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The MemToolbox is a collection of MATLAB functions for
modeling visual working memory. In support of its goal
to provide a full suite of data analysis tools, the toolbox
includes implementations of popular models of visual
working memory, real and simulated data sets, Bayesian
and maximum likelihood estimation procedures for
fitting models to data, visualizations of data and fit,
validation routines, model comparison metrics, and
experiment scripts. The MemToolbox is released under
the permissive BSD license and is available at http://
memtoolbox.org.

Working memory is a storage system that actively
holds information in mind and allows for its manipu-
lation, providing a workspace for thought (Baddeley,
1986). Its strikingly limited capacity has inspired a slew
of research aimed at characterizing those limits in terms
of the spatiotemporal properties of the stimulus and the
age, intelligence, tiredness, and mental health of the
individual.

A handful of experimental paradigms predominate
the study of working memory. These include the
delayed match-to-sample task used in studies of animal
cognition (Blough, 1959) and the span tasks used in
studies of verbal working memory (Daneman &
Carpenter, 1980). Research on visual working memory
relies primarily on two tasks: partial report and change
detection (Figure 1). In a partial-report task, the
participant is shown a set of letters, shapes, or colorful
dots and then after a brief delay is asked to report the
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properties of one or a subset of the items (Sperling,
1960; Wilken & Ma, 2004; Zhang & Luck, 2008). In a
change-detection task, the participant is shown a pair
of displays, one after the other, and is asked a question
that requires comparing them, such as whether they
match (Phillips, 1974; Pashler, 1988; Luck & Vogel,
1997).

Formal models have been proposed that link
performance in change-detection and partial-report
tasks to the architecture and capacity of the working-
memory system. These include the item-limit model
(Pashler, 1988), the slot model (Luck & Vogel, 1997;
Cowan, 2001), the slots + averaging model (Figure 2;
Zhang & Luck, 2008), the slots 4 resources model
(Awh, Barton, & Vogel, 2007), the continuous-resource
model (Wilken & Ma, 2004), the resources + swaps
model (Bays, Catalao, & Husain, 2009), the ensemble
statistics + items model (Brady & Alvarez, 2011), and
the variable-precision model (Fougnie, Suchow, &
Alvarez, 2012; van den Berg, Shin, Chou, George, &
Ma, 2012;). Each model specifies the structure of visual
memory and the decision process used to perform the
task.

Having been fit to the data, these models are used to
make claims about the architecture and capacity of
memory. For example, using an item-limit model to fit
data from a change-detection task, Luck and Vogel
(1997) showed that observers can remember the same
number of objects no matter whether they store one or
two features per object (e.g., only color vs. both color
and orientation) and from this inferred that the storage
format of visual working memory is integrated objects,
not individual features. Using data from a continuous
partial-report task, Brady and Alvarez (2011) showed
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Figure 1. (top) A continuous partial-report task. The observer
sees the stimulus display and then after a delay is asked to
report the exact color of a single item. (bottom) A change-
detection task. The observer sees the stimulus display and then
after a delay is asked to report whether the test display
matches.

that when items are presented in a group, memory for
an individual item is biased toward the group average
and from this inferred that working memory is
hierarchical, representing both ensembles of items and
individual items.

The MemToolbox

We created the MemToolbox, a collection of
MATLAB functions for modeling visual working
memory. The toolbox provides everything needed to
perform the analyses commonly used in studies of
visual working memory, including model implementa-
tions, maximum likelihood routines, and data valida-
tion checks, although it defaults to a Bayesian
workflow that encourages a deeper look into the data
and the models’ fits. In the following sections, we
highlight the toolbox’s core functionality and describe
the improvements it offers to the standard workflow.
We begin by reviewing the standard workflow and its
implementation in the toolbox.

The standard workflow

The experimenter first picks a model. Then, to fit the
model to experimental data using probabilistic meth-
ods, a likelihood function is defined that describes the
model’s predictions for each possible setting of its
parameters. (Formally, given a model M with free
parameters 6, the model’s likelihood function specifies
a probability distribution P(D|6) over possible datasets
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Figure 2. An example of a model’s fit to continuous partial-
report data. Most responses fall within a relatively small range
around the target item’s true value, but some responses are far
off. The data are fit using the mixture model of Zhang and Luck
(2008), which attributes the gap in performance to differences
in the state of memory for the target item: With probability g,
the observer remembers nothing about the item and guesses
randomly; with probability 1 — g, the observer has a noisy
representation of the item, leading to responses centered at the
true value and with a standard deviation o that reflects the
quality of the observer’s memory.

D.) With the likelihood function in hand, an estimator
is used to pick the parameter settings that provide the
best fit to the data. A popular choice is the maximum
likelihood estimator, which selects the parameter values
that maximize the model’s likelihood function given the
data (Dempster, Laird, & Rubin, 1977; Lagarias,
Reeds, Wright, & Wright, 1998). Typically, this
procedure is performed separately for each participant
and experimental condition, resulting in parameter
estimates that are then compared using traditional
statistical tests (e.g., Zhang & Luck, 2008).

The MemToolbox uses two MATLAB structures
(“structs”) to organize the information needed to
analyze data using the standard workflow: one that
describes the data to be fit and another that describes
the model and its likelihood function.

Fitting a set of data with a model is then as simple as
calling the built-in MLE () function. For example, if
data was obtained from a continuous color-report task
in which an observer made errors of —89°, 29°, etc., a
model could be fit using the following workflow:

>>model =StandardMixtureModel () ;

>> data.errors=[-89,29,-2,6,-16,65,
43,-12,10,0,178,-421;

>> fit =MLE (data, model)

This will return the maximum likelihood parameters
for this observer’s data, allowing for standard analysis
techniques to be used.

Thus, with little effort, the MemToolbox can be used
to simplify (and speed up) existing workflows by
allowing for straightforward fitting of nearly all the
standard models used in the visual working-memory
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literature. In support of this goal, the toolbox includes
descriptive models, such as the
StandardMixtureModel (that of Zhang & Luck,
2008) and SwapModel of Bays et al. (2009), as well as
several explanatory models, such as
VariablePrecisionModel (e.g., Fougnie et al., 2012;
van den Berg et al., 2012). For more information about
a particular model m, type help m at the MATLAB
prompt. For example, to access the help file for
StandardMixtureModel, run help
StandardMixtureModel. It is also possible to view
the full code for a model by running edit m. (In fact,
this applies to any function in the toolbox.) For
example, to view the code for the swap model, type
edit SwapModel, which will show the model’s
probability distribution function, the parameter ranges,
and the specification of priors for the model parame-
ters.

The toolbox also includes a number of wrapper
functions that extend existing models and make them
more robust. For example, the wrapper function
WithBias () adds a bias term, WithLapses () adds an
inattention parameter, and Orientation() alters a
model so that it uses a 180° error space, appropriate for
objects that are rotationally symmetric, e.g., line
segments. Inattention parameters are particularly
important because deciding whether to include such
parameters has an inordinate influence on parameter
estimation and model selection (Rouder et al., 2008).
Many of the standard models in the toolbox (e.g.,
StandardMixtureModel) already include such inat-
tention parameters.

The Bayesian workflow

By default, instead of returning the maximum
likelihood estimate, the toolbox uses a Bayesian
workflow that constructs a full probability distribution
over parameter values. This probability distribution
describes the reasonableness of each possible parameter
setting after considering the observed data in light of
prior beliefs. In doing so, it strongly encourages a
thorough examination of model fit. The Bayesian
workflow is implemented as MemFit, the toolbox’s
primary fitting function.

>>fit=MemFit(data, model)

Bayesian inference provides a rational rule for
updating prior beliefs (“the prior”) based on experi-
mental data. The prior, P(0), conveys which parameter
values are thought to be reasonable, and specifying it
can be as straightforward as setting upper and lower
bounds (for example, bounding the guess rate between
0 and 1). Analysts add value through judicious
selection of priors that faithfully reflect their beliefs.
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Because a prior can have an arbitrarily large impact on
the resulting inference, it is important both to carefully
consider which distribution is appropriate and, when
communicating results that depend on those inferences,
to report exactly the choice that was made. For the
purposes of exploratory data analysis, it is common to
use a noninformative or weakly informative prior that
spreads the probability thinly over a swath of plausible
parameter values (e.g., the Jeffreys prior, a class of
noninformative priors that are invariant under repar-
ameterization of the model; Jeffreys, 1946; Jaynes,
1968) to avoid an inordinate influence of the prior on
inferences.

Once specified, beliefs are then updated (according
to Bayes’ rule) to take into account the experimental
data. Bayes’ rule stipulates that after observing data D,
the posterior beliefs about the parameters (“the
posterior”) are given by

P(0|D) o P(D|0) - P(0),

which combines the likelihood of the data given the
parameters with the prior probability of the parame-
ters.

Estimating the full posterior distribution is harder
than finding the maximum likelihood estimate. For
some models, it is possible to derive closed-form
expressions for the posterior distribution, but for most
models, this is intractable, and so sampling-based
algorithms are used to approximate it. One such
algorithm, the Metropolis-Hastings variant of Markov
Chain Monte Carlo (MCMC), is applicable to a wide
range of models and is thus the one used by the toolbox
(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
1953; Hastings, 1970). The algorithm chooses an initial
set of model parameters and then, over many
iterations, proposes small moves to these parameter
values, accepting or rejecting them based on how
probable the new parameter values are in both the prior
and the likelihood function. In this way, it constructs a
random walk that visits parameter settings with a
frequency proportional to their probability under the
posterior. This allows the estimation of the full
posterior of the model in a reasonable amount of time
and is theoretically equivalent to the more straightfor-
ward (but much slower) technique of evaluating the
model’s likelihood and prior at every possible setting of
the parameters (implemented in the GridSearch
function). For an introduction to MCMC, we recom-
mend Andrieu, De Freitas, Doucet, and Jordan (2003).
The MemToolbox includes an implementation of
MCMC that attempts, as best as possible, to automate
the process of sampling from the posterior of the
models that are included in the toolbox.

With the posterior distribution in hand, there are a
number of ways to analyze and visualize the results.
First, the maximum of the posterior distribution (the
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Figure 3. An example of the full posterior of the standard
mixture model of Zhang and Luck (2008), where g is the guess
rate and sd is the standard deviation of observers’ report for
remembered items. On the diagonal are plots that show the
posterior for an individual parameter, e.g., the distribution for
guess rate (g) is plotted in the top left corner. We can see that
the data make us quite confident that the guess rate is between
0.05 and 0.12. On the off-diagonals are the correlations
between the parameters—for example, the top right axis shows
guess rate (y-axis) plotted against standard deviation (x-axis).
Each row and each column corresponds to a parameter, e.g., the
x-axis for all the plots in the second column corresponds to
standard deviation.

maximum a posteriori or MAP estimate) can be used as
a point estimate that is analogous to the maximum
likelihood estimate, differing only in the MAP’s
consideration of the prior. (This estimate can be
calculated directly using the MAP function). However,
visualizing the full posterior distribution also provides
information about how well the data constrain the
parameter values and whether there are trade-offs
between parameters (Figure 3).

Figure 3 shows a posterior distribution for data
analyzed with the standard mixture model of Zhang
and Luck (2008). The plots on the main diagonal are
histograms of values for each parameter, the so-called
“marginal” of the posterior distribution; the plots on
the off-diagonals reveal correlations between parame-
ters. Note that in the standard-mixture model, there is a
slight negative correlation between the standard-
deviation parameter and the guess-rate parameter:
Data can be seen as having either a slightly higher guess
rate and lower standard deviation or a slightly lower
guess rate and higher standard deviation. Examining
the full posterior reveals this trade-off, which remains
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hidden when using maximum likelihood fits. This is
important when drawing conclusions that depend on
how these two parameters relate. For example,
Anderson, Vogel, and Awh (2011) found correlations
between a measure based on guess rate and another
based on standard deviation and used this to argue that
each observer has a fixed personal number of discrete
memory slots. However, because the parameters trade
off, such correlations are meaningful only if the
estimates are derived from independent sets of data;
otherwise, the correlations are inflated by the noise in
estimating the parameters (Brady, Fougnie, & Alvarez,
2011). Thus, understanding the full posterior distribu-
tion is critical to correctly estimating parameters and
their relationships to each other.

Posterior predictive checks

Another technique applied by the MemToolbox is
the automatic use of posterior predictive checks.
Sometimes a whole class of models performs poorly,
such that there are no parameter settings that will
produce a good fit. In this case, maximum likelihood
and maximum a posteriori estimates are misleading:
They dutifully pick out the best even if the best is still
quite bad. A good practice then is to check the quality
of the fit, examining which aspects of the data it
captures and which aspects it misses (Gelman, Meng, &
Stern, 1996; Gelman, Carlin, Stern, & Rubin, 2004).
This can be accomplished through a posterior predic-
tive check, which simulates new data from the posterior
fit of the model and then compares the histograms of
the actual and simulated data (Figure 4). MemFit
performs posterior predictive checks by default.

A model that can accurately fit the data in a
posterior predictive check does not necessarily provide
a good fit. For example, the model may fit the averaged
data but fail to fit observers’ data from individual
displays, perhaps because of reports of incorrect items
(Bays et al., 2009) or because of the use of grouping or
ensemble statistics (Brady & Tenenbaum, 2013). In
addition, a good fit does not necessarily indicate a good
model: An extremely flexible model that can mimic any
data always provides a good fit, but this provides no
evidence in favor of that model (Roberts & Pashler,
2000). However, models that systematically deviate in a
posterior predictive check nearly always need im-
provement.

Hierarchical modeling
Typically, the question of interest in working-

memory research is not about a single observer, but a
population: Do older individuals have reduced work-
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Figure 4. (Top) Simulated data from the posterior of the model
(green) with the actual data overlaid (black). The mismatch
between the two is symptomatic of a poor fit. (Bottom) The
difference between the simulated and real data, bounded by
95% credible intervals. If at any spot the credible interval does
not include zero, it is an indication that the model does not
accurately fit the data.

ing-memory capacity? Do people guess more often
when there is more to remember? When aggregating
results from multiple participants to answer such
questions, the standard technique is to separately fit a
model to the data from each participant (using, for
example, maximum likelihood estimation) and to
combine parameter estimates across participants by
taking their average or median. Differences between
conditions are then examined through -tests or
ANOVAs. This approach to analyzing data from
multiple participants allows generalization to the
population as a whole because participant variance is
taken into account by treating parameters as random
effects (Daw, 2011). One flaw with this approach is that
it entirely discards information about the reliability of
each participant’s parameter estimates. This is partic-
ularly problematic when there are differences in how
well the data constrain the parameters of each
participant (e.g., because of differences in the number
of completed trials) or when there are significant trade-
offs between parameters (as in the parameters of the
standard model), in which case analyzing them
separately can be problematic (Brady et al., 2011). For
example, the standard deviation parameter of the
standard mixture model is considerably less con-
strained at high guess rates than at low guess rates.
Thus, even with the same number of trials, our estimate
of the standard deviation will be more reliable for
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participants with lower guess rates than those with
higher guess rates.

A better technique, although one that is more
computationally intensive, is to fit a single hierarchical
model of all participants (e.g., Rouder, Sun, Speckman,
Lu, & Zhou, 2003; Rouder & Lu, 2005; Morey, 2011).
This treats each participant’s parameters as samples
from a normally distributed population and uses the
data to infer the population mean and standard
deviation of each parameter. This technique automat-
ically gives more weight to participants whose data give
more reliable parameter estimates and causes “shrink-
age” of each participant’s parameter estimates toward
the population mean, sensibly avoiding extreme values
caused by noisy data. For example, using maximum
likelihood estimates, participants with high guess rates
are sometimes estimated to have guess rates near zero
but standard deviations of 3000° (resulting in a nearly
flat normal distribution). This problem is avoided by
fitting participants in a hierarchical model.

By default, when given multiple data sets, one per
participant, MemFit will separately fit the model to
each participant’s data. Hierarchical modeling is
performed by passing an optional parameter,
‘UseHierarchical’, to MemFit:

>> datal =MemDataset (1) ;

>> data2 =MemDataset(2) ;

>>model =StandardMixtureModel () ;
>>fit=MemFit({datal,data2}, model,
'UseHierarchical', true)

Fitting such models is computationally more diffi-
cult, and so you should ensure the estimation procedure
has correctly converged (e.g., using the
PlotConvergence function provided by the toolbox)
before relying on the parameter estimates to make
inferences.

Model comparison

Which model best describes the data? Answering this
question requires considering both the resemblance
between the model and the data and also the model’s
flexibility. Flexible models can fit many data sets, and
so a good fit provides only weak evidence of a good
match between model and data. In contrast, a good fit
between an inflexible model and the data provides
stronger evidence of a good match. To account for this,
many approaches to model comparison penalize more
flexible models; these include the Akaike Information
Criterion with correction for finite data (AICc; Akaike,
1974; Burnham & Anderson, 2004), the Bayesian
Information Criterion (BIC; Schwarz, 1978), the
Deviance Information Criterion (DIC; Spiegelhalter,
Best, Carlin, & der Linde, 2002), and the Bayes factor
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(Kass & Raftery, 1995). It is also possible to perform
cross-validation—fitting and testing separate data—to
eliminate the advantage of a more flexible model.
Implementations of some of these model comparison
techniques are provided by the MemToolbox and can
be accessed by passing multiple models to the MemFit
function:

>>modell =StandardMixtureModel() ;
>>model2 =SwapModel() ;
>>modelComparison=MemFit (data, {modell,
model2})

This will output model comparison metrics and
describe them, including which model is preferred by
each metric.

Despite the array of tools provided by the
MemToolbox, we do not wish to give the impression
that model selection can be automated. Choosing
between competing models is no easier or more
straightforward than choosing between competing
scientific theories (Pitt & Myung, 2002). Selection
criteria such as AIC¢ are simply tools for under-
standing model fits, and it is important to consider
their computational underpinnings when deciding
which criterion to use—before performing the analy-
sis. For example, the criteria included in the toolbox
are differently calibrated in terms of how strongly they
penalize complex models with criteria such as AIC¢
having an inconsistent calibration that penalizes
complex models less than criteria such as BIC, which
penalizes complex models in a way that depends on
their functional form, taking into account correlations
between parameters. DIC is the only method appro-
priate in a hierarchical setting.

In addition to choosing an appropriate model
comparison metric, we recommend computing the
metric for each participant independently and looking
at consistency across participants to make inferences
about the best-fitting models. Importantly, by fitting
independently for each participant, you can take into
account participant variance and are thus able to
generalize to the population as a whole (for example,
by using an ANOVA over model likelihoods). By
contrast, computing a single AICc or BIC value across
all participants does not allow generalization to the
population as it ignores participant variance; one
participant that is fit much better by a particular model
can drive the entire AICc or BIC value. This kind of
fixed-effects analysis can thus seriously overstate the
true significance of results (Stephan et al., 2010). As in
the case of estimating parameters, this technique of
estimating model likelihoods for each participant and
then performing an ANOVA or t-test over these
parameters is only an approximation to the fully
Bayesian hierarchical model that considers the evidence
simultaneously from each participant (Stephan, Penny,
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Daunizeau, Moran, & Friston, 2009); however, in the
case of model comparison, the simpler technique is
likely sufficient for most visual working-memory
experiments.

To facilitate this kind of analysis, the MemToolbox
performs model comparisons on individual participant
data, and MemFit calculates many of the relevant
model comparison metrics so that you may choose the
appropriate comparison for your theoretical claim.

Availability, contents, and help

The MemToolbox is available on the web at http://
memtoolbox.org. To install the toolbox, place it
somewhere sensible and then run the included Setup.m
script, which will add it to MATLAB’s default path.
The distribution includes source code, demos, and a
tutorial that reviews all of the toolbox’s functionality.
It is released under a BSD license, allowing free use for
research or teaching. The organization of the toolbox’s
folder structure is outlined in the file MemToolbox/
Contents.m. Detailed descriptions of each function
(e.g., MCMC) can be found in the help sections
contained in each file. To access the help section for
some function £ from the MATLAB prompt, run
help f.

Conclusion

We created the MemToolbox for modeling visual
working memory. The toolbox provides everything
needed to perform the analyses routinely used in visual
working memory, including model implementations,
maximum likelihood routines, and data validation
checks. In addition, it provides tools that offer a deeper
look into the data and the fit of the model to the data.
This introduction gave a high-level overview of its
approach and core features. To learn to use the
toolbox, we recommend the tutorial, available at http://
memtoolbox.org.

Keywords: visual working memory, mixture models,
model comparison
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