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Abstract

We study the asymptotic behavior of a class of second order neutral delay differential equations by both a spectral pro-
jection method and an ordinary differential equation method approach. We discuss the relation of these two methods
and illustrate some features using examples. Furthermore, a fixed point method is introduced as a third approach to
study the asymptotic behavior. We conclude the paper with an application to a mechanical model of turning processes.
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1. Introduction

Neutral delay differential equations arise from a variety of applications including control systems, electrodynam-
ics, mixing liquids, neutron transportation and population models. In the qualitative analysis of such systems, the
stability and asymptotic behavior of solutions play an important role. In 1973, Driver, Sasser and Slater [4] studied
asymptotic behavior, oscillation and stability of first order delay differential equations with small delay using an ap-
proach based on an ordinary differential equation (ODE) method. The key idea of the ODE approach is to transform
the differential equation into a lower order equation by using a real root of the corresponding characteristic equation.
Following this approach as presented in [4], a number of papers appeared in which the asymptotic behavior, oscil-
lation and stability for first (or second or higher) order (neutral) delay differential equations, and integro-differential
equations with unbounded delay as well as for delay difference equations were studied, see [9, 13, 14, 15, 12]. A
disadvantage of this ODE approach is that it does not lead to explicit formulas for the reduced lower order equations.

In 2003, by using spectral theory, Frasson and Verduyn Lunel [5] presented a new approach to study the asymptotic
behavior of neutral delay differential equations, the so-called spectral projection method.

In this paper it is our intention to compare the two approaches. We discuss their relations by studying asymptotic
behavior of a class of second order neutral delay differential equations. We obtain that under the same assumptions,
the ODE approach is equivalent to the spectral approach (see Section 4). However, the spectral approach has some
advantages, since the conditions for the spectral method are weaker than those needed for the ODE method, as is
illustrated by Example 4.7, and the asymptotic behavior of neutral delay differential equations can be presented by a
general formula (see Theorem 2.5). Furthermore, by using the spectral approach, we can also study the asymptotic
behavior of neutral delay differential equations with matrix coefficients.
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We consider a specific class of second order neutral delay differential equations of the following form
x′′(t) + cx′′(t − τ) = p1x′(t) + p2x′(t − τ) + q1x(t) + q2x(t − τ),

x(t) = φ(t), −τ ≤ t ≤ 0,
(1)

where c, p1, p2, q1, q2 ∈ R, τ > 0, the initial function φ is a given continuously differentiable real-valued function on
the initial interval [−τ, 0].

Such neutral delay differential equations arise, for example, in the study of interconnected oscillatory systems
described by a system of linear hyperbolic partial differential equations. Here the motion of each of the individ-
ual oscillatory systems is described by a boundary condition and the interconnection is given by a travelling wave.
Generally, such systems can be transformed into delay equations involving delays in the highest derivative, see [9].
Furthermore, neutral delay differential equations serve as population models in the sense that they can be interpreted
as special cases of the standard Gurtin-MacCamy model for a population structured by age with birth and death rate
depending on the total adult population, see [8].

Equation (1) is a general second order neutral differential equation with constant coefficients, where all delays in
the delayed terms are assumed to be equal and the coefficient in front of x′′(t) is assumed to be nonzero and scaled to
1. The second order equation is rich enough to illustrate the analysis of equations of order higher than one and simple
enough to allow for a clear comparison of different approaches.

A special case of system (1) is a retarded delay equation, i.e.,

x′′(t) + ax′(t) + bx(t − r) + cx(t) = 0, a, b, c ∈ R, r > 0, (2)

which is often called a delayed oscillator, is well-studied in applications. It appears, for example, as the basic govern-
ing equation of the regenerative model of machine tool chatter. We illustrate a third approach, based on a fixed point
method, to study the asymptotic behavior of such equations.

The organization of this paper is as follows. In Section 2, the spectral approach is introduced and used to study
the asymptotic behavior of the solutions of (1). In Section 3, the ODE approach is introduced to study the asymptotic
behavior of solutions of (1). In Section 4, both approaches are analysed by investigating a number of examples.
Finally, in Section 5, we present an approach based on the fixed point method and use this approach to study the
asymptotic behavior of (2). As an application, a mechanical model of turning processes is presented in Section 6.

2. Asymptotic behavior by spectral approach

Let C = C([−τ, 0],Cn) denote the Banach space of continuous functions endowed with the supremum norm. From
the Riesz representation theorem it follows that every bounded linear mapping L : C → Cn can be represented by

Lϕ =
∫ 0

−τ

dη(θ)ϕ(θ),

where η(θ), −τ ≤ θ ≤ 0, is an n×n-matrix whose elements are of bounded variation, normalized so that η is continuous
from the left on (−τ, 0) and η(0) = 0, shortly, η ∈ NBV . For a function x : [−τ,∞) → Cn, we denote by xt ∈ C the
function xt(θ) = x(t + θ), −τ ≤ θ ≤ 0 and t ≥ 0.

An initial value problem for a linear autonomous neutral functional differential equation (NFDE) is given by the
following relation 

d
dt Dxt = Lxt, t ≥ 0,

x0 = φ, φ ∈ C,
(3)

where D : C → Cn is continuous, linear and atomic at zero, L : C → Cn is linear and continuous and, both operators
are respectively, presented by

Lϕ =
∫ 0

−τ

dη(θ)ϕ(θ), Dϕ = ϕ(0) −
∫ 0

−τ

dµ(θ)ϕ(θ),
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where η, µ ∈ NBV([−τ, 0],Cn×n), and µ is continuous at zero. See Hale and Verduyn Lunel [9] for a detailed informa-
tion.

For the second order neutral functional differential equation (1), let y(t) = x′(t), then (1) can be written in the form{
x′(t) = y(t),
y′(t) + cy′(t − τ) = p1y(t) + p2y(t − τ) + q1x(t) + q2x(t − τ).

If X(t) =
(

x(t)
y(t)

)
, then we have

X′(t) +CX′(t − τ) = EX(t) + FX(t − τ), (4)

where

C =
(

0 0
0 c

)
, E =

(
0 1
q1 p1

)
and F =

(
0 0
q2 p2

)
.

By taking µ(θ) = C, for θ ≤ −τ, µ(θ) = 0, for θ > −τ, and η(θ) = −F, for θ ≤ −τ, η(θ) = 0, for −τ < θ < 0, η(θ) = E,
for θ ≥ 0, (1) can be written in the form (3).

Throughout this paper, a continuous real-valued function x defined on the interval [−τ,∞) is said to be a solution
of the initial value problem (1) if x satisfies (1) in the mild sense, see Lemma 2.1. It is well known (see [4]) that for
any given initial function φ, there exists a unique solution of the initial value problem (1).

Given the solution x(φ) of the initial value problem (3), the solution operator T (t) : C → C is defined by the
relation

T (t)φ = xt(.; φ), t ≥ 0.

Lemma 2.1. (Hale and Verduyn Lunel [9]) The solution operator T (t) is a C0-semigroup on C with infinitesimal
generator  D(A) =

{
φ ∈ C| dφdθ ∈ C,D

dφ
dθ = Lφ

}
Aφ = dφ

dθ

(5)

Lemma 2.2. (Hale and Verduyn Lunel [9]) If A is defined by equation (5), then σ(A) = Pσ(A) and λ ∈ σ(A) if and
only if λ satisfies the characteristic equation det4(λ) = 0, where

4(λ) = λI −
∫ 0

−τ

λeλθdµ(θ) −
∫ 0

−τ

eλθdη(θ), (6)

where Pσ(A) denotes the point spectrum of A.

It is well known that there is a close connection between the spectral properties of the inifinitesimal generator A
and the characteristic matrix 4(λ) given by (6). In particular, the geometric multiplicity dλ is equal to the dimension
of the null space of 4(z) at z = λ, and the algebraic multiplicity mλ is equal to the multiplicity of z = λ as a zero of
det4(λ) = 0. Furthermore, the generalized eigenspace at λ is given by

Mλ = N(λI − A)kλ ,

where kλ denotes the order of z = λ as a pole of 4(z)−1. See Lemma 2.1 on page 263 of [9].

Lemma 2.3. (Hale and Verduyn Lunel [9]) For any λ in σ(A), the generalized eigenspaceMλ(A) is finite dimensional
and there is an integer k such thatMλ(A) = N((λI − A)k) and we have a direct sum decomposition

C = N((λI − A)k) ⊕ R((λI − A)k).
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From the spectral theory [9, 3], it follows that the spectral projection onto Mλ(A) along R((λI − A)k) can be
represented by a Dunford integral

Pλ =
1

2πi

∫
Γλ

(zI − A)−1 dz, (7)

where Γλ is a small circle such that λ is the only singularity of (zI−A)−1 inside Γλ. In the following, the main results of
the explicit representation of asymptotic bahavior of neutral functional differential equations in Frasson and Verduyn
Lunel [5] is introduced.

Definition 2.4. An eigenvalue λd is called a dominant eigenvalue of A, if there exists a ε > 0, such that if λ is another
eigenvalue of A, then Reλ < Reλd − ε.

Theorem 2.5. (Frasson and Verduyn Lunel [5]) Let A be given by (5), if A has a simple and dominant eigenvalue λd,
then there exists positive numbers ε and M such that

‖e−λd tT (t)φ − Pλdφ‖ ≤ Me−εt,

and

lim
t→∞

e−λd tT (t)φ = eλd ·

[
d
dz

det4(λd)
]−1

adj4(λd)K(λd)φ.

Furthermore, if x(t) = x(·, φ) denotes the solution of (3) with initial data x0 = φ, then

lim
t→∞

e−λd t x(t) =
[

d
dz

det4(λd)
]−1

adj4(λd)K(λd)φ,

where adj4(λd) denotes the matrix of cofactors of 4(λd),

K(λd)φ = Dφ +
∫ 0

−τ

(λddµ(θ) + dη(θ))eλdθ

∫ 0

θ

e−λd sφ(s) ds.

Now, we use this approach to study the asymptotic behavior of (1). Let the initial condition associated with (4) be
given by

X0 =

(
φ
φ′

)
∈ C([−τ, 0],R2),

The characteristic matrix corresponding to (4) is given by

4(z) = zI + ze−τzC − E − Fe−τz =

(
z −1

−q1 − q2e−τz z + cze−τz − p1 − p2e−τz

)
,

so the characteristic equation is det4(z) = z2 + cz2e−τz − (p1 + p2e−τz)z− q2e−τz − q1. If there exists a simple dominant
zero λd of the characteristic equation det4(z) = 0, by Theorem 2.5, we have

lim
t→∞

e−λd tX(t)

= lim
t→∞

(
e−λd t x(t)
e−λd ty(t)

)
=

[
d
dz

det4(λd)
]−1

adj4(λd)K(λd)φ

=

 λd+cλde−τλd−p1−p2e−τλd

β(λd)
1

β(λd)
q1+q2e−τλd

β(λd)
λd
β(λd)

  φ(0)
φ′(0) + cφ′(−τ) +

∫ 0
−τ

(p2 − cλd)e−λd(s+τ)φ′(s) ds +
∫ 0
−τ

q2e−λd(s+τ)φ(s) ds

 .
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It follows that

lim
t→∞

e−λd t x(t) =
1

β(λd)

(λd + cλde−τλd − p1 − p2e−τλd )φ(0) + φ′(0) + cφ′(−σ)

+

∫ 0

−τ

(p2 − cλd)e−λd(s+τ)φ′(s) ds +
∫ 0

−τ

q2e−λd(s+τ)φ(s) ds

,
where β(λd) = 2λd + (2cλd − cτλ2

d − p2 + p2τλd + q2τ)e−τλd − p1 , 0.

The next theorem gives a result similar to Theorem 2.5, in case that the real dominant eigenvalue is not simple.

Theorem 2.6. (Frasson [7]) Let λd be a real dominant zero of det4(z) of geometric multiplicity n ≥ 1. If x(t) = x(t; φ)
denote the solution of (1) with initial data x0 = φ, then the large time behaviour as a function of the initial data φ is
described as follows.
1. If Pλdφ , 0, then

lim
t→∞

1
tm e−λd t x(t) = qm(n, λd, φ),

where m = max{ j ∈ 0, 1, 2, ...n − 1 : q j(n, λd, φ) , 0}, q j is given by

q j(n, λ, φ) =
1
j!

n−1∑
k= j

Dn−1−kK(λ)
(n − 1 − k)!

Dk− j
1 H(λ, φ)
(k − j)!

.

Furthermore, for integer n ≥ 1, the n − th Fréchet derivative of H(λ, φ) with respect to the first variable is given by

Dn
1H(z, φ) = (−1)n+1n

∫ r

0
dµ(θ)

∫ θ

0
τn−1e−zτφ(τ − θ) dτ + (−1)nz

∫ r

0
dµ(θ)

∫ θ

0
τne−zτφ(τ − θ) dτ

+(−1)n
∫ r

0
dη(θ)

∫ θ

0
τne−zτφ(τ − θ) dτ.

2. If Pλdφ = 0, then

lim
t→∞

e−λd t x(t) = 0.

3. An ODE approach to asymptotic behavior

In this section, we use an ODE method to study the asymptotic behavior of the initial value problem (1). An esti-
mate of solutions is established. As a consequence of this result, the sufficient conditions for stability, the asymptotic
stability and instability of the trivial solution are presented.

The characteristic equation of (1) is

λ2 + cλ2e−λτ = p1λ + p2λe−λτ + q1 + q2e−λτ, (8)

which is obtained by seeking solutions of the form x(t) = eλt for t ≥ −τ.
Suppose λ0 is a real solution of the characteristic equation (8). It turns out that (1) then reduces to the first order

neutral delay differential equation

z′(t) + ce−λ0τz′(t − τ) + (2λ0 − p1)z(t) + (2cλ0 − p2)e−λ0τz(t − τ) = (p1λ0 + q1 − λ
2
0)

∫ 0

−τ

z(s + t) ds. (9)

With (9), we associate the equation

µ + (cµ + 2cλ0 − p2)e−τ(λ0+µ) + 2λ0 − p1 − (p1λ0 + q1 − λ
2
0)

∫ 0

−τ

eµs ds = 0, (10)
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which is said to be the second characteristic equation, and it is obtained from (9) by seeking solutions of the form
z(t) = eµt for t ≥ −τ.

Now, we present a proposition, which plays a crucial role in obtaining Theorem 3.2. This proposition essen-
tially estabishes a transformation (via a solution of the characteristic equation (8)) of the second order neutral delay
differential equation (1) into the first order neutral delay differential equation (9).

Proposition 3.1. Suppose λ0 is a real root of the characteristic equation (8), and let

β(λ0) = 2λd + (2cλ0 − cτλ2
0 − p2 + p2τλ0 + q2τ)e−τλ0 − p1.

Suppose that β(λ0) , 0, then a continuous real-valued function x defined on the interval [−τ,∞) is the solution of the
initial value problem (1) on [0,∞) if and only if z defined by

z(t) = e−λ0t x(t) −
K(λ0, φ)
β(λ0)

for t ≥ −τ, (11)

is the solution of the neutral delay differential equation (9) with the initial condition

z(t) = e−λ0tφ(t) −
K(λ0, φ)
β(λ0)

f or − τ ≤ t ≤ 0, (12)

where x(t) = φ(t) on [−τ, 0] and

K(λ0, φ) = φ′(0) + (λ0 − p1)φ(0) + cφ′(−τ) + cλ0φ(−τ) − p2φ(−τ) − (p1λ0 + q1 − λ
2
0)

∫ 0

−τ

e−λ0 sφ(s) ds.

Proof. Let x be the solution of the initial value problem (1) for t ≥ 0 with x(t) = φ(t) for −τ ≤ t ≤ 0. Define

y(t) = e−λ0t x(t) for t ≥ −τ.

Using the fact that λ0 is a real root of the characteristic equation (8), we have for every t ≥ 0,

[y′(t) + ce−λ0τy′(t − τ) + (2λ0 − p1)y(t) + (2cλ0 − p2)e−λ0τy(t − τ)]′ = (p1λ0 + q1 − λ
2
0)y(t)

+(p2λ0 + q2 − cλ2
0)e−λ0τy(t − τ) (13)

with the initial condition satisfies

y(t) = e−λ0tφ(t) for − τ ≤ t ≤ 0. (14)

By integrating (13), and using the initial condition (14), we have

y′(t) + ce−λ0τy′(t − τ) + (2λ0 − p1)y(t) + (2cλ0 − p2)e−λ0τy(t − τ) = (p1λ0 + q1 − λ
2
0)

∫ 0

−τ

y(s + t) ds + K(λ0, φ) (15)

for all t ≥ 0, where K(λ0, φ) is defined as in Proposition 3.1.
Now we suppose that β(λ0) , 0 and define

z(t) = y(t) −
K(λ0, φ)
β(λ0)

, for all t ≥ −τ,

by the definition of β(λ0), we obtain that y satisfies (15) if and only if z satisfies (11) for all t ≥ 0. Moreover, the initial
condition (14) is equivalent to (12).

An estimate of the solution of initial value problem (1) will be given in the following theorem.
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Theorem 3.2. Suppose λ0 is a real root of the characteristic equation (8), and let β(λ0) and K(λ0, φ) be defined as in
Proposition 3.1. Suppose that β(λ0) , 0, let µ0 be a real root of the characteristic equation(10), and set

γ(λ0, µ0) = 1 + ce−(λ0+µ0)τ − τ(cµ0 + 2cλ0 − p2)e−(λ0+µ0)τ − (p1λ0 + q1 − λ
2
0)µ−2

0 (µ0τe−µ0τ + e−µ0τ − 1).

Define

H(λ0, µ0, φ) = φ(0) + cφ(−τ) + (p1λ0 + q1 − λ
2
0)

∫ 0

−τ

eµ0 s
∫ 0

s
e−(λ0+µ0)uφ(u) du ds

−(cµ0 + 2cλ0 − p2)e−(λ0+µ0)τ
∫ 0

−τ

e−(λ0+µ0)sφ(s) ds

−
K(λ0, φ)
β(λ0)

1 + ce−λ0τ + (p1λ0 + q1 − λ
2
0)µ−2

0 (1 − e−µ0τ − µ0τ)

−(cµ0 + 2cλ0 − p2)µ−1
0 (1 − e−µ0τ)e−(λ0+µ0)τ

.
We assume that the real roots λ0 and µ0 have the following property

χλ0,µ0 = |c|e
−(λ0+µ0)τ + τ|p1 − µ0 − 2λ0| + µ

−2
0 (µ0τ + e−µ0τ − 1)

∣∣∣p1λ0 + q1 − λ
2
0

∣∣∣ < 1.

Then for any φ ∈ C([−τ, 0],R), the solution x of (1) satisfies∣∣∣∣∣e−(µ0+λ0)t x(t) − e−µ0t K(λ0, φ)
β(λ0)

−
H(λ0, µ0, φ)
γ(λ0, µ0)

∣∣∣∣∣ ≤ M(λ0, µ0; φ)χλ0,µ0 ,

where

M(λ0, µ0; φ) = max
−τ≤t≤0

∣∣∣∣∣∣∣e−µ0t

e−λ0tφ(t) −
K(λ0, φ)
β(λ0)

 − H(λ0, µ0; φ)
γ(λ0, µ0)

∣∣∣∣∣∣∣,
for all t ≥ 0.

Proof. Note that µ0 = 0 is a root of (10) if and only if 2λ0 − p1 + (2cλ0 − p2)e−τλ0 − (p1λ0 + q1 − λ
2
0)τ = 0, from the

definition of β(λ0), we obtain that if zero is a root of (10) if and only if β(λ0) = 0. Hence, if we assume that β(λ0) , 0,
then we always have µ0 , 0.

From the assumption that |χλ0,µ0 | < 1, we conclude γ(λ0, µ0) > 0. Suppose that x is the solution of the initial value
problem (1) with x(θ) = φ(θ) for −τ ≤ θ ≤ 0, by Proposition 3.1, the fact that x is the solution of the initial value
problem (1) is equivalent to the fact that z is the solution of the delay differential equation (11) which satisfies the
initial condition (12). Set

w(t) = e−µ0tz(t) for t ≥ −τ,

then by using the fact that µ0 is a real root of the characteristic equation (10), we obtain, for every t ≥ 0,

[w(t) + ce−(λ0+µ0)τw(t − τ)]′ = (p1 − µ0 − 2λ0)w(t) − (cµ0 + 2cλ0 − p2)e−(λ0+µ0)τw(t − τ) (16)

+(p1λ0 + q1 − λ
2
0)

∫ 0

−τ

eµ0 sw(s + t) ds,

and the initial condition satisfies

w(t) = e−(µ0+λ0)tφ(t) − e−µ0t K(λ0, φ)
β(λ0)

for − τ ≤ t ≤ 0. (17)
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By integrating (16) and using the initial condition of (17), we obtain

w(t) + ce−(λ0+µ0)τw(t − τ) = (p1 − µ0 − 2λ0)
∫ t

t−τ
w(s) ds

+(p1λ0 + q1 − λ
2
0)

∫ 0

−τ

eµ0 s
∫ s+t

t−τ
w(u) du ds + H(λ0, µ0; φ), (18)

for all t ≥ 0, where H(λ0, µ0; φ) is defined in Theorem 3.2.
Define

v(t) = w(t) −
H(λ0, µ0; φ)
γ(λ0, µ0)

for all t ≥ −τ,

then by the definition of γ(λ0, µ0) in Theorem 3.2, we obtain that the fact that w satisfies (18) is equivalent to the fact
that v satisfies the following equation

v(t) + ce−(λ0+µ0)τv(t − τ) = (p1 − µ0 − 2λ0)
∫ t

t−τ
v(s) ds + (p1λ0 + q1 − λ

2
0)

∫ 0

−τ

eµ0 s
∫ s+t

t−τ
v(u) du ds, (19)

for all t ≥ 0. Moreover, the initial condition is equivalent to

v(t) = e−(µ0+λ0)tφ(t) − e−µ0t K(λ0, φ)
β(λ0)

−
H(λ0, µ0; φ)
γ(λ0, µ0)

, f or − τ ≤ t ≤ 0. (20)

Define

M(λ0, µ0; φ) := max
−τ≤t≤0

∣∣∣∣∣e−(µ0+λ0)tφ(t) − e−µ0t K(λ0, φ)
β(λ0)

−
H(λ0, µ0; φ)
γ(λ0, µ0)

∣∣∣∣∣ .
In view of (20), we have

|v(t)| ≤ M(λ0, µ0; φ), for − τ ≤ t ≤ 0.

We will next show that M(λ0, µ0; φ) is also a bound of v on the whole positive half line. For this purpose, we take an
arbitrary ε > 0 and claim that |v(t)| < M(λ0, µ0; φ) + ε for t ≥ −τ. Indeed, suppose that there exists a point t0 > 0 such
that

|v(t)| < M(λ0, µ0; φ) + ε, for − τ ≤ t < t0, and |v(t0)| = M(λ0, µ0; φ) + ε. (21)

Then by (19) and the definition of χλ0,µ0 , we have

M(λ0, µ0; φ) + ε = |v(t0)|

≤ |c|e−(λ0+µ0)τ|v(t0 − τ)| + |p1 − µ0 − 2λ0|

∫ t0

t0−τ
|v(s)| ds + |p1λ0 + q1 − λ

2
0|

∫ 0

−τ

eµ0 s
∫ s+t

t0−τ
|v(u)| du ds

≤ (M(λ0, µ0; φ) + ε)
(
|c|e−(λ0+µ0)τ + τ|p1 − µ0 − 2λ0| + µ

−2
0 (µ0τ + e−µ0τ − 1)

∣∣∣p1λ0 + q1 − λ
2
0

∣∣∣)
= (M(λ0, µ0; φ) + ε) χλ0,µ0 < M(λ0, µ0; φ) + ε,

and we arrive at a contradiction. This implies that our claim is true and since ε is arbitrary, it follows that |v(t)| ≤
M(λ0, µ0; φ) for t ≥ −τ. Together with (19), we arrive at

|v(t)| ≤ |c|e−(λ0+µ0)τ|v(t − τ)| + |p1 − µ0 − 2λ0|

∫ t

t−τ
|v(s)| ds + |p1λ0 + q1 − λ

2
0|

∫ 0

−τ

eµ0 s
∫ s+t

t−τ
|v(u)| du ds,

≤ M(λ0, µ0; φ)
(
|c|e−(λ0+µ0)τ + τ|p1 − µ0 − 2λ0| + µ

−2
0 (µ0τ + e−µ0τ − 1)

∣∣∣p1λ0 + q1 − λ
2
0

∣∣∣)
= M(λ0, µ0; φ)χλ0,µ0 < M(λ0, µ0; φ),

for all t ≥ 0. This implies

|v(t)| =

∣∣∣∣∣∣e−(µ0+λ0)t x(t) − e−µ0t K(λ0, φ)
β(λ0)

−
H(λ0, µ0; φ)
γ(λ0, µ0)

∣∣∣∣∣∣ ≤ M(λ0, µ0; φ)χλ0,µ0 ,

for all t ≥ 0. This completes the proof of Theorem 3.2.
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By using the result of Theorem 3.2, we will give the asymptotic behavior of the solution of initial value problem
(1) in the following Theorem.

Theorem 3.3. Suppose λ0 and µ0 are real roots of the characteristic equations (8) and (10), respectively. Consider
γ(λ0, µ0) and χλ0,µ0 as in Theorem 3.2. Then for any φ ∈ C([−τ, 0],R), the solution x of initial value problem (1) with
x(θ) = φ(θ) for −τ ≤ θ ≤ 0 satisfies

lim
t→∞

e−(µ0+λ0)t x(t) − e−µ0t K(λ0, φ)
β(λ0)

=
H(λ0, µ0; φ)
γ(λ0, µ0)

,

where K(λ0, φ), β(λ0),H(λ0, µ0; φ), γ(λ0, µ0) are given in Proposition 3.1 and Theorem 3.2 respectively.

Proof. By the definition of x, y, z,w and v, we have to prove that

lim
t→∞

v(t) = 0.

From Theorem 3.2, one can show by induction that v satisfies

|v(t)| ≤ M(λ0, µ0; φ)(χλ0,µ0 )n for all t ≥ nτ − τ. (22)

Since 0 ≤ χλ0,µ0 < 1, thus from (22), it follows that v tends to zero as t → ∞.

Definition 3.4. The trivial solution of (1) is said to be stable if for any t0 ∈ R and any ε > 0, there exists δ = δ(t0, ε) > 0
such that ‖xt0‖ < δ implies |x(t)| < ε for t ≥ t0. The solution is said to be asymptotically stable if it is stable and for
any t0 ∈ R and any ε > 0, there exists a δa = δa(t0, ε) > 0 such that ‖xt0‖ < δa implies limt→∞ x(t) = 0.

As a consequence of Theorem 3.2 and Theorem 3.3, we have the following stability criterion.

Theorem 3.5. Let λ0 and µ0 be real roots of the characteristic equations (8) and (10), and let β(λ0), χλ0,µ0 , γ(λ0, µ0)
be defined as in Proposition 3.1 and Theorem 3.2 respectively, and satisfy the conditions in Theorem 3.2. Then for
any φ ∈ C([−τ, 0],R), the solution x of (1) with x(θ) = φ(θ) for −τ ≤ θ ≤ 0 satisfies

|x(t)| ≤
kλ0

|β(λ0)|
N(λ0, µ0; φ)eλ0t +

 hλ0,µ0

|γ(λ0, µ0)|
+

1 + Kλ0 eµ0

|β(λ0)|
+

hλ0,µ0

|γ(λ0, µ0)|

χλ0,µ0

N(λ0, µ0; φ)e(λ0+µ0)t,

where

kλ0 = 1 + |c| + |λ0 − p1| + |c||λ0| + |p2| + |p1λ0 + q1 − λ
2
0|τ,

eµ0 = max
−τ≤t≤0

{e−µ0t},

hλ0,µ0 = 1 + |c| + |p1λ0 + q1 − λ
2
0|µ
−2
0 (1 − e−µ0τ − µ0τe−µ0τ) + |cµ0 + 2cλ0 − p2|τe−(λ0+µ0)τ

+
kλ0

|β(λ0)|

[
1 + |c|e−λ0τ + |p1λ0 + q1 − λ

2
0|µ
−2
0 (µ0τ + e−µ0τ − 1)

+|cµ0 + 2cλ0 − p2||µ
−1
0 (1 − e−µ0τ)|e−(λ0+µ0)τ

]
,

N(λ0, µ0; φ) = max
{

max
−τ≤t≤0

|e−λ0tφ(t)|, max
−τ≤t≤0

|e−(λ0+µ0)tφ(t)|, max
−τ≤t≤0

|φ′(t)|, max
−τ≤t≤0

|φ(t)|
}
.

Furthermore, the trivial solution of (1) is stable if λ0 ≤ 0, λ0+µ0 ≤ 0; it is asymptotically stable if λ0 < 0, λ0+µ0 < 0;
and it is unstable if µ0 > 0, λ0 + µ0 > 0.

Proof. From Theorem 3.2, it follows that

e−(µ0+λ0)t |x(t)| ≤
|K(λ0, φ)|
|β(λ0)|

e−µ0t +
|H(λ0, µ0; φ)|
|γ(λ0, µ0)|

+ |M(λ0, µ0; φ)|χλ0,µ0 ,
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where K(λ0, φ),H(λ0, µ0, φ),M(λ0, µ0; φ), β(λ0), γ(λ0, µ0), χλ0,µ0 are defined as in Theorem 3.2 respectively. From the
representation of K(λ0, φ), H(λ0, µ0, φ) and M(λ0, µ0; φ) we have

|K(λ0, φ)| ≤ kλ0 N(λ0, µ0; φ), |H(λ0, µ0, φ)| ≤ hλ0,µ0 N(λ0, µ0; φ),

|M(λ0, µ0; φ)| ≤

1 + Kλ0 eµ0

|β(λ0)|
+

hλ0,µ0

|γ(λ0, µ0)|

N(λ0, µ0; φ).

Hence, it follows that

e−(µ0+λ0)t |x(t)| ≤
kλ0

|β(λ0)|
e−µ0tN(λ0, µ0; φ) +

hλ0,µ0

|γ(λ0, µ0)|
N(λ0, µ0; φ) +

1 + Kλ0 eµ0

|β(λ0)|
+

hλ0,µ0

|γ(λ0, µ0)|

N(λ0, µ0; φ)χλ0,µ0 ,

which yields

|x(t)| ≤

 hλ0,µ0

|γ(λ0, µ0)|
+

1 + Kλ0 eµ0

|β(λ0)|
+

hλ0,µ0

|γ(λ0, µ0)|

χλ0,µ0

N(λ0, µ0; φ)e(λ0+µ0)t +
kλ0

|β(λ0)|
N(λ0, µ0; φ)eλ0t (23)

for t ≥ 0. Next, we consider three cases to discuss the stability of the trivial solution.
Case 1. We suppose that λ0 ≤ 0, λ0 + µ0 ≤ 0, then eλ0t ≤ 1, e(λ0+µ0)t ≤ 1. Define ‖φ‖ = max−τ≤t≤0 |φ(t)|, it is not

difficult to obtain that ‖φ‖ ≤ N(λ0, µ0; φ). From (23), we have

|x(t)| ≤
[

kλ0

|β(λ0)|
+

(
1 +

Kλ0 eµ0

|β(λ0)|

)
χλ0,µ0 + (1 + χλ0,µ0 )

hλ0,µ0

|γ(λ0, µ0)|

]
N(λ0, µ0; φ), (24)

for every t ≥ 0. Define

ρ :=
kλ0

|β(λ0)|
+

(
1 +

Kλ0 eµ0

|β(λ0)|

)
χλ0,µ0 + (1 + χλ0,µ0 )

hλ0,µ0

|γ(λ0, µ0)|
.

For any ε > 0, we choose δ = ερ−1 such that N(λ0, µ0; φ) < δ, since ‖φ‖ ≤ N(λ0, µ0; φ), we obtain that ‖φ‖ ≤ δ. From
estimate (24), we obtain |x(t)| ≤ ρN(λ0, µ0; φ) < ρδ = ε. This implies the trivial solution of (1) is stable.

Case 2. We suppose that λ0 < 0, λ0 + µ0 < 0. From estimate (23), it follows that limt→∞ x(t) = 0. Hence, the
trivial solution of (1) is asymptotically stable.

Case 3. Let µ0 > 0, λ0 + µ0 > 0. If the trivial solution of (1) is stable, then there exists a number l = l(1) > 0 such
that, for any φ ∈ C([−τ, 0],R) with ‖φ‖ < l the solution x of (1) with x(θ) = φ(θ) for −τ ≤ θ ≤ 0 satisfies |x(t)| < 1 for
t ≥ 0. Define

φ0(t) = e(λ0+µ0)t − eλ0t for t ∈ [−τ, 0].

By definition of K(λ0, φ) and H(λ0, µ0, φ), and using the relation of (8) , we have that K(λ0, φ0) = −β(λ0) and
H(λ0, µ0, φ0) = γ(λ0, µ0). Let φ ∈ C([−τ, 0],R) be defined by φ = l1

‖φ0‖
φ0 with 0 < l1 < l. From Theorem 3.3,

we have

lim
t→∞

e−(µ0+λ0)t x(t) − e−µ0t K(λ0, φ)
β(λ0)

=
H(λ0, µ0; φ)
γ(λ0, µ0)

. (25)

On the other hand,

lim
t→∞

e−(µ0+λ0)t x(t) − e−µ0t K(λ0, φ)
β(λ0)

= lim
t→∞

e−(µ0+λ0)t x(t) +
l1
‖φ0‖

e−µ0t = 0,

but

H(λ0, µ0; φ)
γ(λ0, µ0)

=
(l1/‖φ0‖)H(λ0, µ0; φ)

γ(λ0, µ0)
=

l1
‖φ0‖

> 0.

This is a contradiction to (25) and this shows that the trivial solution of (1) is unstable.
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4. Discussion of the two approaches

For the initial value problem (3), we first consider the scalar case C = C([−τ, 0],R). The characteristic equation
∆(z) is given by (6). Define the auxiliary function χ : C→ [0,∞) by

χ(z) =
∫ 0

−τ

(1 − θ|z|)
∣∣∣ezθ

∣∣∣ dV(µ)(θ) +
∫ 0

−τ

(−θ)
∣∣∣ezθ

∣∣∣ dV(η)(θ), (26)

where V(µ)(θ) denotes the total variation function of µ on [−τ, θ] for each θ in (−τ, 0].

Theorem 4.1. (Frasson [6]) Suppose that z0 ∈ C is a zero of det∆(z) in (6). If χ(z0) < 1, then z0 is a simple dominant
zero of ∆(z).

Combining this result with Theorem 2.5, we arrive at

Theorem 4.2. Let x(·) be the solution of (3) subjected to the initial condition x0 = φ ∈ C([−τ, 0],R). If λd is a real
zero of characteristic equation ∆(z) given by (6) such that χ(λd) < 1, where χ(·) is given by (26), then the asymptotic
behavior of x(·) is given by

lim
t→∞

e−λd t x(t) =
1

H(λd)
K(λd)φ,

where

H(λd) = 1 −
∫ 0

−τ

eλdθ dµ(θ) −
∫ 0

−τ

θeλdθ (λddµ(θ) + dη(θ)),

K(λd)φ = Mψ +

∫ 0

−τ

(λd dµ(θ) + dη(θ))eλdθ

∫ 0

θ

e−λd sψ(s) ds.

On the other side, by using the ODE approach (see [15]), we arrive at the same conclusion as in Theorem 4.2.
This means that in this case the spectral approach is equivalent to the ODE appraoch.

Example 4.3. 
x′(t) + cx′(t − σ) = ax(t) + bx(t − τ),

x(t) = φ(t), −τ ≤ t ≤ 0.
(27)

The characteristic equation of (27) is

∆(λ) = λ(1 + ce−λσ) − a − be−λτ. (28)

By applying the ODE approach, Kordonis, Niyianni and Philos [12] obtained the following theorem.

Theorem 4.4. ([12]) Let λ0 be a real root of characteristic equation (28) with the property
|c|(1 + |λ0|σ)e−λ0σ + |b|τe−λ0τ < 1, then for any φ ∈ C([−τ, 0],R), we have

lim
t→∞

e−λ0t x(φ; t) =
L(λ0; φ)

1 + γ(λ0)
,

where

γ(λ0) = c(1 − λ0σ)e−λ0σ + bτe−λ0τ,

L(λ0; φ) = φ(0) + cφ(−σ) − cλ0e−λ0σ

∫ 0

−σ

eλ0 sφ(s) ds + be−λ0τ

∫ 0

−τ

eλ0 sφ(s) ds.
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On the other hand, if λ0 is a real root of characteristic equation (28) and has the property as in Theorem 4.4, by
Theorem 4.1, λ0 is a simple dominant root of (28). Hence, applying Theorem 4.2, we have

lim
t→∞

e−λ0t x(φ; t) =
K(λ0; φ)
H(λ0)

,

where

K(λ0; φ) = φ(0) + cφ(−σ) − cλ0e−λ0σ

∫ 0

−σ

eλ0 sφ(s) ds + be−λ0τ

∫ 0

−τ

eλ0 sφ(s) ds,

H(λ0) = 1 + c(1 − λ0σ)e−λ0σ + bτe−λ0τ.

which is the same as the result in Theorem 4.4.

Next, we consider the conditions of Theorem 3.3 in more detail. Suppose µ0 is a real root of the second character-
istic equation (10). If µ0 satisfies χλ0,µ0 < 1, we claim that µ0 is a simple dominant zero. Let

G(µ) := µ + (cµ + 2cλ0 − p2)e−τ(λ0+µ) + 2λ0 − p1 − (p1λ0 + q1 − λ
2
0)

∫ 0

−τ

eµs ds.

By the condition χλ0,µ0 < 1 in Theorem 3.3, we have G′(µ0) , 0.
Indeed, since χλ0,µ0 < 1,

|G′(µ0)| ≥ 1 −
[
|c|e−(λ0+µ0)τ + τ|p1 − µ0 − 2λ0| + µ

−2
0 (µ0τ + e−µ0τ − 1)

∣∣∣p1λ0 + q1 − λ
2
0

∣∣∣ ] > 0.

Since χλ0,µ0 < 1, let 0 < δ < 1 such that χλ0,µ0 < δ. From the representation of χλ0,µ0 , we can estimate

1 −
1
δ
|c|e−(λ0+µ0)τ >

1
δ

{
τ|p1 − µ0 − 2λ0| + µ

−2
0 (µ0τ + e−µ0τ − 1)

∣∣∣p1λ0 + q1 − λ
2
0

∣∣∣ }.
Let ε > 0 such that 1 < eεr ≤ 1

δ
, and we let Ω denote the right half plane given by

Ω = {µ ∈ C : Re µ > µ0 − ε}.

For µ ∈ Ω and 0 ≤ s ≤ r, we have |e−sµ| = e−sReµ < e−sµ0 eεs ≤ e−sµ0

δ
. If µ ∈ Ω, let γ denote the line segment between

µ0 and µ, such that the segment is in Ω, then for 0 ≤ s ≤ r,

|e−sµ − e−sµ0 | =

∣∣∣∣∣∣
∫ µ

µ0

se−ts dt

∣∣∣∣∣∣ = s

∣∣∣∣∣∣
∫
γ

e−ts dt

∣∣∣∣∣∣ ≤ e−sµ0

δ
|µ − µ0|s, (29)

since G(µ0) = 0, we have

G(µ) = (µ − µ0)(1 + ce−τ(λ0+µ)) + cµ0e−τλ0 (e−τµ − e−τµ0 )

+(2cλ0 − p2)e−τλ0 (e−τµ − e−τµ0 ) − (p1λ0 + q1 − λ
2
0)

∫ 0

−τ

(e−τµ − e−τµ0 ) ds.

Now, we estimate |G(µ)| by using (29),

|G(µ)| ≥ |µ − µ0|

(
1 −

∣∣∣∣∣1δ ce−τ(λ0+µ0)
∣∣∣∣∣) − |µ − µ0|

δ

{
τ|p1 − µ0 − 2λ0| + µ

−2
0 (µ0τ + e−µ0τ − 1)

∣∣∣p1λ0 + q1 − λ
2
0

∣∣∣ } > 0,

which means µ0 is the only zero in the right half plane Ω, so µ0 is a simple dominant zero.

For the case when the space C = C([−τ, 0],Rn), as we discussed in Section 2, the spectral approach can be applied
to study the asymptotic behavior of the functional differential equations with the solutions in this space. However, for
this case, the ODE approach is not applicable.

In the following, we present two examples to illustrate the relations of the two approaches.
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Example 4.5. If a = 1, b = 1, c = 1 and σ = τ = 1 in (1), then we have
x′′(t) + x′′(t − 1) = x(t) + x(t − 1),

x(t) = φ(t), −1 ≤ t ≤ 0.
(30)

The characteristic equation of (30) is λ2+λ2e−λ = 1+e−λ. We denote F1(λ) = λ2+λ2e−λ−1−e−λ = (λ2−1)(1+e−λ).
Since F1(1) = 0, F′1(1) = 2 + 2

e , 0, we have that λ0 = 1 is a simple zero of F1(λ). Hence, (30) becomes

z′(t) + e−1z′(t − 1) + 2z(t) + 2e−1z(t − 1) = 0, (31)

and the characteristic equation of (31) is

µ + (µ + 2)e−(µ+1) + 2 = (µ + 2)(1 + e−µ−1) = 0.

We denote G1(µ) = (µ + 2)(1 + e−µ−1). Since µ0 = −2 is a real zero of G1(µ), the condition of Theorem 3.3 is
χ1,−2 = e > 1, so Theorem 3.3 is not applicable.

But λ = −1 is another root of F1(λ) and satisfies F′1(−1) = −2 − 2e , 0, so (30) becomes

z′(t) + ez′(t − 1) − 2z(t) − 2ez(t − 1) = 0, (32)

and the characteristic equation of (32) is

µ + (µ − 2)e−(µ−1) − 2 = (µ − 2)(1 + e−(µ−1)) = 0. (33)

It is easy to check that µ = µ0 = 2 is a real root of (33). Corresponding to the roots λ0 = −1 and µ0 = 2, the condition
of Theorem 3.3 becomes χ−1,2 = e−1 < 1. Therefore by using the result of Theorem 3.3, the asymptotic behavior of
initial value problem (30) is

lim
t→∞

e−t x(t) =
H(−1, 2; φ)
γ(−1, 2)

=
φ(0) + φ(−1) + φ′(0) + φ′(−1)

2 + 2e−1 .

Next, we apply Theorem 2.5 to study the asymptotic behavior of initial value problem (30). The characteristic matrix
of (30) is

4(z) =

(
z −1

−e−z − 1 z + ze−z

)
.

Since z = z0 = 1 is a dominant zero of det4(z), and d
dz (det4(z))|z=z0 = 2 + 2e−1 , 0, we obtain that z0 = 1 is a simple

dominant zero of det4(z), which satisfies the condition of Theorem 2.5. Therefore, we have

lim
t→∞

e−t x(t) =
φ(0) + φ(−1) + φ′(0) + φ′(−1)

2 + 2e−1 .

From this example, we see that the result by the spectral approach is the same as the one by the ODE approach.

Example 4.6. We suppose a = 1, σ = τ = 1, b = c in (1), we have
x′′(t) + cx′′(t − 1) = x(t) + cx(t − 1),

x(t) = φ(t), −1 ≤ t ≤ 0.
(34)

The characteristic equation of (34) is

λ2 + cλ2e−λ = 1 + ce−λ,
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we denotes F2(λ) = λ2 + cλ2e−λ − 1 − ce−λ = (λ2 − 1)(1 + ce−λ). Since F2(−1) = 0, F′2(−1) = −2 − 2ce , 0, So
λ0 = −1 is a simple zero of F2(λ), (34) becomes

z′(t) + cez′(t − 1) − 2z(t) − 2cez(t − 1) = 0. (35)

The characteristic equation of (35) is

µ + (µ − 2)ce−(µ−1) − 2 = (µ − 2)(1 + ce−(µ−1)) = 0.

We denote G2(µ) = (µ − 2)(1 + ce−(µ−1)). Since µ0 = 2 is a real zero of G2(µ), corresponding to the roots λ0 = −1 and
µ0 = 2, the condition of Theorem 3.3 is χ−1,2 = |c|e−1. If |c| < e, we have χ−1,2 < 1. Therefore by using the result of
Theorem 3.3, the asymptotic behavior of initial value problem (34) is

lim
t→∞

e−t x(t) =
H(−1, 2; φ)
γ(−1, 2)

=
φ(0) + φ′(0) + c(φ(−1) + φ′(−1))

2 + 2ce−1 .

Next, we consider (34) by applying spectral approach. For (34), the characteristic matrix is given by

4(z) =

(
z −1

−ce−z − 1 z + cze−z

)
.

(1) Case −e < c. It is not difficult to check z0 = 1 is a dominant zero of det4(z), since d
dz det4(z)|z=z0 = 2+ 2ce−1 ,

0, so z0 = 1 is a simple dominant zero of det4(z). Therefore, by applying the result of Theorem 2.5,

lim
t→∞

e−t x(t) =
φ(0) + φ′(0) + c(φ(−1) + φ′(−1))

2 + 2ce−1 .

(2) Case c < −e. After checking the roots of det4(z), we find z0 = ln(−c) is a dominant zero of det4(z) and we can
also use Theorem 2.5 to obtain the asymptotic behavior of the equation initial value problem (34).

(3) Case c = −e. We learned that z0 = 1 is a dominant zero with order 2, so by the spectral approach in [6], we can
have the asymptotic behavior of the equation initial value problem (34).

From this example, we derive that for the ODE approach, the coefficient c should satisfy |c| < e. However, for every
c ∈ R, the asymptotic behavior of the equation initial value problem (34) can be obtained by the spectral projection
approach, and the result is the same as the one by the ODE approach when c satisfies |c| < e.

5. A fixed point approach towards asymptotic behavior

In this section, we study the special case of the system (1) with c = 0 and p2 = 0. Since it is not easy to
apply the ODE approach or the spectral approach to discuss its asymptotic behavior, we introduce a third approach.
This approach is based on fixed point theory and relies on three principles: a complete metric space, the contraction
mapping principle, and an elementary variation of parameters formula. Together this yields existence, uniqueness and
stability.

By using a fixed point approach, Burton and Furumochi [1] have considered asymptotic behavior of solutions of
the following linear equation

x′′(t) + ax′(t) + bx(t − r) = 0 (36)

and obtained the following.

Theorem 5.1. (Burton and Furumochi [1]) Let a > 0 and b > 0. If

br
(
1 +

∫ t

0
|AeA(t−s)| ds

)
< 1

holds, where A =
(

0 1
−b −a

)
, then every solution of equation (36) and its derivative tend to 0 as t → ∞.
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By using a similar technique as introduced by Burton and Furumochi [1], we consider the retarded delay differen-
tial equation

x′′(t) + ax′(t) + bx(t − r) + cx(t) = 0. (37)

If we set x′ = y, then (37) can be written in the following form

y′ = −ay − (b + c)x + (d/dt)
∫ t

t−r
bx(s) ds,

which is then expressed as the vector system

z′ = Az + (d/dt)
∫ t

t−r
Bz(s) ds,

where A and B are

A =
(

0 1
−(b + c) −a

)
and B =

(
0 0
b 0

)
. (38)

By the variation of parameters formula, we arrive at the following representation

z(t) = eAtz0 +

∫ t

0
eA(t−s)(d/ds)

∫ s

s−r
Bz(u) du ds,

employing an integration by parts, we have

z(t) = eAtz0 +

∫ t

t−r
Bz(u) du − eAt

∫ 0

−r
Bz(u) du + A

∫ t

0
eA(t−s)(d/ds)

∫ s

s−r
Bz(u) du ds.

In order to have eAt → 0 as t → ∞, we need

b + c > 0, a > 0. (39)

Let C = C([−r, 0],R2) be the space of continuous functions and φ ∈ C be a given initial function. Set

S φ :=
{
ϕ : ϕ ∈ C([−r,∞),R2), ϕ(t) = φ(t) on [−r, 0], ϕ(t)→ 0 as t → ∞

}
.

For ϕ ∈ S φ, define the operator P by

(Pϕ)(t) = eAtφ(0) +
∫ t

t−r
Bϕ(u) du − eAt

∫ 0

−r
Bϕ(u) du + A

∫ t

0
eA(t−s)(d/ds)

∫ s

s−r
Bϕ(u) du ds.

Next we introduce a norm. If

z =
(

x
y

)
,

then define |z|0 := |x| + |y| to be the l1-norm. Let Q be a fixed 2 × 2 nonsingular matrix such that |q|0 ≤ 1, where q
denotes the second column of Q, and define |z| := |Qz|0. For a 2 × 2 matrix M, define

|M| := sup
{
|QMQ−1z|0 : |z|0 = 1

}
,

then |M| is the norm of M. Next we can formulate the following theorem.

Theorem 5.2. Let b + c > 0, b > 0 and a > 0. If the following condition is satisfied

br
(
1 +

∫ t

0
|AeA(t−s)| ds

)
< 1, (40)

where A is given by (38), then every solution of equation (37) and its derivative tend to 0 as t → ∞.
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Proof. Since eAt is a L1-function on R+, if ϕ ∈ S φ, then (Pϕ)(t) → 0 as t → ∞. Thus, P : S φ → S φ. Furthermore,
from condition (40), we have that P is a contraction. The proof proceeds similarly to the proof as presented by Burton
and Furumochi [1].

Example 5.3. Consider the equation

x′′ +
7

12
x′ +

1
6

x(t − 2) −
1

12
x = 0, t ∈ R+. (41)

We have

A =
(

0 1
−1/12 −7/12

)
and B =

(
0 0

1/6 0

)
.

The eigenvalues of A are − 1
3 and − 1

4 , let Q be a 2 × 2 nonsingular matrix such that

QAQ−1 =

(
−1/3 0

0 −1/4

)
.

Then we have AeA(t−s) = QEQ−1, where

E =
(
−(1/3)e−(t−s)/3 0

0 −(1/4)e−(t−s)/4

)
,

and

|AeA(t−s)| = sup{|Ez|0 : |z|0 = 1}
= sup{(|x|/3)e−(t−s)/3 + (|y|/4)e−(t−s)/4 : |x| + |y| = 1}
≤ (1/3)e−(t−s)/3 + (1/4)e−(t−s)/4.

Hence, ∫ t

0
|AeA(t−s)| ds ≤

∫ t

0

[
(1/3)e−(t−s)/3 + (1/4)e−(t−s)/4

]
ds = 2 − e−t/3 − e−t/4 < 2, t ≥ 0,

which together with br = 1
3 implies that (40) holds. Thus, by Theorem 5.2, we have that every solution of (41) and

its derivative tends to 0 as t → ∞. An extensive discussion of the fixed point approach to determine stability and
asymptotic behaviour of various types of (neutral) delay differential equations can be found in [2].

6. Application to a mechanical model of turning processes

Systems governed by (neutral) delay differential equations (DDEs) often come up in different fields of science
and engineering. An important mechanical application are turning processes. For the simplest model of turning,
the governing equation of motion is an autonomous DDE with a corresponding infinite dimensional state space, see
[10, 11]. This fact results in an infinite number of complex characteristic roots, most of them having negative real parts
referring to damped components of the vibration signals. There are finitely many characteristic roots with positive
real part.

From the detailed introduction of mechanical models of turning processes in [10], we focus on a linear autonomous
delay differential equation

mξ′′(t) + cξ′(t) + kξ(t) = −wh(ξ(t) − ξ(t − τ)), (42)

where m, c, k,w, h, τ are constants. For the meaning of every parameter, refer to [10].
Using the model parameters, equation (42) reads

ξ′′(t) + 2ζwnξ
′(t) + w2

nξ(t) = −
wh
m

(ξ(t) − ξ(t − τ)), (43)
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Figure 1: The solution of equation (42).

where wn =
√

k/m, ζ = c/(2mwn). Generally, ζ ≈ 0.005 ∼ 0.02. Equation (43) is the standard linear delay differential
equation model of the turning process.

Equation (43) can be even further simplified. Introduce the dimensionless time t̃ by t̃ = twn, and by abuse of
notation, drop the tilde immediately. This gives the dimensionless equation of motion

ξ′′(t) + 2ζξ′(t) + ξ(t) = −w̃(ξ(t) − ξ(t − wnτ)), (44)

where w̃ = wh
mw2

n
. In the following, we study the asymptotic stability of equation (44) by Theorem 5.2.

Equation (44) can be written as the following.

ξ′′(t) + 2ζξ′(t) + (1 + w̃)ξ(t) − w̃ξ(t − wnτ) = 0, (45)

We denote wnτ = r. From (45), we have

A =
(

0 1
−1 −2ζ

)
and B =

(
0 0
−w̃ 0

)
.

The characteristic equation of A is

λ2 + 2ζλ + 1 = 0.

The eigenvalues are

λ1 = −ζ + i
√

1 − ζ2, λ2 = −ζ − i
√

1 − ζ2,

so |λ1| = |λ2| = 1, |λ1eλ1(t−s)| = |λ1|e(Reλ1)(t−s) and |λ2eλ2(t−s)| = |λ2|e(Reλ2)(t−s).
If ζ < {−1, 1}, the two different eigenvalues λ1, λ2 have eigenvectors V1 and V2, which are linearly independent.

We suppose that Q = (V1,V2)−1, then

QAQ−1 =

(
λ1 0
0 λ2

)
, Λ.

Hence,

A = Q−1ΛQ = (V1,V2)A(V1,V2)−1, eA(t−s) = Q−1eΛ(t−s)Q.
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Then we have

AeA(t−s) = Q−1ΛQQ−1eΛ(t−s)Q = Q−1ΛeΛ(t−s)Q = Q−1EQ,

where

E =
(
λ1eλ1(t−s) 0

0 λ2eλ2(t−s)

)
.

Using the norm in Theorem 5.2, we have

|AeA(t−s)| = sup{|Ez|0 : |z|0 = 1}

= sup
{∣∣∣xλ1eλ1(t−s)

∣∣∣ + ∣∣∣yλ2eλ2(t−s)
∣∣∣ : |x| + |y| = 1

}
= sup

{
|x||λ1|e(Reλ1)(t−s) + |y||λ2|e(Reλ2)(t−s) : |x| + |y| = 1

}
≤ 2e−ζ(t−s).

Hence, ∫ t

0
|AeA(t−s)| ds ≤

∫ t

0
2e−ζ(t−s) ds ≤ 2ζ−1(1 − e−ζt), t ≥ 0,

(−w̃)r
(
1 +

∫ t

0
|AeA(t−s)| ds

)
≤ (−w̃)r(1 + 2ζ−1(1 − e−ζt)) ≤ (−w̃)r(1 + 2ζ−1).

If (−w̃)r/ζ < 1/3, the conditions of Theorem 5.2 are satisfied, that is to say, if w̃ < 0 very large or r very small, then
every solution of (45) and its derivative tends to 0 as t → ∞.
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