) is a function of the scalar variables 
Y and Y+ described in the following. 

(//) The Variables of Kinematic Hardening. The kine­
matic tensor variable a,j represents the sum of the internal 
stresses induced by the interactions at different distances be­
tween the mobile dislocations and those of the substructure. 
To describe these different interaction scales, several nonlinear 
kinematic variables having different kinetics are used [24], [27-
29], hence: 

au=P«.(\ (Y*+ Y+)tU- K -4 ! ) ) ^J 

-_? m ( s inh/3(5) M 1 ) M 0 ^ ' 

AUy"S~<4 , )-42 )>^ 
; ,<D-

^ . i - y 

(a) 

>V) 
(b) 

(c) 

with the initial values, a(0) = au '(0) = aw(0) = 0. p„„ pu 

Pi, /3, Rm, M0 and M{ are material constants. It is remarked 
that the scalar variable Y* and Y+ describe the evolution of 
the asymptotic state of each of these variables. 

{Hi) The Scalar Hardening Variables Y* and Y+. Taking 
into account the ulterior developments, let Y* initially be de­
fined by Y* = Y. The scalar variables are generally introduced 
in the models to describe the cyclic properties of the materials 
and are directly related to the increase of the total density of 
dislocations. These variables depend essentially on the accu­
mulated plastic strain and can be written: 

Y=b(r3t-Y)(l"-R\Y-Y0\
Lasign(Y-Y0)) "> 

with y(0)^0 (a) 

Y+=b+(Ysat+-Y+)(H{G+)l" H8) 

~R+ I Y+ - 70
+ lLOsign(y+ - F0

+ )) 

with y+(0);*0 J 

b, b+, R, R +, i?o» and L0 are material constants and YQ, Yj 
(Eq. (9)) represent the nonrecoverable parts of Y and Y+. 

Y0 = Max(Y-(l/3)(R0/R)yL\smhf3(Maxa)m)MO/l0)) ^ 

(b) 

(b) 

y0
+ =Max( r + - (RQ/R+)WL0(smhP(Maxo?)m)m 1 

F"" given by Eq. (12) is a partial memorization function of 
the largest plastic strain and H(G+) is defined by Eq. (10). 
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(iv) Memorization Function of the Plastic Deformation. 
For these steels, the amplitude of the cyclic hardening depends 
essentially on the amplitude of the imposed strain, in other 
words, that the asymptotic value J*"" of variable Y depends 
on the amplitude of the strain [18], [30].'This effect is mo-
delized by postulating the existence of non-hardening surfaces 
G and G+ expressed in the strain space [28], [30-32]: 

G = e " - £ - ? < 0 , and G+=ev-q*<0 (10) 

The evolution of the center S-y and the radius q of the surface 
G are given by: 

^vHiGXntjn^l" _ 1 (a) 

iij = ^/2{{l~ri)H(G)<nijnl>n*jt
v)) {b) 

The variable q governs the growth of the saturation value y™', 
so: 

ysat = £sal ( ysat _ ysat } g w h h ysa t ( ( ) ) ^ Q ( j 2 ) 

As was remarked earlier, the precise modelization of the rate 
effects (n* 5 0) requires that the interaction phenomena be­
tween dislocations and point defects be taken into account. 
Toward this end, a phenomenological approach is presented 
resulting from an experimental study of the yield point return 
after aging under stress [23], [24]. This step being accom­
plished, the predictions of the model can be compared to the 
out of phase test results and new improvements can eventually 
be proposed. 

IV.2 Modelization of the Rate Effects. Even though there 
exist significant agreement in attributing the physical origin of 
a negative loading rate sensitivity to the dislocation-point-de­
fect interactions, the phenomenological approach has para­
doxically received very little attention [23], [37-39] and requires 
a brief elucidation. In the temperature domain 20-700°C, it 
has been possible to identify five elementary mechanisms of 
short distance interaction which contribute in an additive man­
ner to the global material hardening [23], [36-40]. In the gen­
eral context of internal variable models, a scalar component 
y ( , ) can be attributed to each interaction (i), which is governed 
by the following equation: 

y(/) = -y ' )y ( / ) 7» +
y »- y ' with ,-e[lj 5] (13) 

TSN 

In this equation, for a given interaction, pu) is a constant, 
TSN the thermally activated relaxation time intrinsic to the in­
teraction under consideration, and Y(i)<x> its efficiency func­
tion. This equation predicts, in agreement with experience a 
first order time hardening, exponentially evanescent with the 
strain. The stabilized regime of this equation (YM = 0) is a 
decreasing function of the strain rate. These interactions are 
closely related to the spatial distribution of the cluster of point 
defects in the stress field of the dislocations and are thus a 
function of the density of the latter represented by the scalar 
variable Y. It remains then to relate this variable to the inter­
action spectrum which is a function of the total fraction of 
reoriented atoms yc, hence: 

Y* = F(l +7cVc) with yc= ^ YU) and fc[l, 5] (14) 
(0 

where yc is a constant. In the kinematic variable Eqs. (7), the 
variable Y* is given by Eqs. (14) and in general, Y* ^ Y. For 
the isotherm 600°C, there is only one active interaction, that 
is to say, / = 1 in Eq. (14) [37], In this case, this new for­
mulation introduces only four supplementary parameters. 

Figure 3 shows the predictions of the model vis-a-vis the rate 
effects for cyclic and mono tonic loadings. The agreement is 
satisfactory and it is shown that a maximum can be obtained 

resulting from antagonistic effects of the normal viscosity (n* 
> 0) and the interactions («* < 0). Note that the sensitivity 
coefficient n* is correctly modeled as negative at lower tem­
peratures (200 < T < 550°C) for the same range of loading 
rates, while for 20 and 650°C it is positive [24] [37]. 

IV.3 Modelization of the Out of Phase Tests. As might 
be expected, an examination of the model predictions with 
respect to the non-proportional effects (Fig. l(a, b), curves 1) 
shows that the supplementary hardening AH+ cannot be cor­
rectly handled. A light softening is even obtained (AH~ < 0) 
due to the noncolinearity between the three kinematical com­
ponents. 

In the case of 2-D ratchet, the progressive axial strain is 
significantly overestimated while the cyclic hardening along 
the shear component is only slightly overestimated (Fig. 8, 
curves 1). In order to correct these defaults, it is necessary, to 
define a new parameter related to the state of non-propor­
tionality. 

(0 Description of the 2-D Ratchet. For this type of load­
ing, it is clearly shown [18] that the progressive strain is due 
to a flow normal to the equipotential surfaces kinematically 
translated in the stress space. Thus, acting on the position of 
the kinematic variables by the intermediary of the evanescent 
terms, the flow direction and as consequence the amplitude of 
the progressive strain can be modified. Toward this end, Burlet 
and Cailletaud [41] have introduced the notion of radial eva­
nescence and this leads to the shakedown at the end of a certain 
number of cycles. Following this idea, the kinematic variable 
off (Eq. (7c)), which controls the evolution of a# can be re­
defined in the form [42]: 

<*f=Pife Y* ±o- (M/> + (l-SH.oifnu)nu)l
uJ (15) 

For 5 = 0, there is a radial evanescence, while 5 = 1 results 
in the normal evanescence described by Eq. (7c). In the uni­
directional case, for any value of 5, the well known nonlinear 
kinematic hardening relation is obtained. In the present state 
of the model with 5 = 0.02, it is shown (Fig. 8, curves 2) that 
the progressive strain and the evolution of the cyclic hardening 
are perfectly described. 

(ii) Description of the Imposed Strain Tests. The new 
definition of offi also affects the model's response to cyclic 
out of phase loadings and accentuates the defaults mentioned 
earlier, notably that a parameter AH~ < 0 (Fig. 7, curves) is 
obtained. However, it is remarked that the forms of the dif­
ferent stress and plastic strain loops are qualitatively described 
fairly well, and only the intervention of a homothetic factor, 
as a function of the phase difference, would be able to describe 
the experimental reality. This observation tends to show that 
the introduction of a new scalar quantity which is a function 
of the phase difference should be sufficient [15], [43]. A scalar 
variable Ye is thus introduced, representing the increase in 
density of the dislocations due to the activation of secondary 
systems, and allowing the redefinition of the variable Y*, such 
that: 

Y* = (Y+Y,)(l+yje) (16) 

Thus, the amplitude of the supplementary hardening is also a 
function of the loading rate. This hypothesis seems physically 
acceptable but remains to be verified by studying experimen­
tally the influence of the strain rate on the parameter AH+. 
It should be noted that the unanimity is realized in terms of 
the introduction of a scalar function in order to describe the 
effects of nonradiality [8-9], [11-12], [14-15]. The definition 
of a phase difference parameter 6, such that 0 < f(d) < 1 for 
0 < <p < 90 deg is much too ambiguous and no agreement 
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has come out of the totality of the works. In fact, for a non-
radial loading, a tensor quantity Xy is out of phase, on the 
one hand, with its own derivative Xy and, on the other hand, 
with the other tensor quantities Zy and their derivatives Zy. It 
is thus possible to define a set of angles d. Among these dif­
ferent possibilities, several tensor products have been proposed 
[11-12], [15], [44 + 46]. 

The choice of a particular angle can only be made from a 
correlation between the predictions obtained using different 
angles and the experimental results coming from the complex 
loading sequences. However, a decisive result presented by 
Benallal et al. [45], which agree with the results obtained in 
2-D ratchet, is the indifference, as soon as a sufficient plastic 
strain is accumulated, of the stress paths in the equivalent Mises 
plane to the effects of the average strain, the other parameters 
being identical. It is recalled that this type of behavior has 
already been observed in this steel of uniaxial loadings; the 
relaxation of the average stress being total [47]. This obser­
vation allows the elimination of certain angles which are sen­
sitive to the average strain. 

In the present case, the procedure consists in systematically 
calculating, for the three type of non-radial loadings, (circular 
paths with and without average strain and 2D ratchet loading), 
all the possible angles and to compare them to the properties 
of these loadings in terms of the non-radiality. Following this 
correlation, only a few possible angles remain, notably: 

Table 2 Values of the model parameters (units s ' and 
Nm - 2) 

* = cos or -zf — 

in addition to those defined by the cross-combinations (o^ay, 
ay'oy). These two last possibilities can be eliminated as they 
are very close and symmetric with respect to the earlier solu­
tions. Note that, only the 2D ratchet eliminate the (nyny) pos­
sibility. 

Only two angles remain which are defined by the applied 
stresses au, the internal stresses ay, and their derivatives ay, 
bty. This conclusion is in agreement with those of Bodner [44] 
and Benallal et al. [45]. The angles 6 having been chosen, the 
kinetics of the variable Ye (Eq. (16)), which integrates the 
variations of this angle for a given cycle, can be written: 

Ye = be( n a t / (0 ) - Ye)J
v, with Y,(0) = 0 and 

0 = c o s - # ^ o r ^ (17) 

For the choice of f(d) two approaches are then possible: 
either the hardening deficit (AH~) and excess (AH+) are treated 
globally by the function f(fi) (model 1), or these two effects 
are treated separately, that is to say, first correct the effects 
due to the noncolinearity of the kinematical variables which 
is a function of the parameter <5, then use f(B) to describe the 
hardening effects (model 2). These two approaches will be 
successively presented: 

Model 1: While respecting the conditions evoked earlier, 
the function f(8) can be empirically chosen in the form: 

f(d) = l-\cosd\"e (18) 

This function allows the form of the evolution of AH+ with 
respect to the phase difference to be adjusted by the inter­
mediary of the exponent ng (Fig. 7, curves 3). 

This formulation (Eqs. (17) and (18)) introduces only three 
supplementary parameters, be, Yf' and ne. However, since the 
deficit hardening is a function of the parameter <5, the coef­
ficients Yf' and ne are not independent of the choice of this 
parameter. 

Model 2: With the aid of simple geometric considerations, 
it can be shown that AH~ is approximately given by: 

E=1.45 10" 
y = 0.3 

e0/(<T0*)" = 2.7 10-23 

rt = 2.2 
C=0.17 
C + =0.08 

A„ = 104 , 
p , = 1.8 103 

p 2 = 3.5 102 

5 = 0.02 
R,„ = 8 102 

(3 = 4 10 - ' 
M , = 2 
M0 = 4 
«,/0) = 0 

b = l 
6+ = 10 
R = l 10-34 

« + = 10"22 

R0 = 4.7 10-9 

L0 = 3.5 
7(0) = 3.64 10' 

U». = 3 lO"2 

isa, = 120 
yS ' -n io' 
r a l + = 18.6 10' 
ra ,(0)=7 io' 

/ J ( 1 ) = 1 0 0 

T S M 
J*" = 0.116 10' 
7c=l 10 - ' 

Model (1) 
be = b = 7 
r8

a' = 4.70 10' 
«„ = 0.7 

Model (2) 
b, = b = l 
Yfl = 2A 10' 
n0=l 

Elasticity (Eq'. (4)) 

State equation (Eqs. 
(5), (6)) 

Kinematical variables 
(Eqs. (7), (15)) 

Scalar variables Y, Y+ 

(Eqs. (8) and (9)) 

Memorization functions 
(Eqs. (11), (12)) 

Scalar interaction variable 
(Eqs. (13), (14)) 

Scalar nonradiality vari­
able (Eqs. (17) to (20)) 

F ^ 1 / A / T = y(3 - I cos/31 - A / 3 + COS2/3), with cos/3 = ^ %, 
a ay ' 

and this for the maximum value of the variable a during the 
cycle. By distributing the weight of the hardening deficit in an 
identical fashion on the three kinematical components and by 
introducing it into the variable Y which describes the asymp­
totic state of each kinematical variable, a new definition of Y 
can be expressed as: 

Y=b(ratg*W) -Y)[e"-...] with 

I cos/31 + V 3 + cos2/3) 
(19) 

a* is the maximum of the equivalent a during a cycle. In this 
way it can be shown that independently of the phase difference 
and the parameter 8, nearly the same cyclic consolidation curve 
can be obtained. The supplementary hardening AH* is then 
described by the function/(0) such that: 

/(0) = 1 - Icosfll, (IdemEq. (18) w i th« 9 =l ) (20) 

This formulation (Eq. (17), (19), (20)) introduce only two sup­
plementary parameters be and Yf1. The totality of the model 
is constituted of the Eqs. (3) to (18) (model 1) or (3) to (17) 
and (19-20) (model 2) and its possibility are presented in Figs. 
4 to 9. The calculations have been made with be = b and cos 
6 = (ay/ay)/(ay/a), and the values of all the parameters are 
reported in Table 2. Figure 9 gives the simulation results of 
performed tests, which allows to draw the cyclic hardening 
curves (calculus with the model 1) and to deduce the evolution 
of AH+ with respect to <p and R (Fig. 7, curves 3 for the model 
1, and curves 4 for the model 2). Globally, the agreement is 
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Fig. 9(a) Moderation of the influence of the phase difference on the 
cyclic hardening (AOM/2 = f(Ae„/2)). (b) Moderation of the effect of the 
parameter R on the cyclic hardening curve (Aa,J2 = f(Ae^J2)). 

satisfactory, especially considering that the experimentals er­
rors reported in Fig. 7, due to the weakness of the supple­
mentary hardening are not negligeable. AH+ is a slightly 
increasing function of the amplitude ACM/2, which has not 
been observed experimentally. However, for lower tempera­
tures, this dependence is clearly evident [15], [17] and its ab­
sence in the present study is due to the incremental technique 
that has been employed which can make a light softening 
appear under the second strain level. The results of the sim­
ulations for the three presented tests, are plotted in Figs. 4, 5, 
and 6. It is seen that globally the agreement is good. It is 
possible to take into account the significant decrease of A.H+ 

with the temperature by taking Ff' as a decreasing function 
of the temperature [48]. 

The simulations of 2-D ratchet with the non-radiality effect 
are reported in Fig. 8 (curves 3) and are nearly identical to 
those conducted earlier (curves 2), giving a global agreement. 

The simulations show the capability of the present model to 
describe the observed effects. It can be noted that the for­
mulation is part of a more general context of internal variable 
models [49] which have been widely developed since nearly 
fifteen years [12], [23], [28], [32], [44], [46], [50]. Though these 
models are structurally similar, namely having a state equation 
and evolutionary equations containing kinematical and iso­
tropic hardening variables with Bailey-Orowan type kinetics, 
this is not true of the number or the details of these equations 
[50]. 

The originaly in the present formulation, in the context of 
viscoplasticity with time effects, resides in the wide diversity 
of phenomena which can be described [23], [48], namely the 
effects related to the viscosity (monotonic tests at different 
rates, creep, relaxation), to time (recovery or hardening with 
time, depending on the isotherm under consideration) and to 
the cyclic loadings (uniaxial with or without a holding time at 
the maximum of cycles, prestrain memory effects, supple­
mentary hardening due to out of phase muitiaxiai loadings). 

The final objective of a detailed description of this material 
for different isotherms is to describe its behavior under cyclic 
anisothermal loadings, with one or two mechanical compo­
nents, over a wide range of temperatures (20-650°C), and 
where all the terms can be activated successively [51-53]. More­
over, this material presents some memory effects which depend 
on its temperature history. 

The two modules presented in this article have been devel­
oped with these remarks in mind and integrated into a relatively 
complex behavior law developed in previous works [23], [24], 
[48]. 

V Conclusions 

The influences to the loading rates on the unidirectional 
cyclic behavior and of the nonradiality of the loadings on the 
bidirectional cyclic behavior, have been presented for an aus-
tenitic stainless steel at 600°C. In addition, several results are 
reported of tension-torsion ratchet tests, a weakly non-radial 
tests where one of the stress components is fixed. 

A new phenomenological formulation is proposed taking 
into account the effects of loading rate, nonproportionality, 
and progressive strain. This formulation can be integrated in 
modular form into a unified viscoplastic model developed else­
where. The simulations obtained after integration of the iden­
tified model conform globally to the experimental observations. 
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Second Asia Pacific Conference on Materials Processing, 

to be held in Singapore 18 to 20 January 1994 

The National University of Singapore, Nanyang Technological University and Applied Research Cor­
poration, are pleased to announce the holding of the second event in this conference series. As for the first 
conference, the scope of the event will cover (i) the processing of metals, ceramics, fibre-reinforced materials, 
composites and polymers, by: sheet, bulk and powder forming; material-removal processes; forming in the 
melt or near-melt condition; any other relevant process; along with (ii) relevant areas of materials technology 
and metallurgy, together with (iii) computer applications in areas such as process modeling, computer-aided 
design of equipment and processes, and the development of expert systems for materials processing. Papers 
dealing with the processing of materials but falling out with the above scope can still be considered. In 
particular, papers dealing with the practical rather than with the fundamental or theoretical aspects of 
materials processing are invited from the industrial sector. 

The Conference Proceedings will once again be a typeset special issue of Journal of Materials Processing 
Technology. Prospective authors should submit a 300-word abstract as soon as possible, the completed paper 
to be submitted to ARC not later than 30 June 1993. 
Contact: Secretariat, Asia Pacific Conference on Materials Processing, Applied Research Corporation, 
Engineering Block E4-04-11, National University of Singapore, Kent Ridge Crescent, Singapore 0511. Tel: 
(65) 7755822. Fax: (65) 7730924. TIx: RS 38806 UNIARC. 
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