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The dense concentration of stars and high-velocity dispersions in the Galactic center imply that stellar collisions frequently occur.
Stellar collisions could therefore result in significant mass loss rates. We calculate the amount of stellar mass lost due to indirect and
direct stellar collisions and find its dependence on the present-day mass function of stars. We find that the total mass loss rate in
the Galactic center due to stellar collisions is sensitive to the present-day mass function adopted. We use the observed diffuse X-ray
luminosity in the Galactic center to preclude any present-day mass functions that result in mass loss rates > 10−5M⊙yr−1 in the vici-
nity of ∼ 1′′. For present-day mass functions of the form, dN/dM ∝ M−α, we constrain the present-day mass function to have a
minimum stellar mass � 7M⊙ and a power-law slope � 1.25. We also use this result to constrain the initial mass function in the
Galactic center by considering different star formation scenarios.

1. Introduction

The dense stellar core at the Galactic center has a radius of
∼0.15–0.4 pc, a stellar density > 106M� pc−3 [1–4], high
velocity dispersions (≥100 km s−1), and Sgr A∗, the central
supermassive black hole with a mass ≈ 4 × 106M� [5–9].
Due to the extreme number densities and velocities, stellar
collisions are believed to play an important role in shaping
the stellar structure around the Galactic center and in dis-
rupting the evolution of its stars Frank and Rees [10]. Genzel
et al. [1] found a paucity of the brightest giants in the galactic
center and proposed that collisions with main sequence (MS)
stars could be the culprit. This hypothesis was found to
be plausible by Alexander [11]. Other investigations of col-
lisions between giants and MS, white dwarf and neutron stars
[12] and collisions between giants and binary MS and neu-
tron stars [13] could not account for the dearth of observed
giants. The contradictory results were resolved by Dale
et al. [14], who concluded that the lack of the faintest giants
(but not the brightest giants) could be explained by collisions
between giants and stellar mass black holes. Significant
mass loss in the giants’ envelopes after a collision would

prevent the giants from becoming bright enough to be obser-
ved.

The above studies concentrated on collisions involving
particular stellar species with particular stellar masses. To
examine the cumulative effect of collisions amongst an entire
ensemble of a stellar species with a spectrum of masses, one
must specify the present-day stellar mass function (PDMF)
for that species. The PDMF gives the current number of stars
per unit stellar mass up to a normalization constant. Given
a certain star formation history, the PDMF can be used to
determine the initial mass function of stars (IMF), the mass
function with which the stars were born. There is currently
no consensus as to whether the IMF in the Galactic center
deviates from the canonical IMF [15].

First described by Salpeter more than 50 years ago [16],
the canonical IMF is an empirical function which has been
found to be universal [17], with the Galactic center as per-
haps the sole exception. Maness et al. [18] found that models
with a top-heavy IMF were most consistent with observa-
tions of the central parsec of the Galaxy. Paumard et al. [19]
and subsequently Bartko et al. [20] found observational evi-
dence for a flat IMF for the young OB-stars in the Galactic
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center. On the other hand, Löckmann et al. [21] concluded
that models of constant star formation with a canonical IMF
could explain observations of the Galactic center.

In this work we use calculated mass loss rates due to
stellar collisions as a method to constrain the PDMF for main
sequence stars in the Galactic center. We construct a simple
model to estimate the actual mass loss rate in the Galactic
center based on observed diffuse X-ray emission. PDMFs that
predict mass loss rates from stellar collisions greater than
the observed rate are precluded. This method allows us to
place conservative constraints on the PDMF, because we
do not include the contribution to the mass loss rate from
stellar winds from massive evolved stars [22]. Specifically,
this method allows us to place a lower limit on the power-
law slope and an upper limit on the minimum stellar mass of
the PDMF in the Galactic center (see Section 5). Inclusion of
the mass loss rate from stellar winds (or other sources) could
further constrain the PDMF of the Galactic center.

The work presented in this paper has implications for the
fueling of active galactic nuclei (AGN). To trigger an AGN,
a significant amount of matter must be funneled onto the
supermassive black hole in a galactic nucleus. The most com-
mon way of channelling gas is through galaxy mergers, which
has been studied for quite some time (e.g., A.Toomre and
J.Toomre [23]; Gunn [24] Hernquist and mihos [25]). Even
without mergers, AGN can be fed by several processes from
stellar residents in a galactic center. The tidal disruption of
a star which passes too close to the supermassive black hole
can strip mass off the star. Additionally, it is known that a
significant amount of gas is ejected into the Galactic center
due to stellar winds from massive, evolved stars [22, 26, 27].
Another potential source for the fueling of AGN could be
from unbound stellar material, ejected in a stellar collision.
Since the easiest place to look for such an event (due to its
proximity) is the Galactic center, in this paper we theore-
tically investigate stellar collisions in this environment. By
calculating the cumulative mass loss rate from stellar colli-
sions in the Galactic center, we place constraints on the fuel-
ing of Sgr A∗ due to this mechanism.

We present novel, analytical models to calculate the
amount of stellar mass lost due to stellar collisions between
main sequence stars in Section 2 through Section 2.3. In
Section 3 we develop the formalism for calculating collision
rates in the Galactic center. We utilize our calculations of the
mass loss per collision, and the collision rate as a function
of Galactic radius to find the radial profile of the mass loss
rate in Section 4. Since the amount of mass lost is dependent
on the masses of the colliding stars, the mass loss rate in the
Galactic center is sensitive to the underlying PDMF. By com-
paring our calculations to mass loss rates obtained from the
diffuse X-ray luminosity measured by Chandra, in Section 5
we constrain the PDMF of the Galactic center. We derive
analytic solutions of the PDMF as a function of an adop-
ted IMF for different star formation scenarios, which allows
us to place constraints on the IMF in Section 6. In Section 7,
we estimate the contribution to the mass loss rate from col-
lisions involving red giant (RG) stars.

2. Condition for Mass Loss

Throughout this paper we refer to the star that loses material
as the perturbed star, and the star that causes material to be
lost as the perturber star. Quantities with the subscript or
superscript “pd” or “pr” refer to the perturbed star and per-
turber star, respectively (Note that for any particular colli-
sion, it is arbitrary which star we consider the perturber star,
and which star the perturbed star. Both stars will lose mass
due to the presence of the other, so in order to calculate the
total mass loss, we interchange the labels (pd↔pr), and repeat
the calculation.). We work in units where mass is measured
in the mass of the perturbed star, Mpd, distance in the radius
of the perturbed star, rpd, velocity in the escape velocity of the

perturbed star, v
pd
esc (=

√
2GMpd/rpd), and time in rpd/v

pd
esc. We

denote normalization by these quantities (or the appropriate
combination of these quantities) with a tilde:

M̃ ≡ M

Mpd
,

r̃ ≡ r

rpd
,

ṽ ≡ v

v
pd
esc

,

t̃ ≡ t

rpd/v
pd
esc

.

(1)

We refer to collisions in which b > rpd + rpr as “indirect”
collisions, and collisions in which b ≤ rpd + rpr as “direct”
collisions. The impact parameter, b, is the distance of closest
approach measured from the centers of both stars.

We consider the condition for mass loss at a position, r̃,
within the perturbed star to be that the kick velocity due to
the encounter at r̃ exceeds the escape velocity of the perturber
star at r̃, Δṽ(r̃) ≥ ṽesc(r̃). The escape velocity as a function
of position within the perturbed star can be found from
the initial kinetic and potential energies of a test particle at
position r̃,

ṽesc(r̃) =
√
√
√−

∫∞

r̃

M̃int(r̃′)
r̃′2

dr̃′

=
√
√
√M̃int(r̃)

r̃
+ 4π

∫ 1

r̃
ρ̃(r̃′)r̃′dr̃′,

(2)

where M̃int is the mass interior at position r̃′ and ρ̃ is the den-
sity profile of the star.

2.1. Mass Loss due to Indirect Collisions. To calculate the mass
lost due to an indirect collision, we first calculate the kick
velocity given to the perturbed star as a function of position
within the star. We work under the impulse approximation
[28], valid under the condition that the encounter time
is much shorter than the characteristic crossing time of a
constituent of the perturbed system.

Given a mass distribution for the perturbed system, ρpd

and a potential for the perturber system, Φ, the kick velocity
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after an encounter under the impulse approximation is given
by Binney and Tremaine [29]:

Δ�v
(
�r
)=−

∫∞

−∞

[

�∇Φ(�r, t
)− 1

Mpd

∫

ρpd
(
�r′, t

)�∇Φ(�r′, t
)
d3r′

]

dt.

(3)

Equation (3) can be simplified by expanding the gradient of
the potential in a Taylor series, resulting in

Δ�v
(
�r
) = 2GMpr

b2vrel

⎛

⎜
⎜
⎝

−x
y

0

⎞

⎟
⎟
⎠ + O

(
r2
)
. (4)

The expansion is valid under the “distant tide” approxima-
tion which is satisfied when rpd � b. The parameter vrel is
the relative speed between the stars (vrel ≡ |�vpd−�vpr|). We are
interested in the magnitude of (4), which when normalized
to the units that we have adopted for this paper is

Δṽ
(
x̃, ỹ

) ∼= γ
√
x̃2 + ỹ2, (5)

where

γ ≡ M̃pr

b̃2ṽrel

. (6)

To solve for the mass lost per encounter as a function of
γ, we consider a star within a cubic array, where the star con-
tains∼3× 106 cubic elements. As a function of γ we compare
the kick velocity in each element to the escape velocity for
that element and consider the mass within the element to be
lost to the star if the velocities satisfy the condition given in
Section 2. We note that by ∼105 elements, the results con-
verge to within about 2%, and we are therefore confident that
∼3 × 106 provides adequate resolution.

To calculate the amount of mass in each element, the den-
sity profile for the perturbed star must be specified. As with
several previous studies on mass loss due to stellar collisions
[30–33] we utilize polytropic stellar profiles. Polytropic pro-
files are easy to calculate and yield reliable results for stars of
certain masses. Polytropic profiles of polytropic index n =
1.5 describe the density structure of fully convective stars,
and therefore very well describe MS stars with M� � 0.3M�
(nearly fully convective) and MS stars with M� � 10M�
(convective cores). MS stars with M� � 1M� have radiative
envelopes and are therefore well-described by n = 3. For n
for stars with masses of 0.3–1M� and 5–10M�, we linearly
interpolate between n = 1.5 and 3. We discuss the uncer-
tainties introduced by this approach in Section 4. Note that
this approach is biased towards zero-age main sequence stars,
since as stars evolve, they are less adequately described by
polytropic profiles.

We plot the fraction of mass lost from the perturbed star
per event, Δ, as a function of γ in Figure 1 for several poly-
tropic indices. The lines are third-order polynomial fits to
our results, in the range of 0.98 ≤ γ ≤ 5. We list the coef-
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Figure 1: The fraction of mass lost per collision as a function of γ
for several polytropic indices. The lines are third-order polynomial
fits, whose coefficients are given in Table 1.

Table 1: Coefficients of polynomial fits for Δ(γ) with varying poly-
tropic indices.

n a0 a1 a2 a3

1.5 0.395 −0.865 0.559 −0.091

2.0 0.210 −0.424 0.246 −0.032

2.5 0.105 −0.197 0.102 −0.101

3.0 0.051 −0.088 0.040 −0.003

ficients of the polynomial fits in Table 1. For each density
profile, no mass is lost up until γ of about 0.98, and thereafter
the mass loss increases monotonically. The increasing trend
is due to the fact that larger perturber masses and smaller
impact parameters result in an increased potential felt by the
perturbed star. Smaller velocities also cause more mass to
be lost, as this increases the “interaction time” between the
perturber and perturbed stars.

The location of the mass loss within the perturbed star
for fixed γ depends upon the polytropic index, since the
escape velocity within the star is dependent upon the density
profile, as indicated by (2). In Figure 2, we illustrate where
mass will be lost in the perturbed star by plotting contours of
the kick velocity (Δṽ(r̃)) due to the encounter normalized to

ṽ
pd
esc(r̃) for n = 1.5 and n = 3 (bottom and top rows, resp.).

We show two different cases: a slightly perturbing encounter
with γ = 1.2 in the first column, and a severely perturb-
ing encounter with γ = 1.6 in the second column. The
grey region underneath shows where mass is still left after

the encounter, since Δṽ/ṽ
pd
esc(r̃) within this region is < 1.
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Figure 2: Slices through the perturbed star along the plane parallel to the perturber star’s trajectory. The first column ((a) and (c)) corresp-
ond to encounters with γ = 1.2, and the second column ((b) and (d)) correspond to γ = 1.6. The first row ((a) and (b)) have n = 3, and the
second row ((c) and (d)) have n = 1.5. The contours are the kick velocity within the star due to the encounter normalized to the escape

velocity (as a function of r̃). The outline of the grey region underneath has Δṽ/ṽ
pd
esc(r̃) = 1, so that the grey region represents the location of

where mass is still left after the event.

The γ = 1.6 encounter results in bigger kick velocities, and
so we see that the mass loss penetrates farther into the star.
We note that the shape and magnitude of the contours for
both polytropic indices at fixed γ converge at large radii.
This is due to the fact that regardless of the polytropic index

used, ṽ
pd
esc converges to the same value at large radii when

the second term in (2) becomes negligible. Even though the
location of where mass is lost is similar for different poly-
tropic stars at the same value of γ, the amount of the mass

lost is substantially different (as shown in Figure 1), due to
the different density profiles.

2.2. Validity of Approach for Indirect Collisions. The impulse
approximation is valid provided that the time over which the
encounter takes place, tenc, is much shorter than the time it
takes to cross the perturbed system, tcross. To estimate when
our calculations break down, we approximate tenc as b/vrel,
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and tcross as ts, the time it takes for a sound wave to cross an
object that is in hydrostatic equilibrium:

tcross ∼ ts ∼ 1
√
Gρpd

∼ 1
√
GMpd/r

3
pd

. (7)

These approximations lead to the condition that

ṽ−1
rel b̃� 1. (8)

Aguilar and White [34] find that for a large range of
collisions, the impulse approximations remains remarkably
valid, even when tenc is almost as long as tcross. We therefore
assume that the impulse approximation holds until the left
hand side of (8) is ∼1. Our calculation of Δ as a function
of γ should therefore be valid for γ � γvalid, where γvalid ≡
M̃pr/b̃3. We plot contours of log(γvalid) in the Mpr/Mpd-b/rpd

parameter space in Figure 3, where both the x and y axes
span ranges relevant to our calculations. The shaded grey
area in the figure is the region of the parameter space where
the impulse approximation predicts nonzero mass loss due to
the encounter. The figure shows that γvalid is smaller for low
Mpr to Mpd ratios at high impact parameters. In fact, most of
the right side of the parameter space has γvalid less than 0.98
(where below this value, the impulse approximation predicts
no mass lost).

In our calculations, when, for any particular set of
Mpr/Mpd and b/rpd, γ > γvalid, we adopt Δ(γ > γvalid) =
Δ(γ = γvalid). This approach represents a lower limit on the
amount of mass loss that we calculate, since mass loss should
increase with increasing γ. We find, however, that if we set
Δ(γ > γvalid) = 1 (which represents the absolute upper limit
in the amount of mass lost) the change in our final results
is negligible at small Galactic radii. At large radii, where the
mass loss from indirect collisions dominates (see Section 4),
the results change by at most a fact of ∼2.

Equation (4) was derived under the assumption that the
impact parameter is much bigger than both rpd and rpr.
Since Δv scales as b−2, the equation predicts that most mass
loss occurs for small impact parameters. However, given the
assumption that was used to derive the equation, the regime
of small impact parameters is precisely where (4) breaks
down. Numerical simulations [34, 35] show that for a variety
of perturber mass distributions, the energy input into the
perturbed system is well described by (4) for b � 5rh, where
rh is the half mass radius of the perturber system. For an n =
3 polytropic star, 5rh = 1.4r�. Since for indirect collisions,
b/rpd = 1 + rpr/rpd + d/rpd (where d is the distance between
the surface of both stars), there is only a small region in our
calculations, 0 ≤ d/rpd � (0.4 − rpr/rpd), for which (4) may
give unreliable results.

2.3. Mass Loss due to Direct Collisions. A number of papers
over the past few decades have addressed the outcomes of
stellar collisions where the two stars come so close to each
other that not only gravitational, but also hydrodynamic
forces must be accounted for. Early studies used one- or two-
dimensional low-resolution hydrodynamic simulations (e.g.,
[36, 37]). Modern studies typically utilize smooth particle
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Figure 3: Contours of log(γvalid) in the Mpr/Mpd-b/rpd parameter
space, where γvalid is defined in Section 2. The shaded grey area
indicates where the impulse approximation predicts nonzero mass
loss.

hydrodynamics with various stellar models, mass-radius re-
lations, and varying degrees of particle resolution [30–33]. A
detailed review of the literature can be found in this area in
Freitag and Benz [38].

We approach the problem of direct collisions in a highly
simplified, analytic manner without hydrodynamic consider-
ations and find that for determining the amount of mass lost,
our method compares well to the complex hydrodynamic
simulations. As a first-order model, we approximate the en-
counter as two colliding disks, by projecting the mass of both
stars on a plane perpendicular to the trajectory of the pertur-
ber star. The problem of calculating mass loss then becomes
easier to handle, as it is two-dimensional. We also assume
that mass loss can only occur in the geometrical area of in-
tersection of the two stars.

We find the kick velocity as a function of position in the
area of intersection by conserving momenta and by assuming
that all of the momentum in the perturber star in each area
element was transferred to the corresponding area element
in the perturbed star. Working in the frame of the perturbed
star and with a polar coordinate system at its center (so that

r =
√
x2 + y2), we find

Δṽ(r̃) = Σ̃pr(r̃)ṽrel

Σ̃pd(r̃)
. (9)

The parameters Σpr and Σpd represent the surface density of
the perturber and perturbed stars, respectively, (

∑ ≡ ∫
ρdz ).

To find the region of intersection, we need to know the
impact parameter and the radii of both stars. To obtain the
stellar radii as a function of mass, we use the mass-radius
relation calculated by Kippenhahn and Weigert [39] for a MS
star with Z = Z�, XH = 0.685 and XHe = 0.294 from a stel-
lar evolution model, where X represents the mass fraction.
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Figure 4: Mass-radius relations used in studies of calculating mass
loss from stars due to stellar collisions. The thin lines are power-law
relations of power-law index 1.0, 0.8, and 0.85 used by Rauch [33],
Lai et al. [32], and Benz and Hills [31], respectively. The dotted line
is the relation used by Freitag and Benz [38], and the thick line is
the relation used in this work.

We fit a polynomial to their [39, Figure 22.2] and extrapolate
on the high- and low-mass ends so that we have a mass-
radius relation that spans from about 0.01 to 150M�. We
compare our mass-radius relation to those used in other
studies of direct stellar collisions in Figure 4. Rauch [33], Lai
et al. [32], and Benz and Hills [31] all adopted power laws
with power law indices of 1.0, 0.8, and 0.85, respectively,
(thin lines). Freitag and Benz [38] (dotted line) use main
sequence stellar evolution codes to obtain a mass-radius
relation for masses > 0.4M� and a polytropic mass-radius
relation of n = 1.5 for masses < 0.4M�.

Our simple model for calculating mass loss due to direct
stellar collisions compares surprisingly well to full blown
smooth particle hydrodynamic simulations. We borrow plots
of the fractional amount of mass lost as a function of impact
parameter for specific relative velocities and stellar masses
from Freitag and Benz [38] (Figures 5 and 6). They show
their own work, the best calculations of mass loss due to stel-
lar collisions to date. For comparison, and to show how the
calculations have evolved over the years, the results from
older studies are also shown. Our own results are plotted
(dashed-dotted black lines) over these previous studies. We
make sure to show results spanning a wide range of stellar
masses and relative velocities. Note that these plots show the
fractional amount of mass lost from both stars normalized
to the initial masses of both stars, and that the impact para-
meter is normalized to the sum of both stellar radii. Our
results show the same qualitative trends seen in the Freitag
and Benz [38] curves, even replicating several “bumps” seen
in their curves (see Figures 6(c) and 6(d)). As compared
to the Freitag and Benz [38] results, for any specific set

stellar masses, relative velocity and impact parameter, our
calculations sometimes over- or underpredict the amount of
mass lost by of a factor of a few to at most a factor of 10. We
discuss the error introduced into our main calculations by
this discrepancy at the end of Section 5.

3. Stellar Collision Rates in the Galactic Center

To calculate mass loss rates in the Galactic center, we will
need to find the collision rates as a function of the perturber
and perturbed star masses, impact parameter, and relative
velocity. Additionally, the collision rate will be a function of
distance from the Galactic center, since the stellar densities
and relative velocities vary with this distance. In this section,
we first present the Galactic density profile that we use, and
we then derive the differential collision rate as a function of
these parameters.

We adopt the stellar density profile of Schödel et al. [4],
one of the best measurements of the density profile within
the Galactic center to date. Using stellar counts from high-
resolution images of the galactic center, they find that the
density profile is well-approximated by a broken power law.
Moreover, they use measured velocity dispersions to con-
strain the amount of enclosed stellar mass as a function of
galactic radius, rgal. Using their density profile, and velocity
dispersion measurements, they find that

ρ
(
rgal

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.8± 1.3× 106M�pc−3

(
rgal

0.22 pc

)−1.2

,

for rgal ≤ 0.22 pc,

2.8± 1.3× 106M�pc−3

(
rgal

0.22 pc

)−1.75

,

for rgal > 0.22 pc.
(10)

Their average density can be converted into a local density,
ρ(rgal), by considering the definition of ρ,

ρ
(
rgal

)
≡
∫ rgal

0 4πr
′2
galρ

(
r′gal

)
dr′gal

4/3πr3
gal

, (11)

from which we derive

ρ
(
rgal

)
= ρ

(
rgal

)
+
rgal

3

dρ
(
rgal

)

drgal
. (12)

We use (10) and (12), to find ρ(r) and plot the result in
Figure 7. We “smoothed” the unphysical discontinuity in ρ
arising from the kink of the broken power law fit by fitting a
polynomial to (10).

The differential collision rate, dΓ, between two species,
“1” and “2” at impact parameter b characterized by distribu-
tion functions f1 and f2, and moving with relative velocity
|�v1 −�v2| in a spherically symmetric system is

dΓ = f1
(
rgal,�v1

)
d3v1 f2

(
rgal,�v2

)
d3v2

× ∣
∣�v1 −�v2

∣
∣2πb db4πr2

galdrgal.
(13)



Advances in Astronomy 7

0 0.4 0.8
10−5

10−4

10−3

0.01

0.1

1

This work
FB05
R99

LRS93
BH87 (V∞rel/V∗ = 1.67)
SS66

0.2 0.6

δ
M

/(
M

1
+
M

2
)

b/(R1 + R2)

M1 = 0.4M⊙ M2 = 0.4M⊙ V∞rel/V∗ = 1.69

(a)

This work
FB05
R99

LRS93
SS66

10−4

10−3

0.01

0.1

0 0.40.2 0.6

b/(R1 + R2)

δ
M

/(
M

1
+
M

2
)

M1 = 0.5M⊙ M2 = 2.5M⊙ V∞rel/V∗ = 2.14

(b)

This work
FB05
R99

LRS93
SS66

10−3

0.01

0.1

1

δ
M

/(
M

1
+
M

2
)

0 0.4 0.80.2 0.6

b/(R1 + R2)

M1 = 0.5M⊙ M2 = 0.5M⊙ V∞rel/V∗ = 1.98

(c)

This work
FB05
R99

LRS93
SS66

0 0.40.2 0.6

b/(R1 + R2)

10−3

0.01

0.1

δ
M

/(
M

1
+
M

2
)

M1 = 1M⊙ M2 = 19.3M⊙ V∞rel/V∗ = 1.48

(d)

Figure 5: The calculated fractional amount of mass lost as a function of impact parameter from several works. Our results are the black
dashed-dotted lines. The acronyms FB05, R99, LRS93, BH87, and SS66 refer to Freitag and Benz [38], Rauch [33], Lai et al. [32], Benz and
Hills [30], and Spitzer and Saslaw [40], respectively. The figures are adopted from Freitag and Benz [38].
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Figure 6: The calculated fractional amount of mass lost as a function of impact parameter from several works. Our results are the black
dashed-dotted lines. The figures are adopted from Freitag and Benz [38].
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Figure 7: The stellar density profile that we adopt, based on the
average density profile of Schödel et al. [4].

For simplicity, we adopt Maxwellian distributions,

f1,2

(
rgal,�v1,2

)
=

n1,2

(
rgal

)

(2πσ2)3/2 e
−v2

1,2/2σ
2
, (14)

where we find the velocity dispersion, σ , from the Jean’s
equations. Assuming an isotropic velocity dispersion, a sphe-
rical distribution of stars and a power-law density profile

with power-law slope β, ρ ∝ r
−β
gal , the Jean’s equations lead to

σ2 = GMSMBH/rgal(1 + β), where MSMBH = 4× 106M�. From
Figure 7, it is evident that β is a function of rgal, but for
simplicity, we adopt an averaged value of β, β = 1.3. Note
that we have also assumed that the enclosed mass at position
rgal is dominated by the SMBH. This assumptions is valid
out till ∼1 pc, which is also the point where our impulse
approximation starts to break down.

A change of variables allows one to integrate out 3 of the
velocity dimensions and to write the expression in terms of
vrel (see [29]). We can also take into account the fact that both
species have a distribution of masses by introducing, ξ1,2, the
PDMF, which gives the number density of stars per mass bin
(ξ ≡ dn/dM). We adopt a power law PDMF,

ξ ∝M−α, (15)

that runs from some minimum mass, Mmin to a maximum
mass Mmax. Since most initial mass functions are parameter-
ized with a power law, the present-day mass function might
be modified from a power law due to the effects of collisions
and stellar evolution. Although the actual PDMF might have
deviations from a power law, adopting a power law pro-
vides us with a quick and simple way to parameterize the
PDMF. Taking all of this into account, and assuming that
the relative velocities are isotropic, we arrive at the final

nondimensionalized expression for the differential collision
rate:

dΓ̃ = 4π3/2σ̃−3e−ṽ
2
rel/4σ̃

2
ṽ3

relK̃
2

× M̃−α
1 M̃−α

2 r̃2
galb̃ db̃ dr̃gal dṽrel dM̃1 dM̃2.

(16)

The tildes denote normalization by the proper combination
of M2, r2, and v2

esc. The parameter K is the normalization
constant for ξ, which can be solved for by using the density
profile of Figure 7 and the following expression:

ρ =
∫Mmax

Mmin

dn

dM
MdM = K

(
rgal

)∫Mmax

Mmin

M1−αdM

= K
(
rgal

)M2−α
max −M2−α

min

2− α
.

(17)

Since the expression for K , which controls the total number
of stars, has no time dependence, our expression for the
PDMF assumes a constant star formation rate in the Galactic
center.

Our calculations involve the computation of multidi-
mensional integrals over a two-dimensional parameter space
(see Section 4). Therefore, for the ease of calculation, we
ignore the enhancement of the collision rate due to the effects
of gravitational focusing. This results in a conservative esti-
mate of the collision rate. As two projectiles collide with
each other, their mutual gravitational attraction pulls them
together, resulting in an enhancement of the cross section:

S −→ S

(

1 +
2G(M1 + M2)

bv2
rel

)

. (18)

We discuss the uncertainties in our final results due to ignor-
ing gravitational focusing at the end of Section 5.

To illustrate the frequency of collisions in the Galactic
center, we integrate (16) over vrel, M1, and M2 assuming a
Salpeter-like mass function (α = 2.35, Mmin = 0.1M� and
Mmax = 125M�) to obtain dΓ/(dlnrgaldb) as a function of
rgal (Figure 8(a)) (This figure and subsequent figures in
this paper with rgal as the independent variable start from
rgal = 10−6 pc. This value of rgal corresponds to the tidal
radius for a 1M� star associated with a 4 × 106M� SMBH.
Although stars of different masses will have slightly different
tidal radii, the main conclusions of our paper are based off
of distances in rgal of order 0.1 pc (see Section 5), well
above the tidal radius for any particular star.). We plot
dΓ/(dlnrgaldb) for several different impact parameter values.
We calculate dΓ/(dlnrgaldb) with and without the effect of
gravitational focusing (solid and dashed lines, resp.). The
latter is obtained by multiplying (16) by the gravitational
focusing enhancement term before the integration. As expec-
ted, gravitational focusing is negligible at small Galactic radii
since typical stellar encounters involve high relative veloci-
ties. As the typical relative velocities decrease with increasing
Galactic radius, the enhancement to the collision rate from
gravitational focusing becomes important. The figure also
shows that gravitational focusing becomes less important
with increasing impact parameter since the gravitational
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Figure 8: (a) The differential collision rate per logarithmic Galactic radius per impact parameter as a function of Galactic radius for several
different impact parameters. The solid (dashed) lines were calculated ignoring (including) gravitational focusing. The curves were made
by made by integrating (16) (with and without the gravitational focusing term) assuming Salpeter values. (b) The cumulative differential
collision rate (integrated over rgal) per impact parameter with and without gravitational focusing for the same impact parameter values.
(a), (b) The vertical line in each panel is placed at rgal = 0.06 pc, the upper bound in our integration across rgal as performed in Section 5.

attraction between the stars is weaker. Figure 8(b) shows the
cumulative differential collision rate (integrated over rgal) per
impact parameter as a function of rgal. Again, we plot the
results with and without gravitational focusing and for the
same impact parameters.

4. Mass Loss Rates in the Galaxy

To calculate the mass loss rate from stars due to collisions
within the Galactic center, we multiply (16) by the fraction of
mass lost per collision, Δ(γ), and compute the multidimen-
sional integral. We calculate the total mass loss rate from both
the perturbed and perturber stars by simply interchanging
the “pr” and “pd” labels and reperforming the calculation.

We first compute the differential mass loss rate for indi-
rect collisions. The mass loss per collision is given by

Δ
(
γ
) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for γ < 0.98,

polynomial for 0.98 ≤ γ ≤ γvalid

Δ
(
γvalid

)
for γ > γvalid.

, (19)

The coefficients for the polynomial depend on the polytopic
index of the perturbed star (and thus on its mass) and are
taken from Table 1. We multiply (19) and (16) and simplify
the integration. In principle, b should go to∞, but we cut off

the integral at b̃max = 20 as we find that the results converge
well before this point. The velocity integral is also cut off at
ṽmax due to the fact that Δ(γ) becomes zero below γ = 0.98.

This cut-off corresponds to ṽmax = (M̃pr)max/0.98b̃2
min. We

may safely throw away the exponential as ṽ2
max � σ̃2(r̃gal) for

the range of r̃gal that we consider. Thus, the integral that we
evaluate is
⎛

⎝ d˜̇M

dlnr̃gal

⎞

⎠

pd

∼= 4π3/2σ̃−3r̃3
galK̃

2
∫ M̃max

M̃min

∫ M̃max

M̃min

∫ ṽmax

0

×
∫ b̃max

1+r̃pr

b̃ṽ3
relΔpd

(
γ
)
M̃−α

pr M̃
−α
pd db̃dM̃pr

× dM̃pddṽrel.

(20)

For direct collisions, Δ(b̃, M̃pr, M̃pd, ṽrel) is calculated
given the prescription in Section 2.3. To evaluate the multidi-
mensional integral, we make the approximation of evaluating
Δpd at ṽrel = 2σ̃ . The factor of Δpd thus comes out of the
ṽrel integral, so that the ṽrel integral can be performed analy-
tically:
⎛

⎝ d˜̇M

dlnr̃gal

⎞

⎠

pd

∼= 32π3/2σ̃ r̃3
galK̃

2
∫ M̃max

M̃min

∫ M̃max

M̃min

∫ 1+r̃pr

0

× b̃Δpd

(
b̃, M̃pr, M̃pd, ṽrel = 2σ̃

(
r̃gal

))

× M̃−α
pr M̃

−α
pd db̃ dM̃prdM̃pd.

(21)

We evaluate the remaining integrals numerically.
Once values for α, Mmin and Mmax are specified, (20) and

(21) can be integrated to obtain the mass loss rate as a func-
tion of Galactic radius. To show how the mass loss rate pro-
files vary with Mmin, Mmax, and α, we plot dṀ/dlnrgal for
direct collisions in Figure 9 and vary these parameters. In the
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Figure 9: Mass loss rates as a function of Galactic radius due to direct collisions for various parameters of Mmin, Mmax, and α. The parameter
Mmin varies in each panel from bottom to top, and Mmax varies from left to right. The power law slope, α, varies within each panel from
1.00 (top line) to 2.5 (bottom line) in equal increments of 0.188. The dashed line corresponds to a Salpeter-like mass function values
(Mmin = 0.5M�, Mmax = 125M�, α = 2.29). The arrows indicate the range in the diffuse X-ray observations (rgal < 1.5′′) which we use to
constrain the PDMF (see Section 5).

figure, we have evaluated Mmin at 0.05, 0.5 and 5M�, Mmax at
75, 100, 125M� and α from 1.00 to 2.5 in equal increments.
The parameter Mmin increases vertically from the bottom
panel to the top; Mmax increases horizontally from the left
panel to the right, and in each panel α increases from the
bottom to the top. We have indicated a Salpeter-like mass
function (α = 2.29, Mmin = 0.5M� and Mmax = 125M�)
with the dashed line. Mass loss is extensive and approxi-
mately constant until about rgal of 10−2 pc and then drops
dramatically. This drop reflects that fact that collisions are
less frequent at larger radii since star densities and relative
velocities drop. The amount of mass lost for any direct
collision also decreases with galactic radius since Δ decreases
with decreasing relative velocities. Note that the profiles are
approximately constant as a function of Mmax, so that the
choice of Mmin determines the extent of the mass loss rate.

In Figure 10 we show the contributions to dṀ/dlnrgal

from both direct and indirect collisions for Mmin = 0.2M�,
Mmax = 100M� and α = 1.2. We find that at small radii the
mass loss rate is dominated by direct collisions, and at large
radii it is dominated by indirect collisions. Mass loss due to
indirect collisions is suppressed in the Galactic center, due to

the very fast relative stellar velocities. Even though the high
velocities (and high densities) in the Galactic center make
collisions more frequent, under the impulse approximation,
when velocities are very fast, mass loss is minimized.

To illustrate which mass stars contribute the most to the
total mass loss rate, we plot dṀ/dlnMpd as a function of Mpd

in Figure 11 for several different PDMFs. The range of inte-
gration we choose for rgal is from 0 to 0.06 pc (see Section 5).
We choose Mmin to be 0.05, 0.5 and 5M� (in Figures 11(a)–
11(c)), and we use a constant Mmax of 125M�. In each panel,
we vary α from 1.5 to 2.5 in equal increments. The figure
shows that for Mmin = 0.05M�, changing α has little effect
on what mass stars contribute the most to the mass loss
rate (although, the total mass loss rate is decreased with in-
creasing α). For the Mmin = 0.5M� and 5M� cases, increasing
α results in lower mass stars contributing more to the mass
loss rate. This trend makes sense, since PDMF profiles with
higher values of α have fractionally more lower mass stars.

To test how our interpolation between the n = 1.5 and
3 polytropic indices affects the main results of this paper, we
consider two extreme cases. The first case we consider has
n = 1.5 for M� < 1M� and M� > 5M�, and n = 3 for
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Figure 10: Mass loss rates due to direct and indirect stellar collisions
within the Galactic center for Mmin = 0.2M�, Mmax = 100M�
and α = 1.2. The arrow indicates the range in the diffuse X-ray
observations (rgal < 1.5′′) which we use to constrain the PDMF (see
Section 5).

1M� ≤ M� ≤ 5M�. This approach has n = 1.5 for much
of the mass spectrum and should result in the highest mass
loss rates since (as is evident from Figure 1) collisions with
the perturbed star having n = 1.5 result in the most mass
lost. This is due to the fact that for n = 1.5 stars, the mass
is less centrally concentrated, and more mass can therefore
escape at large radii which receive a stronger velocity kick.
The second case we consider has n = 1.5 for M� < 0.3M�
and M� > 10M�, and n = 3 for 0.3M� ≤ M� ≤ 10M�. This
case should result in the smallest mass loss rates, since it has
n = 1.5 for a smaller fraction of the mass spectrum. Since
different mass functions have different fractions of the total
mass in the neighborhood of 1M� (where we expect the least
mass loss per collision since n = 3), we test the two cases for
several different mass functions. We find that differences in
dṀ/dlnrgal(rgal) for both cases are relatively minor, differing
at most by ∼10% depending on the mass function that we
use.

5. Constraining the Mass Function in
the Galactic Center

It is known through diffuse X-ray observations from Chan-
dra, that the central supermassive black hole in the Galactic
center is surrounded by gas donated from stellar winds (e.g.,
[22]). The diffuse X-ray luminosity is due to Bremsstrahlung
emission from unbound material supplied at a rate of
∼ 10−3M�yr−1 [26]. This unbound material has been studied
theoretically by Quataert [27], who solved the equations of

hydrodynamics (under spherical symmetry) to follow how
the gas is accreted onto Sgr A∗. Quataert [27] finds that
his model agrees with the level of diffuse X-ray emission
measured by Chandra and predicts an inflow of mass at
rgal ∼ 1′′ at a rate of ∼ 10−5M�yr−1.

Using the 2–10 keV luminosity as measured by Chandra
[22], we estimate the total mass loss rate at a radius of
rgal ∼ 1.5′′ (0.06 pc). We use the word “total” to indicate the
mass loss rate integrated over Galactic radius. By using this
total mass loss rate as an upper limit, we will be able to con-
strain the PDMF in the Galactic center by precluding any
PDMFs with total mass loss rates greater than this value. We
will do this by integrating our calculated mass loss rate pro-
files (e.g., Figures 9 and 10) over rgal.

Unbound material at a radius rgal has a dynamical time-
scale of

tdyn

(
rgal

)
∼ rgal

vchar

(
rgal

) ≈ 1.1× 104 yrs

(
rgal

pc

)1.5

, (22)

where the characteristic velocity at radius rgal, vchar(rgal), is
taken as the velocity dispersion as given in Section 3. The
electron density at radius rgal may therefore be estimated by

ne
(
rgal

)
∼ np

(
rgal

)
∼

Ṁtdyn

(
rgal

)

(4/3)πr3
galmp

= 1.1× 105 cm−3

(
Ṁ

M� yr−1

)(
rgal

pc

)−1.5

,

(23)

where mp is the proton mass.
For thermal Bremsstrahlung emission, the volume emis-

sivity (dE/dVdtdν) is [41]

ε f f
ν = 6.8× 10−38 erg s−1 cm−3 Hz−1

(
ne

cm−3

)2(T

K

)−1/2

× e−hν/kBTg f f ,

(24)

where we set g f f = 1. The luminosity in the 2–10 keV band,
L2−10, can be found substituting (23) into (24) and integrat-
ing the volume emissivity over volume (assuming spherical
symmetry) and frequency:

L2−10 ∼ 6.7× 1043erg s−1

(
Ṁ

M�yr−1

)2 ∫ 0.06

rmin

(
r

pc

)−1

× d

(
r

pc

)∫ 10

2
e−hν/keVd

(
hν

keV

)

.

(25)

We have assumed a constant temperature of 1 keV. A constant
value of 1 keV should suffice for an order of magnitude
estimate as Baganoff et al. [22] find that the gas temperature
varies from approximately 1.9 to 1.3 keV from rgal = 1.5 to
10′′ (assuming an optically thin plasma model). Quataert’s
[27] model also predicts that the temperature varies from
about 2.5 to 1 keV from rgal = 0.3 to 10′′. By plugging the
value of L2−10 within 1.5′′ (2.4×1033 erg s−1) as measured by
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Figure 11: The amount of mass loss per logarithmic mass interval of the perturbed star as a function of the perturbed star’s mass. Each line
was calculated with a different PDMF. The titles in each panel indicate the value of Mmin used for that panel. In each panel, α goes from 1.5
to 2.5 in even increments of 0.167, and for each line Mmax = 125M�.

Baganoff et al. [22] into (25), we find Ṁ ∼ 10−5M�yr−1. This
value is consistent with the mass inflow rate at∼1′′ calculated
by Quataert [27]. For clarification, we again note that even
though our value agrees with Quataert [27], the underlying
physical processes associated with both models are quite
different. The model of Quataert [27] takes the source of
unbound material to be due to mass ejected by stellar winds,
whereas our model uses mass ejected from stellar encounters.

Our results are not sensitive to the choice of the lower
limit in the integral across rgal. The lower limit should be at
most a few hundred of pcs to at least ∼10−6 pc. The former
value is the tidal radius for the SMBH at the Galactic center
for a 1M� star. Unbound material due to stellar collisions or

from stellar wind should not exist at smaller radii since there
are very few stars there to produce it. The value of the integral
thus ranges from about unity to a few tens. Since Ṁ depends
upon the square root of this value, the exact value of rmin only
affects our calculation at the level of a factor of a few, and we
thus take the square root of the integral to be unity.

Having established that Ṁ ∼ 10−5M�yr−1 in the vicinity
of 1.5′′, we now calculate the expected mass loss rates due
to stellar collisions for different PDMFs. The value of Ṁ that
contributes to the 2–10 keV flux is given by

Ṁ =
∫ 0.06 pc

0

dṀ

d3rgal
ζ(rral)d3rgal, (26)
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where we have shown how to calculate the mass loss rate pro-
files, dṀ/d3rgal in the previous section. We account for the
fact that not all of the emission from the unbound gas con-
tributes to the 2–10 keV band with ζ(rgal), defined as the frac-
tion of flux from gas at radius rgal with 2 keV ≤ hν ≤ 10 keV:

ζ
(
rgal

)
≡
∫ 10 keV

resu2 keV ε
f f
ν dν

∫∞
0 ε f f

ν dν
= e−2 keV/kBT(rgal) − e−10 keV/kBT(rgal).

(27)

Since the gas at each radius is at a slightly different tempera-
ture, and since ζ is exponentially sensitive to the temperature,
we must estimate T(rgal). We do this by setting the thermal
energy of the unbound material equal to the kinetic energy at
a radius rgal, and find that

kBT
(
rgal

)
≈ mpσ

2
(
rgal

)
= 7.8× 10−2 keV

(
rgal

pc

)−1

. (28)

We plot (27) in Figure 12. The value of ζ goes to zero at the
highest and smallest radii since, for the former, the gas is cool
and emits most of its radiation redward of 2 keV, and for the
latter, the gas is hot and emits mostly blueward of 10 keV.
Thus, even though the integral in (26) extends to rgal = 0, the
contribution to Ṁ is suppressed exponentially at the smallest
radii.

Since, by (20) and (21), Ṁ depends on the parameters of
the PDMF, we now constrain these parameters by limiting
the allowed mass loss rate from stellar collisions calculated
via (26) at 10−5M�yr−1. We consider changes in Mmin and α,
and keep Mmax set at 125M� since (as seen in Figure 9) Ṁ is
approximately independent of Mmax.

We sample the Mmin-α parameter space and use (26) to
compute the total mass loss rate, the results of which are
shown in Figure 13. The contours represent the calculated
Ṁ values, where the solid contours are on a logarithmic
scale, and where they are limited from above at a value of

Ṁ = 10−5M�yr−1. The figure shows that PDMFs with flat
to canonical-like profiles are allowed. Very top-heavy profiles
(α � 1.25) are not allowed, as they predict too high of a
mass loss rate. Mass functions with Mmin � 7M� are also
not allowed. These results are consistent with measurements
of the Arches star cluster, a young cluster located about
25 pc from the Galactic center. Recent measurements [42–
44] probing stellar masses down to about 1M� show that the
cluster has a flat PDMF, with α in the range of about 1.2 to
1.9 (depending on the location within the cluster).

Since Ṁ is a much stronger function of α than of Mmin

it is difficult for us to place tight constraints on the allowed
range of Mmin. Figure 13 shows that we can, however, place
a constraint on the allowed upper limit of Mmin, since very
high values of Mmin result in mass loss rates > 10−5M�yr−1.
For α > 1.25, we fit a 3rd degree polynomial (the dashed line
in Figure 13) to the Ṁ = 10−5M�yr−1 contour. This fit ana-
lytically expresses the upper limit of Mmin as a function of
α. We provide the coefficients of this fit in the caption of
Figure 13.

The small difference between the solid and dashed lines
at rgal = 0.06 pc in Figure 8(b) suggests that, even for stellar
encounters involving small impact parameters, our integra-
tion does not miss many collisions by ignoring gravitational
focusing. To estimate the contribution to the total mass loss
rate in Figure 13 from gravitational focusing, we take δMtyp,
the typical amount of mass lost per collision, to be simply a
function of b. This avoids the multi-dimensional integrations
involved in (20) and (21), since for these equations Δpd is
a function of b, Mpr, Mpd, and vrel(rgal). For simplicity, we
choose δMtyp(b) to decrease linearly from 2M� (we assume
that both stars are completely destroyed) at b = 0 to 0 at
b = b0. We find b0 by noting from Figure 1 that for all
values of the polytropic index, the amount of mass loss for
an indirect collision goes to zero at around γ = 0.98. By
recalling the definition of γ (6), we solve for b0 at γ = 0.98
by setting M̃pr = 1, and taking vrel ∼ 2σ(rgal = 0.06 pc). By
calculating dΓ/db(< rgal) (for Salpeter values) evaluated at
0.06 pc across a range of b, and multiplying by δMtyp(b), we
are able to estimate dṀ/db. We do this for dΓ/db(< rgal) with
and without gravitational focusing and integrate across b.
Subtracting the two numbers results in our estimate of the
contribution to the total mass loss rate due to gravitational
focusing: 2.3×10−7M�. This is about twice the mass loss rate
from Figure 13 evaluated at Salpeter values. We perform the
same calculation across the Mmin-α parameter space and find
that gravitational focusing contributes a factor of at most
∼2.5 to the total mass loss rate.

An underestimate of a factor of 2.5 slightly affects the
region of parameter space that we are able to rule out, as
shown by the line contours in Figure 13. The 4×10−6M�yr−1

contour (2.5 times less than the 10−5 contour) shows that the
region of the parameter space that is ruled out is Mmin �
1.4M� and α � 1.4.

6. Implications for the IMF

We now place constraints on the IMF in the Galactic center
with a simple analytical approach that connects the IMF to
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Figure 14: (a) The IMF power-law slope as a function of the PDMF power-law slope for the case of constant star formation. (b) The same
except for exponentially decreasing star formation with τexp = 3, 5, 7, 9 Gyr (bottom to top line, resp.).

the PDMF, and with the results of the previous section. The
mass function as a function of time is described by a partial
differential equation that takes into account the birth rate
and death rate of stars:

∂ξ(M, t)
∂t

= RB(t)Φ(M)− ξ
1

τ�(M)
, (29)

where RB(t) is the birth rate density of stars (dNB/(dtd3rgal)),
Φ(M) is the initial mass function normalized such that∫
Φ(M)dM = 1, and τ�(M) is the main sequence lifetime

of stars as a function of stellar mass. For the initial mass
function, we take a power law,

Φ =M−γ, (30)

and for τ�(M) we use the expression given by Mo et al. [45]

τ�(M) = 2.5× 103 + 6.7× 102M2.5 + M4.5

3.3× 10−2 M1.5 + 3.5× 10−1M4.5
Myr, (31)

valid for 0.08M� < M < 100M� and for solar-type metallic-
ity.

In the following paragraphs, we consider different star
formation history scenarios. For each scenario, we will need
to know RB(τMW ), the star formation rate density in the
Galactic center at the age of the Milky Way (which we take to
be 13 Gyr). A rough estimate of this value is given by the
number density of young stars in the Galactic center divided
by their age: RB(τMW ) ∼ ρ(r)η/(〈τ〉〈M〉). Here 〈τ〉 and 〈M〉
are the average age and average mass of the young stars in the
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Galactic center, which we take to be ∼ 10Myr and ∼10M�,
respectively. The parameter η is the fraction of stars with
masses above 10M�, which for reasonable mass functions
is ∼0.1%. For self-consistency, we use ρ evaluated at 0.06 pc
(which from (10) is ∼107M�pc−3), since this was the radius
at which we used to constrain the present-day mass function.
These values result in RB(τMW ) ∼ 10−4 pc−3 yr−1.

For the simple case of a constant star formation rate,
RB(t) = RB(τMW ), and the solution to (29) with the bound-
ary condition that ξ(M, t = 0) = Φ(M)ntot(t = 0), evaluated
at the current age of the Milky Way is

ξ(M, t = τMW )

= Φ(M)e−τMW/τ�(M)

×
{
RB(τMW )τ�(M)eτMW/τ�(M) − RB(τMW )τ�(M) + ntot(0)

}
.

(32)

We evaluate the solution at the age of the Milky Way (yielding
the PDMF) because we want to compare with our constraints
on the PDMF as found in the previous section. To solve for
ntot(0), we use the known mean density of the Galactic center
today at 0.06 pc, ρ(τMW , r = 0.06 pc), insert (32) into the fol-
lowing expression:

ρ
(
τMW , r = 0.06 pc

) =
∫

ξ(M, t = τMW )MdM, (33)

and solve for ntot(0).
We solve for ξ(M, τMW ) for a range of different IMF

power-law slopes, γ and fit a power law to the solution, with
a power-law slope α. We plot the IMF power-law slope as
a function of the calculated PDMF power-law slope for
constant star formation in Figure 14(a). We have constrained
the PDMF in the previous section to have α � 1.25, indicated
in the figure by the vertical line. The figure therefore shows
that for the case of constant star formation, the IMF power-
law slope, γ, must be �0.9.

For the general case of a star formation rate that varies
with time, RB(t) /=RB(τMW ), and the solution to (29) with
the same boundary condition and evaluated at τMW is:

ξ(M, t = τMW ) = Φ(M)e−τMW/τ�(M)

×
{∫ τMW

0
RB(t′)et

′/τ�(M)dt′ + ntot(0)
}

.

(34)

For an exponentially decreasing star formation history, the
star formation rate is given by

RB(t) = RB(τMW )e−(t−τMW )/τexp . (35)

Given this star formation history, we solve for ξ(M, τMW ) (by
solving for ntot(0) with (33)) for τexp =3, 5, 7 and 9 Gyr. We
fit power-laws to the resulting PDMFs, and show the results
in Figure 14(b). The figure shows that smaller values of τexp

result in larger values of α for any given γ. The trend can be
explained by the fact that since a smaller value of τexp results
in a steeper RB profile, and that all profiles must converge to

RB(τMW ) at the present-time, RB profiles with smaller values
of τexp have had overall more star formation in the past.
More overall star formation means that the present-day mass
function is comprised of fractionally more lower-mass stars
since the IMF favors lower-mass stars. The constant buildup
of lower-mass stars results in a steeper PDMF, so that for
any given γ, α should be larger. The figure shows that for
exponentially decreasing star formation γ must be �0.6, 0.8,
0.9, and 1.0 for τexp = 3, 5, 7, and 9 Gyr, respectively.

The final case we consider is episodic star formation,
where each episode lasts for a duration Δt, where the ending
and beginning of each episode is separated by a time, T , and
where the magnitude of each episode is RB(τMW ). For such a
star formation history, the solution to (34) is

ξ(M, t = τMW )

= Φ(M)e−τMW/τ�(M)

×
⎧
⎨

⎩
RB(τMW )τ�(M)

nmax∑

n=0

[
e[(n+1)Δt+nT]/τ�(M)

−en(Δt+T)/τ�(M)
]

+ ntot(0)

⎫
⎬

⎭
,

(36)

where nmax = floor{(τMW−Δt)/(T+Δt)} and where we again
solve for ntot(0) with (33). We consider 9 cases with Δt and
T = 106, 107, and 108 yrs and show the results in Figure 15.
In each panel the lowest line is Δt = 108 yrs and the highest
line is Δt = 106 yrs. For T = 106 yrs, γ � 0.8 and 0.5 for
Δt = 106 and 107 yrs, respectively, while the Δt = 108 yrs
case results in constraints on γ that are too low to be realistic.
For T = 107yrs, γ � 0.5 and 0.4 for Δt = 106 and 107 yrs,
respectively, while again, the Δt = 108 yrs case results in
unrealistic constraints. Finally, for the T = 108 yrs, γ � 0.5
for Δt = 106, while the Δt = 107 and 108 yrs case result in
unrealistic constraints. We test if when the last star formation
episode occurs (relative to the present day) it affects our solu-
tion of ξ(M, τMW ) by varying the start time of the star
formation episodes. By varying the start time and testing all
the combinations of Δt and T that we consider, we find that
the lines in Figure 15 vary by at most about 5%, so that the
main trends in the figure are unaffected.

7. Contribution from Red Giants

Spectroscopic observations have revealed that the central
parsec of the Galaxy harbors a significant population of giant
stars [18, 19]. Due to their large radii (and hence large cross
sections), it is possible that they could play an important part
in the mass loss rate due to collisions in the Galactic center.

In assessing their contribution to the mass loss rate, care
must be taken when deriving the collision rates, because their
radii, rRG, are strong functions of time, t. Dale et al. [14]
have already calculated the probability, P(rgal), for a red giant
(RG) in the Galactic center to undergo collisions with main
sequence impactors. They have taken into account that rRG(t)
by integrating the collision probability over the time that the
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Figure 15: The IMF power-law slope as a function of the PDMF power-law slope for the case of episodic star formation. In each panel the
lowest line is Δt = 108 yrs and the highest line is Δt = 106 yrs.

star resides on the RG branch. We use their results to estimate
the mass loss rate due to RG-MS star collisions.

To find the number density of RGs in the Galactic center,
we weight the total stellar density by the fraction of time the
star spends on the RG branch:

nRG

(
rgal

)
∼ n�

(
rgal

)τRG

τ�
. (37)

This approximation should be valid given a star formation
history that is approximately constant when averaged over
time periods of order τRG. The number of collisions per unit
time suffered by any one red giant, Ṗ(rgal), should be of order

the collision rate averaged over the lifetime of the RG and is
given by

Ṗ
(
rgal

)
∼
〈
Ṗ
(
rgal

)〉

t
=

P
(
rgal

)

τRG
. (38)

If we define δM to be the typical amount of mass lost in the
collision, then the mass loss rate is

dṀ

dlnrgal
= 4πr3

gal
dṀ

d3rgal
∼ 4πr3

galnRG

(
rgal

)P
(
rgal

)

τRG
δM. (39)

To calculate an upper limit for the contribution of
RG-MS star collisions to the mass loss rate, we assume that
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Figure 16: An upper limit to the mass loss rate due to collisions bet-
ween RG and MS stars. The arrow indicates the range in the diffuse
X-ray observations (rgal < 1.5′′) which we use to constrain the
PDMF (see Section 5).

all RG and MS stars have masses of 1M� and that the entire
RG is destroyed in the collision. Collisions involving 1M�
RGs yield an upper limit, because there is not an appreciable
amount of RGs with masses less than∼ 1M� due to their MS
lifetimes being greater than the age of the Galaxy. For RGs
with masses greater than 1M�, the amount they contribute
to the mass loss rate is a competition between their lifetimes
and radii. Red giant lifetimes decrease with mass (thereby
decreasing the time they have to collide) and their radii in-
crease with mass (thereby increasing the cross section). In
their Figure 3, Dale et al. [14] clearly show that the number
of collisions decreases with increasing RG mass, indicating
that the brevity of their lifetime wins over their large sizes.
One solar mass MS impactors should yield approximately an
upper limit to the mass loss rate, since ∼ 1M� MS stars are
the most common for the PDMFs under consideration.

Since we assume that the entire RG is destroyed in the col-
lision δM = 1M�. For the case that all impactors are 1M�
MS stars, we calculate nRG(rgal) from (37) by noting that
n�(rgal) = ρ�(rgal)/(1M�). For self-consistency, we must
truncate P(rgal) at 1 for all P(rgal) > 1 since we are considering
the case where one collision destroys the entire star. We plot
(39) for this calculation in Figure 16. The discontinuity is
due to our truncating P(rgal) at 1. The figure shows that
the mass loss rate for RG-MS star collisions never exceeds
10−5M�yr−1, well below typical dṀ/dlnrgal for values for
MS-MS collisions (see Figures 9 and 10). Moreover, in their
hydrodynamic simulations, Dale et al. [14] note that in a
typical RG-MS star collision, at most ∼10% of the RG enve-
lope is lost to the RG. We therefore conclude that the contri-
bution of RGs to the total mass loss rate in the central parsec
of the Galaxy is negligible.

The figure shows that by rgal = 0.06 pc, the mass loss rate
for RG-MS star collisions is at most about 10−6M�yr−1. It is

thus possible that for MS-MS collisions, values of Mmin and
α that result in total mass loss rates just below 10−5M�yr−1

could be pushed past this threshold with the addition of mass
loss due to RG collisions. However, we believe that this is
unlikely for two reasons. The inclusion of the factor, ζ , when
calculating the total mass loss rate (see (26)) will reduce the
mass loss by at least a factor of 0.6 (see Figure 12). Also, as
noted by the hydrodynamic simulations of Dale et al. [14],
for a typical RG-MS star collision, at most ∼10% of the RG
envelope is lost to the RG. This will reduce dṀ/dlnrgal for
RG-MS collisions by another factor of 10.

8. Conclusions

We have have derived novel, analytical methods for calcu-
lating the amount of mass loss from indirect and direct
stellar collisions in the Galactic center. Our methods com-
pares very well to hydrodynamic simulations and do not
require costly amounts of computation time. We have also
computed the total mass loss rate in the Galactic center
due to stellar collisions. Mass loss from direct collisions
dominates at Galactic radii below ∼0.1 pc, and thereafter
indirect collisions dominate the total mass loss rate. Since
the amount of stellar material lost in the collision depends
upon the masses of the colliding stars, the total mass loss rate
depends upon the PDMF. We find that the calculated mass
loss rate is sensitive to the PDMF used and can therefore
be used to constrain the PDMF in the Galactic center. As
summarized by Figure 13, our calculations rule out α � 1.25
and Mmin � 7M� in the Mmin-α parameter space. Finally,
we have used our constraints on the PDMF in the Galactic
center to constrain the IMF to have a power-law slope �0.4
to 0.9 depending on the star formation history of the Galactic
center.
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[4] R. Schödel, A. Eckart, T. Alexander et al., “The structure of
the nuclear stellar cluster of the Milky Way,” Astronomy and
Astrophysics, vol. 469, no. 1, pp. 125–146, 2007.



Advances in Astronomy 19

[5] A. Eckart, R. Genzel, T. Ott, and R. Schödel, “Stellar orbits near
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