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Abstract

We show the local existence and uniqueness of solutioneohtist advanced model
for the description of electro-convection in nematic lgjwrystals, namely the weak
electrolyte model (WEM), which is a mixture of quasilinearabolic equations and
balance laws. We do this by bringing the WEM in a form whereaadérd iteration
scheme can be applied.

1 Introduction

Electro-convection in nematic liquid crystals is a paradifpr pattern formation in non—
isotropic media. Experimentally, a thin layer of such a matés contained in between two
spatially extended electrode plates. When an alternatirrget is applied to the electrodes an
electro-hydrodynamic instability occurs if the voltagealsove a certain threshold. The triv-
ial spatially homogeneous solution becomes unstable &ndchtes into non-trivial pattern
[Cha77, PB98].

There are essentially two models for the mathematical gesar of electro-convection in
nematic liquid crystals. These are the standard model (Jl8d the references therein) and
the weak electrolyte model (WEM). The latter has been intoced by Kramer and Treiber in
[Tre96, TK98] to overcome a number of insufficiencies of thdard model. In particular,
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the WEM has a number of pattern forming instabilities whigheg well with experimental
results [Tre96], see also [SUO7].

The local existence and uniqueness of solutions of the WEMhisntrivial task since the
governing equations are a relatively complicated mixtdrguasilinear parabolic equations
and balance laws. Therefore, in [SUO7] a regularized seeali parabolic WEM was con-
sidered. Here, we solve the problem for the original WEM bsnbming optimal regularity
theory for quasilinear parabolic systems and Kato’s mefoodjuasilinear hyperbolic sys-
tems. As a consequence, the justification results for theoappation of a regularized WEM
by Ginzburg—Landau equations from [SUO07] also hold for thginal WEM.

The following presentation and non-dimensionalizationtted WEM follows [DOO04,
SUO07]. We consider a layer of nematic liquid crystals in besw two infinitely extended
horizontal plates of height, i.e. in the following(z, y, z) € 2 = R? x (0, 7). In the WEM
the average molecular axis of the nematic liquid crystaldeiscribed locally by a director
field n of unit vectors. The Leslie-Erickson equations forand the generalized Navier-
Stokes equations for the fluid velocityand the pressunein the presence of an electric field
E are given by

(O, +v-VIn = wxn+6-(AAn—h), (1)
Py(0,+v-Vv = —Vp—V - (T + 1)+ 7pE, (2)
Vv = 0, 3)

for (z,y, z) € Q. These equations turn out to be a quasilinear paraboliesysthe meaning
of the quantities is as follows. The vorticity is

w= %(V X v), (4)
and the molecular field is given by
o (9 g 9\,
h=2 <8n \% 8Vn) gqm(n- E)E (5)
where
2f = (V-n)*> + Ka[n x (V x n)]* + Kz[n- (V xn)?, (6)

is the elastic energy density describing splay, twist)( and bend k3) deformations, and

where 5 5
(—f) = f with ni; = 8%712
ij 8’”@'73'

ovn

We refer to [DOO04] for a physical interpretation of the cams P, A\, K», K3, ande,. The
electric fieldE = E(x,y, z,t) € R3 is considered to be quasistationary, i.e.fot= 0. It is
then split into an external forcing and some potential paat,

E = E,(1)(0,0,1)" - Vo, (7



where usually in the experiments
E,(t) = Ey coswyt (8)

with an £, > 0 andwy > 0.
The tensorsd, and7v*¢ are, respectively, the shear flow tensor

1
A = 5(@‘%’ + 0,v;), 9)

and the viscous stress tensor

3 3
_]vi?isc — Z (ozlnmjnk ( Z nlAkl> + Oé5nj’flkAm‘ + Oéﬁ’fli’flkAkj> (10)
=1

k=1

+aon;m; + asnym; + auA;;

where
m = 0 (AAn — h) (11)
and with constant coefficients, . . ., ag. The tensoil with
3 8f
I = kg B " (12)

is called the nonlinear Ericksen stress tensor. The piojetgnsor
5ZJJ' = 52‘]’ — nyn; (13)

in (1) guarantees that| = 1 as long as the solution exists. See [Tre96].

The second part of the WEM comes from the quasi-static Maxaglations. In the
WEM [Tre96, TK98] there are two species of oppositely chdrgeobile ions. Under the
assumption of a linear recombination and zero diffusiviig WEM consists of (1)-(3) and
two balance equations for the charge dengignd the deviatiom of the local conductivity
from 1, namely

PO, +v-V)p = —V-(uEo), (14)
(0, +v-V)o = —a’m*V-(uEp) — g (20 + 0 — Pi?ap?) . (15)

Finally the system is closed by Poisson’s law
p=V-(cE). (16)

The dielectric tensaor and the conductivity tenser are given by

€ij = (Sij + EaMiM; and Hij = 52‘3' + OaMiNyj.



Similar to P, the parametep, is a Prandtl-type time scale ratio. For a physical integtien
of the constants”, o,, a, andr we again refer to [DO04]. The WEM will be considered
with the boundary conditions

0.ng = ng = 0,1 = 0,V = V3 = =0 (17)

atz =0, .

Using Poisson’s law, resp.¢, can be expressed in termsoand so (1)-(3) and (14)-
(15) can be rewritten as a system of dynamical equation¥’fet (ns, ns, vy, vo, v3, p, o).
Thus, (1)-(3), (14), (15) is abbreviated as

OV =M@tV +N(t,V) (18)

where)M (t)V stands for the linear antf (¢, V) for the nonlinear terms with respectta
The WEM equations are invariant under arbitrary transtetiom = andy and under the
reflections

Si o (x,ng,ng,v1) —  —(x,n92,n3,01), (19)
So 1 (Y, n2,v2) —  —(y, N, Va), (20)
83 . (Z,ng,U3,¢) - —<Z,TZ3,U3,¢). (21)

The local existence and uniqueness of solutions is noatiie to the relatively compli-
cated mixture of quasilinear parabolic equations and lealaws. To our knowledge no local
existence and uniqueness result is documented so far iitéretdire. Thus, here we make a
first step and prove the local existence and uniquenessifiai tonditions in a neighborhood
of the trivial solutionV = 0. We do this by bringing the WEM in a form where a standard
iteration scheme can be applied. In order to do so the ragutdrithe components of” has
to be chosen properly, i.e. for instancéas to by chosen one time more regular than
Notation. The Sobolev spacE™((2) is the space of:-times weakly differentiable functions
2 — R equipped with the norm

[l zm e Z 105ull 2@ with !\UI\%2(Q)=/QIU($)\2dfC-

|7]=0

We shall also need fractional order Sobolev spaces angoitgion spaces. The symmetry
S; allows to extend the WEM periodically into the bounded di@t and to expand the
variables in Fourier series with respect:td.e we write for instance

(2., 2 / / > gk, kg, k)€1 RTRSE ey .
k3s€Z

and similar forns, ..., 0. Here the extensions,, v, ve, o, p Will be even andnz, v3, ¢ odd
w.r.t. the third variable. We define

lalz ://Z (1, koo, B )21+ [ 2 + [l + |k |2)° dler o,

k3€Z
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Due to Parseval’s identity there is a one to one relation amchrequivalence between phys-
ical and Fourier space, i.e., for all € N there is a constardt > 0 such that

CHlli2gny < llul

e < Clldflizim).- (22)

In the following we useH™ as abbreviation for/™(R? x [0, 27]) with periodic boundary
conditions in the third variable.

Using (22) we also definé® for everys > 0 as functions in.?> whose Fourier transform
isin [%(s). It is equipped with the norm

[l s = [allizs)-

Finally we note that as a consequence of the periodic boynotarditions interpolation
spaces ([LM72]) are trivially characterized. For instafmeA : 52 — H* we have

[H* H*"?y = {u: (1+(=A)Yue HY={u: (1+|k*¥)acP(s)}
= {u:aclP(s+20)}=H"%

Theorem 1.1. Letd € (0,1) andm € N. There exists &, > 0 such that for all initial
conditions

VO — (n27n3’01’027U3’U’ Q)‘t:o c [Hm+3+29]2 % [Hm+2+29]3 % [Hm+2]2
With V- v = 0 and || Vo[ grm+s+20)2 [rm+242073 sz < C) there exists dp > 0 such that
(18) has a unique mild solution

V € C(0,Tl, [H™2 x [H™} x [H™2) 1 O ([0, Tol, [H™'? x [H™] x [H™])
with V1,—o = Vp.

The additional regularity fofns, n3)|,—o andv|,—o described by is needed to fulfill some
compatibilty conditions at = 0 to apply maximal regularity to the quasilinear parabolib-su
system for(n,, n3) andv. As consequencén;, n,) andv enjoy further regularity properties,
e.g., they are Holder continuous in time with valuegifi"*3)? x [H™2]3, while further
regularity for the charge densityand the local conductivity are unclear, and we restrict to
the simple formulation of Theorem 1.1.

The plan of the proof is as follows. k.1 we explain that the WEM is an evolutionary
system for the variables collectedlif i.e. we eliminate the pressure telip and expres&
in terms ofV/. In §2.2-§2.3 we extract the leading terms in the v)-part, rewrite the balance
laws as quasilinear hyperbolic systems in the sense of f{apfove a number of a priori
estimates and give the estimates for the remaining queailiand semilinear terms. Then in
63 we formulate an iteration scheme and prove the convergefitbe sequence constructed
by the iteration scheme.

Acknowledgments. The paper is partially supported by the Deutsche Forsclysmgsin-
schaft DFG under the grant Kr 690/18-1/2. The authors areefyiigor helpful discussions
with Gerhard Dangelmayr, Lorenz Kramer, and lan Melbourne.
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2 Thestructureof the WEM

2.1 TheWEM asadynamical system

To write the WEM as an evolutionary systemlin= (ns, ng, v1, v2, vs, p, o) We proceed as in
[SUOQ7], where also the three Lemmas below are proved (LemfrgA.3, A.4 in [SUO7]).
Essentially the proofs follow by explicit calculation frothe above Fourier representation
and (22). First we need to expreBdn terms ofl/. Therefore we have to solve

3 3 3
p = Z Ok (ekmEm) = Z Z Ok [(5km + eangnm ) (Eo cos(wot)Oms — Bmgb)}
k=1

k=1 m=1
with respect tap under the boundary conditios,_, . = 0. We find

(M +G)¢ = F(n,p, Eq)

where
3 3
F(n,p,Ey) = —p+cos(wot) Y Y O((hm + Eattinin) EoSms)
k=1 m=1
3 3
M¢ = Ap+e,did, Go=c0> Y Op(munmOmd) — .06 .
k=1 m=1

Lemma 2.1. The linear operato// ! is bounded fronf/® into {¢ € H**? : ¢ =0atz =
0,7} .

Hence the electric potential satisfies(1 + GM ') M¢ = F(n, p, Ey), whereGM " is
small forn = n — (1,0,0)” small. By using Neumann’s series we formally obtain

6 =M1+ GM ) Fln,p, Ey). (23)

Lemma 2.2. Lets > 2, and let||V|| s be sufficiently small. Then the operatdf—*(1 +
GM~1)~!is bounded fronf7® into H**2.

Next we focus on the hydrodynamic part of (18) and define tbgeption on the diver-
gence free vector fields hy = Q f, wherew solves

w—Vp = f, V-w=0, 0w =0dw,=wg=0atz=0,n. (24)
Lemma 2.3. The projectiony) is continuous fromiH™|? into {v € [H™]* : V - v = 0}.

Sincen? + n2 + n3 = 1 for our purposes it is sufficient to consider andns. Hence we
finally consider

Omng = (e, —(v-V)n+wxn+d-(AAn — h)) , (25)
omg = {es,—(v-V)n+wxn+d-(AAn —h)), (26)
O = Pyr'Q(—(v-V)v— V- (T +10) + 1%pE) (27)
dp = —v-Vp— PV - (uBo), (28)
oo = —v-Vo—a*n’V - (uEp) — g (20 + 0% — Pim?ap?), (29)

under the boundary conditions (17).



2.2 Thequasilinear parabolic part

We start with the computation of the highest order deriwagart in thev andn parts of the
system. Here and in the followingstands for terms with less derivatives or terms in which
the highest derivative occurs nonlinearly.

We introduce the derivation of the director from the planar alignment by

n = (1 + 7~l1, ’flg, flg)T
From (1 + 71)* + 1 + n2 = 1 we findn, = O(n2 + n2). Therefore

(v : n>2 = (a-Tz,ﬁQ + 8%3,&3)2 + x, V Xn= (8:B2,ﬁ3 - am3ﬁ27 _8:B1ﬁ37 am1ﬁ2)T + % y
n- (V X n) = (8932733 — 8953732) +% and n x (V X n) = (0, —8931732, —8$17~13>T —+ % .

Thus
2f = (Op,ig + Opyiz)? + Ko((0p,712)* + (04, 713)%) + K3(0pyTig — Opyfin)? + % .

Moreover

5J_ - +*7

o O O
S = O
= o O

and therefore to calculatein (5) we only need to calculate rows 2 and 35%, le.,

* * *
0
2 8(an) = 2K2ax1n2 2(85(;2712 + 8x3n3) —2K3(8x2n3 — a:c:;”Z) + %
2K50,,n3 2K3(0y,n3 — Ozyno) 2(0pyna + Opyn3)
Thus,
a *
2V - D) an = | 2K,02 ny + 202 1y + 205,05, 13 + 2K302 11y — 2K30,,05,75 | + *

2,02 iy + 2K302, iz — 2K 30,0,y g + 20,5, 0,5 g + 202, 703

Using this expansion an@;,w x n + §+(AAn)) = * we find for the equations fa#, 7, and
0yn3 In Fourier space that

Ty Kok? + k3 + K3k2  koks — Kskoks Ty
& = -2 + *.
7~7J3 ]{32]{33 - ng‘gkﬁg KQ]{:% + ng‘% + k?2’ 77L3
This matrix turns out to be negative definitedf, > 0 and K3 > 0.

Next we come to the equation for We proceed as above and compute the terms with
highest derivatives which are linear. Since in the-equation now terms played any role
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we have some lower triangular block structure and so ingtheequation it is sufficient to
consider the linear terms with highest derivativevofAll the rest will be denoted as above
with x. Hence, it is sufficient to analyse’’sc and in7*¢ the A, terms. We find
—ﬂ?isc = (Oél -+ (073 + a6)5i15j114ij -+ Oé4Aij + %
so that
0%1)1
VT = auAv+(a; +as+ag) | 0 | ++*
0
where we use® - v = 0. Therefore thén, v)—part is of the form

() )
n3 N3
ov = Lyow+G,,
whereL,, is defined by its symbol in Fourier space
i s ( Kok? + k2 + K3k2 koks — Kskoks )
koks — Kskoks — Kok? + K3k + k2
where
D2y
Ly = Py 'Q [a4Av +(ag+as+ag) | 0 ] , (30)
0

and wherg7=,, andG,, stand for the remaining terms,, and L, generate analytic semigroups
which later allow to control7,, andG,, by optimal regularity results.

Lemma 2.4. Letd > 0 andm € N. a) The operator.,, : [H™"?)? — [H™]? defines an
analytic semigroup'/" in [H™]? satisfying

||6thuH[Hm+20}2 < C(l + t_G)HUH[Hm]z .
b) The operatol, : Q[[H™"?]?] — Q[[H™)]?] defines an analytic semigrouff in Q[[H™]?]
satisfying

HeL”tuH[Hm+ze]3 < C(l + t_€)||u||[Hm}3 .
Proof. The result follows from the fact that under the chosen bogndanditions the
problem can be extended periodically into the boundetirection such that the estimate

is a consequence of the representationd.pfand L, in Fourier space and (22). Since
et ||gax> < e~CI*” for aC' > 0, we have that

- A2 A
||6tL"uH[Hm+2e}2 < C||6tL”uH[l2(m+26)}2 < CHe Clk| |U‘||l2(m+20)

—_Ck|2 N _ N _
< ngp e AR all g2y < CO+)[all g2y < CO+)[ullgrmyz.
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Similarly the estimate foe'“ follows. O

In order to apply an iteration scheme to solve the quasitipeablem for(n,, n3) and
v coupled to the hyperbolic problem fdp, o) we shall need maximal regularity results.
Therefore we first study the linear inhomogeneous problems

0¢(n2,n3) = Ly(n2,n3) + f (31)

and
O = Lyv + f,. (32)

Given, e.g.,f, € C%([0,Ty], X) with 0 < # < 1, whereX is some Banach space,
maximal regularity means th&wv and L,v enjoy the same regularity g5. Additional to
the natural assumption tha§ = v, € D(L,), the crucial point to obtain such maximal
regularity results are compatibility conditionstat 0, namely

Lovo + £,(0) € Dy, (0, 00). (33)

Here the real interpolation spaék (6, co) is the set of alb € X such that' Y| L etlvv|| x

is bounded as — 0, see, e.g., [Lun95]. From Lemma 2.4a) or the fact that we paviedic
boundary conditions in-direction we see that foX = [H™]*> we obtainD;, (6,00) =
[H™+20]3, Since later in the iteration scheme for the nonlinear @bive havef,(t) =
G,(V(t)) it will be sufficient to require sufficient regularity for theitial datal’(0) of the
nonlinear problem. The problem fo¥(n», n3) can be analyzed in the same manner, and for
later reference we note the following Lemma.

Lemma 25. Forall § € (0,1), m > 0 andTy > 0 there exists &', > 0 such that the
following holds.

a) If f,, € C%2([0, Tp], [H™1)2) and L,, (ng, n3)|i=0 + fn(0) € [H™+320]2 then there ex-
ists a unique solutiotn,, ny) € C%°([0, ), [H™3)2)NCY([0, Tp], [H™F1]?) of (31) which
is bounded in this space ¥ (|| L,,(n2, n3)|i=0 + fn(0) ||[Hm+3+29]2 + ||anCo,e([QTOHHmHP) +
[(n2, n3) | =0l grm+3+20)2).

b) If £, € C%%([0,Tp], Q[[H™]®]) and L,v|;—o + f,(0) € [H™2+29]3] then there ex-
ists a unique solutiom € C%%([0,Tp], Q[[H™2]*]) N C19([0, Ty, Q[[H™]?]) of (32) with
norm bounded in this space W (|| L,vli=o + fo(0)||{rm+2+203 + || follcoom)imms) +

||U|t=O || [Hm+2+26]3).

Proof. These are consequences of Lemma 2.4 and optimal regulaebnt See, e.g.,
[Lun95, Theorem 4.3.1] or [Sin85]. O

2.3 Thebalancelaws

The equations (28), (29) fak o ando,o are of different type than (25)—(27). They are balance
laws, hence quasilinear hyperbolic and not quasilineaahudic. Nevertheless there is some
damping in thep, o) part due to the-20 term in thes equation.



Again we only concentrate on the terms with highest derreatii.e.

Op = —v;0;p — Py 05(a;0) (34)
Ota = —'UjajO' - a27r2aj(a’jp) + GU : (35)

where we used Einstein’s sum conventiafh; = Z a;b;) and the abbreviation

a=puk,

and whereGz, stands for the remaining terms, which are semilinear. Agamfirst treat
G, as an inhomogeneity and assume tfigtand the coefficients; anda; are sufficiently
smooth and later relate this to the smoothneds.of

To apply [Kat75] we need some a priori estimates. §¢r 0 and with [ - = [ -dz we
find

%@ /(820)2 = - /(@ip)@,ﬁ(vjajp) — /(a/iﬂ)Pfla,‘z@j(aja)
— / % 9;((05p)*)v; + s.t. — /Pflaj(@ip)(@,iaja) 4ost.
:+/%(8Zﬂ)2(8jvj)+s.t. — /Pl—laj(agp)(azaja) Lt
=~ [ P @@ + st

wherek = z,y, z and s.t. stands here and in the following for semilinear seira. for terms
with s or less derivatives acting gno. Similarly, we find

30 @07 == [0 - [ @00 + [@i0)06.)
= —/a27r2aj(8,§a)(8,§8jp) +s.t. = /a27r2aj(8,§8jo—)(8,§p) + s.t. .
Thus we have )
Lo [a%? / (O2p)2 + P! / (agaﬂ st
Using Gronwall’s inequality gives the following result.

Lemma2.6. Lets > 1 and7, > 0. Then for allC; > 0 there exists &', > 0 such that the
following holds. Letp, o)|.—o € [H*]?, v € C(]0, To], Q[[H*]?]), a € C([0, Tp], [H**']*) and
G, € C([0,Tp], H*), with norms bounded in these spaces’hy Then there exists a unique
solution

(p,0) € C([0,To], [H*]) N CH([0,To), [H']?)

of (34) and (35) with norm bounded in this spacel (p, o)|i—o|| (z+2-
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3 Thenonlinear ter msand theiteration scheme

In order to prove Theorem 1.1 we now combine the optimal gyl theory of [Sin85,
Lun95] for quasilinear parabolic equations and the existaheory of [Kat74, Kat75] for
guasilinear hyperbolic systems. The combination of the tma&thods is nontrivial since,
in contrast to solutions of quasilinear parabolic systesogjtions of quasilinear hyperbolic
systems in general are not Holder—continuous in time K&t14, Sec.5.3].

The idea is to find solutions by the iteration scheme

Or(n2,n3)it1 = Ln(na,n3)ip1 + Grn(Vi),
Ois1 = Lyvipr + Go(V5),

3 3
Oipiv1 = — Z(Uj)iajpiﬂ —- P! Z 9i((a;)i0i+1) (36)
j=1 Jj=1

3

3
001 = = Y (0)i05001 — a1y 0i((a))ipist) + Go (Vi) -

j=1 j=1

Thus it remains to choose the spacelfoin such a way that givel; we haveG,, (V;), G,(V;)
fulfill the assumptions of Lemma 2.5 and a; andG, (V;) fulfill the assumptions of Lemma
2.6. Therefore we note the following Lemma, where we add #rampetery to deal with the
compatibility conditions in Lemma 2.5.

Lemma 3.1. For m > 1 and#d € [0,1) the nonlinearityG = (G,,G,,0,G,) is locally
Lipschitz continuous frofd ™ 3+2012 x [ {m+2+20]3 x [ [™+2)2 into [ H™+1H20)2 x [H™+20]3 x
[Hm+2]2'

Proof. We havew ¢ H™*2 py (4), f €¢ H™+2+% py (6), £ € H™3 by (7) and Lemma
2.2,h € H™ 142 by (5),6% — 5,5 € H™3+20 by (13),A € H™++2 by (9),m € Hm+1+%
by (11),Tv%¢ ¢ H™+20 py (10), andll € H™*2+2% py (12). Therefore the right hand side
G, of (1) is in H™+1+20 and the right hand sid€, of (2) is in H™*%. We haves;; — §;; €
H™3+2 and y;; — 6;; € H™. Fromp € H™"? we immediately find that the terms
collected inG,, are inH™*2, O

Proof of Theorem 1.1. To use the iteration scheme (36) we need to satisfy, in eagh st
1— 141,

a) the regularity of the initial data, and the compatibittynditions

L (119, 18) im0 + f(0) € [H™ 3422 and Lv|—o + f,(0) € [H™3+2)3,

b) the conditions om, a andG, in Lemma 2.6;

c) the conditionsz,, € C%°([0,Tp], [H™*']?) and G, € C%°([0,Tp), Q[[H™']3]) in
Lemma 2.5.
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Since the initial data are always the same, a) follows frommire 3.1 withd > 0 chosen in
Theorem 1.1.

It is clear that Lemma 3.1 also holds for functions contiraicesp. Holder continuous in
time with values in the respective Sobolev spaces. Thus]sweohtain b).

Finally we need to check that the lack of Holder continuityime of the solution$p;, o;)
does not cause problems 16y, (V;), G, (V;). The idea is to trade some spatial differentiability
of (p, o) for Lipschitz continuity in time. In detail, from (34) we firttiat

t+4 t+6 3 3
/ Opdr / - Z v;0;p — P! Z d;(ajo)dr
t t e 1

< (C6 <||'U||C([0,To},[Hm]3) ||P||C([0,T0LH’"“)

lp(t +0) = p(O) || am =

Hm Hm™

+ (HPHC([O,TOLH’”“) + ||n||C([O,ZR)],[Hm+2]2))||U||C([O,T()},Hm+1))

and similarly foro. Hence
Ve CON[0, Tol, [H™2) x CO%([0, Tol, [H™ %) x C([0, Ty], [H™*)

impliesa, p € C%1([0, Ty, H™), whereC®([0, Tp], X)  C%([0, Ty], X) denotes Lipschitz
continuity in time with values inX. Thus we obtain c).

For smallCy, Ty > 0 from Theorem 1.1 we obtain a small Lipschitz constant in Leamm
3.1 which by using Lemma 2.5 and Lemma 2.6 implies the comvrerg of the iteration
scheme. Therefore, we are done. O
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