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Abstract 

Non-linear rod dynamics is the focus of research in many engineering areas such as structural, 

aerospace and petroleum engineering as well as multibody dynamics. Also in non-classical areas 

such as biomechanics, micro- and nano-mechanics, geometrically exact formulations for rod 

dynamics are of importance. Rod formulations can be distinguished in regard to the basic kinematic 

assumption underlying the formulation. In the so-called Timoshenko-type beams, shear effects are 

taken into account and so rotational degrees of freedom describing the rotation of the cross section 

are considered. These are highly non-linear in nature. In contrast the Euler-Bernoulli assumption of 

zero shear deformation can be carried over into the non-linear regime resulting in displacement-

only formulation but with highly non-linear expressions for the strain tensor incorporating higher 

gradients. In either formulation, the integration of the time dependent equations is challenging. It 

has been recognised that energy conservation is key for stable integration in long term dynamics.  

The so-called energy-momentum methods is a class of integrators, which, by design, conserve the 

momentum, angular momentum and the energy in the discrete case, if the same conservation 

properties are present in the continuous case. While for the Timoshenko beam some progress has 

been made and specific energy-momentum methods are known in the literature, the same is not true 

far the higher-gradient beam formulation of the Bernoulli beam.  

In this paper, we are going to develop a unified formulation of an energy-momentum integration 

scheme for both geometrically exact Bernoulli and Timoshenko beams. We will show that the 

stable integration in either case is achievable with excellent results. Further important novel aspect 

of the models are the full incorporation of the rotational inertia. A range of applications from 

structural dynamics to flexible multibody dynamics will show the excellent performance of the new 

energy-momentum integration scheme. 

Keywords:  Non-linear dynamics, Computational method, Euler-Bernoulli rod, Timoshenko rod, 

Energy-momentum method, Multi-body dynamics. 

Introduction 

Dynamics of beam as well as in many new emerging areas of applications such as nano, bio 

mechanics, remains a very active topic of research. In the geometrically exact beam theories, a 

popular approach is the one so-called Timoshenko kinematics which still makes use of the 

assumption of planar cross sections in the deformed configurations but allows for shear to be 

considered by dropping the assumption that the vector normal to the centre line remai ns normal 

after the deformation [Ibrahimbegovic and Fray (1993); Iura and Iwakuma (1991)]. An example is 

the formulation of Simo and Vu Quoc [Simo and Vu-Quoc (1986)] which is based on a previous 

intrinsic formulation by Reissner [Reissner (1972)]. The Timoshenko type beam is well known to 

be suitable for short beams, sandwich composite beams and high-frequency excitation beams. On 

the contrary, in many applications, we desire to have a displacement-only formulation for example 
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in mechanisms, nano and bio mechanics where the Euler-Bernoulli model is the best choice dispite 
of the complexities involved due to the kinematics assumptions.  

 

Beside the kinematics descriptions and the strain measures, the time integration of the dynamical 

equations has also been the focus of research for decades. It is now generally accepted that classical 

time integration methods such as Newmark, standard midpoint r ule do suffer severe shortcomings   

[Newmark (1959); Chung and Hulbert (1993)]. Especially the lack of stability is a major issue. It 

has been soon recognized that the conservation of energy is the key for the stability of the time 

integration scheme. Moreover, an efficient  time integrator so-called energy-momentum method has 

been developed which conserves not only the energy but also the momentum and the angular 

momentum of the system. This method can provide good accuracy and stability in long-term 

dynamics. The first attempt to an energy-momentum method was proposed by Simo and Tarrow 

[Simo and Tarnow (1993)] but this algorithm is only valid for quadratic-nonlinearities. The method 

has many applications in Timoshenko beams but the treatment of rotation is anything but trivial, 

especially when it comes to incorporate the inertial term. Due to the highly complex non-linearity as 

a result of the kinematics assumptions, such this formulation is not as common for Euler -Bernoulli 

beam model.  

 

In this paper, we aim to develop an energy-momentum integration scheme for geometrically exact 

Bernoulli and Timoshenko beams. Numerical examples will be provided to show the excellent 

performance of the method. 

Kinematics, dynamics equation and finite discretization 

Euler-Bernoulli beam model and kinematics description 

Let       , with    denoting the real numbers, define a reference configuration of the body. 

Without loss of generality we want to identify the reference configuration with the body itself. The 

actual configuration is denoted by      . We assume that our body is thin in two dimensions 

such that it is rod-like with a cross section A at the reference configuration. The material particles 

are identified by their position vectors    , the corresponding placement at the actual 

configuration by     . A deformation is a map        , the gradient of which defines the 

deformation gradient   
  

  
. We want to restrict ourselves to plane deformations and assume that 

the deformation lies in the       plane. For any material point in the cross section a suitable 

curvilinear coordinate system which we consider to be convected, is then given by the triple       .  
z is the coordinate in the direction of the normal vector in the cross section. The relation holds 

 

                                                                   (1) 

 

where         is the placement of the central line at the reference configuration. Correspondingly,  

   
   

  
  is a tangent vector. Similarly, we can introduce   

  

  
     

  

  
|
   

    
  

  
  The triple  

         defines a local curvilinear bases. The relations also hold 

          | |           
 

| |
     (2) 

where   denotes the cross product of vectors, a dot denotes the scalar product of vectors. The 

corresponding tangent vectors at the deformed configuration are defined as (      ) with    
 |       is the normal vector in the deformed configuration and 
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To derive the rod theory we adopt the Bernoulli hypothesis which assumes rigid cross sections and 
that the deformation can be completely characterized by the assumption      

  

                                             (4) 

 

where      is the displacement at the curvilinear coordinate  .   
In the context of an in-plane Bernouilli beam, the right Cauchy deformation tensor has only one 

single non-trivial component which is     which reads 

      (    
         )  (    

         )    (5) 

where  a comma denotes a derivative. With   
 

 
      as the Green strain tensor, one is then left 

with one sigle non-trivial component     which is given by (the term in    can be neglected since 

our thickness of the beam is small compared to its length) 

               
 

 
         (    (        )          )   (6) 

By defining     as the axial strain,   as the change of curvature, their expressions read   

              
 

 
(       )                    (7) 

                        (    
    )          

.                     (8) 

Timoshenko beam model and kinematics description 

Timoshenko beam model and Bernoulli one differ only in the assumption about the cross section 

which is still rigid but no longer perpendicular to the central line. Therefore, the kinematics should 

be described differently. The triple           defines the local curvilinear bases,   is the normal 

vector to the tangent space of the rod.   is given by the relation        . Altogether, the 
relations hold 

                                                              (9) 

Where   is a function of s and determines the angle closed between    and  . Accordingly, the 
displacement field is defined by 

       
Furthermore, one has         and correspondingly we obtain            .  

We consider now a rotational field          , where       is a group of orthogonal tensors with 

positive determinant. Since we remain in plane        , the rotation vector is fixed to vector    . 
Therefore, we obtain the following expression of the rotation tensor 

 

                                             
 

We denote the corresponding axial vector by  . To get the strain measures, we apply the direct 
method of a Cosserat line. Accordingly, we get the first Cosserat deformation tensor (the stretch 

tensor)       , the second Cosserat strain tensor        . Because the Cosserat is 

assumed to be one-dimensional and in-plane deformation, we can write down       as follows  

           ,                 ,          , where the expressions of the 
components are defined as 

                                                (10) 

                                                (11) 

                        (12) 
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In this model, the shear deformation is included in this model and is not assumed to be zero. 

Dynamics equations 

Starting from Hamilton Principle for our conservative mechanical system, the dynamics equation 

for our Bernoulli beam is written down as follows 

 

  ∫   ̈       
 

   ∫  ̈      
 

 ∫                    
 

 
 ∫             

 

 
 

          | 
                     (13) 

 

where   is Young's Modulus of the material,   is external force and   is external moments, I is the 

moment of inertia of the section and L is the length of the beam,   is the material density. 
The dynamics equation for Timoshenko beam has the following form  

 

  ∫   ̈       
 

   ∫  ̈    
 

 ∫ [            
       

  
     

       

  
   

  ̃   

  
   

 
      

  
  ]    ∫             

 

 
           | 

                (14) 

where   and   is the force and strain vectors respectively,   is the stored energy,  ̃  is the 

complementary energy related to the strains   using Legendre transformation in order to avoid 

locking phenomena and construct robust finite elements.  

 

Regarding to finite element approach in the Bernoulli case, given the fact that second derivatives 

are present in the equations (a result of the Bernoulli hypothesis), the finite element formulation 

must exhibit continuous first derivatives. Hence, we resort, within a finite element context to 

interpolation functions defined by cubic Hermite polynomials.  For Timoshenko model, the finite 

element will be of hybrid type, a two-node elements with linear kinematical fields and constant 

force   (normal and shear components) is considered.  

Energy-momentum time integration scheme 

After the spatial discretisation via the finite element method, the numerical approach is completed 

by devising a step-by-step time integration scheme for the time dependent equations. Classical 

implicite schemes like the Midpoint rule or Newmark method have been very popular in the 

structural dynamics community. However while these are stable integration methods in the linear 

regime, they proved less so in the highly non-linear one, especially in long-term dynamics. They 

suffer from numerical instabilities like blow-ups as well documented in the literature [Bathe (1997); 

Sansour et al. (1997); Sansour et al. (2004)]. Energy-momentum methods proved to provide here 

the necessary stability. In what follows we will develop such a method tailored to our rod 

formulation. However, so far no such formulation was attempted for the Bernoulli beam because of 

the complexities involved in the kinematic assumptions. In the following we want to develop for the 

first time such an Energy-momentum method. In doing so, we resort to an idea developed in 

[Sansour et al. (1997); Sansour et al. (2004)]. The method described there is attractive because it is 

independent of the involved non-linearity, the source of problem in the presently considered beam. 

The starting point, however is the standard midpoint rule. From step n, where all kinematical fields 

and velocities are known, we need to find these quantities at time step n+1, Consider   to be a scalar 

which defines any position within the time interval   , with      . We start with the following 

expressions: 
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                 ,    (15) 

 ̇    
       

  
      (16) 

 ̈    
       

  
      (17) 

Where   is an open parameter. The first defines a convex set, the following two are true for some 

value of  . The midpoint rule corresponding to      . 
 

The key step is to employ strain velocity fields to define the strain fields. Let us consider the 

following velocity fields: 

   ̇   ̇       
      ̇  .    (18) 

 ̇  (
  

    
  ̇   

  

     
  ̇   )      (19) 

Given the strain field defined at time n, the strain field at step n+1 then defined as following:  

              ̇
  

 

 

                    (20) 

              ̇
  

 

 

         (21) 

Specifically for ξ=1, the relations hold  

             ̇
  

 

 

         (22) 

             ̇
  

 

 

          (23) 

This time integration scheme is proved formally and numerically to be stable and which conserve 

the energy, the momentum and the angular-momentum for a dynamic nonlinear system in long-

term, some example are provided in the next section.  

Numerical example 

Example 1: Flying beam 

In the first example, to investigate not only the conservation of energy but also of momentum and 

angular momentum, we consider a flying beam without support, the beam is depicted in Fig. 1 The 

loading increases linearly to a peak and decreases at the same rate to zero, Fig. 2. We run t he 

calculation for one million time steps with         .  
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Table 1.  Parameters      

   

   Parameters                  symbol                value                  

 

  Beam length           L        3m 

  Length                1.5m 

  Cross section area             A                         200     

  Cross section inertia          I               66.67     

  Young’s modulus              E                         0.2E12 Pa 

  Density                      ρ   48831Kg/   
  Number of elements    4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Loading history 

Figure 3: Energy history Figure 4: Momentum history 

Figure 1: Beam figure 
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The Energy history is depicted in Fig. 3, while Fig. 4 and Fig. 5 reflect the linear momentum and 

angular momentum, respectively. In both figures not only the absolute value but also the 

components of the mentioned quantities are considered. Conservation is valid for the momentum 

and the angular momentum vector. Some deformations of the beam in space are captured in Fig. 6 

which shows not only that the beam experiencing high deformation but also large overall 

displacement (24m at t≈1.4s). 

Example 2: Chaotic motion of shallow arch 

In this example, we investigate a chaotic motion of an arch. The arch configuration is given in 

Fig.~\ref{shaar}. From the configuration it can be seen that the arch is shallow and indeed can 

undergo a snap-through phenomena.  

We consider here a system with a velocity-dependent damping with damping parameter D=2.5E-3 

Ns/m. The system is subjected to a time-dependent concentrated force at its center of the form 

            ,        Hz , F = 800N. The excitation can be modified either by changing 

its amplitude or its frequency. 

 
Parameters: 

 

Length        
Height h = 1.53 cm 

Thickness t= 1 cm 

Young’s modulus E=0.2E12 Pa 

Density                    Number of elements = 10 

Time increment:              Number of time steps = 3E6 
 

Figure 5: Angular momentum history Figure 6: Beam motion snapshots 

Figure 7: Shallow arch 
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Fig. 8 shows the phase space which plots the displacement against the velocity of the midpoint on 

the arch at each time step. The Poincaré section is presented in Fig.9. Those graphs show that the 

motion is chaotic which means long-term calculation is applicable. 

Conclusion 

A new time integration scheme has been presented for in-plane geometrically exact beam 

with/without rotational degree of freedom. The results showed an excellent performance of the 

method in term of accuracy and stability.  
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Figure 8: Phase space Figure 9: Poincaré section 


