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Abstract

We show the local existence and uniqueness of solutions of the most advanced model
for the description of electro-convection in nematic liquid crystals, namely the weak
electrolyte model (WEM), which is a mixture of quasilinear parabolic equations and
balance laws. We do this by bringing the WEM in a form where a standard iteration
scheme can be applied.

1 Introduction

Electro-convection in nematic liquid crystals is a paradigm for pattern formation in non–
isotropic media. Experimentally, a thin layer of such a material is contained in between two
spatially extended electrode plates. When an alternating current is applied to the electrodes an
electro-hydrodynamic instability occurs if the voltage isabove a certain threshold. The triv-
ial spatially homogeneous solution becomes unstable and bifurcates into non-trivial pattern
[Cha77, PB98].

There are essentially two models for the mathematical description of electro-convection in
nematic liquid crystals. These are the standard model ([ZK85] and the references therein) and
the weak electrolyte model (WEM). The latter has been introduced by Kramer and Treiber in
[Tre96, TK98] to overcome a number of insufficiencies of the standard model. In particular,
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the WEM has a number of pattern forming instabilities which agree well with experimental
results [Tre96], see also [SU07].

The local existence and uniqueness of solutions of the WEM isa nontrivial task since the
governing equations are a relatively complicated mixture of quasilinear parabolic equations
and balance laws. Therefore, in [SU07] a regularized semilinear parabolic WEM was con-
sidered. Here, we solve the problem for the original WEM by combining optimal regularity
theory for quasilinear parabolic systems and Kato’s methodfor quasilinear hyperbolic sys-
tems. As a consequence, the justification results for the approximation of a regularized WEM
by Ginzburg–Landau equations from [SU07] also hold for the original WEM.

The following presentation and non-dimensionalization ofthe WEM follows [DO04,
SU07]. We consider a layer of nematic liquid crystals in between two infinitely extended
horizontal plates of heightπ, i.e. in the following(x, y, z) ∈ Ω = R2 × (0, π). In the WEM
the average molecular axis of the nematic liquid crystals isdescribed locally by a director
field n of unit vectors. The Leslie-Erickson equations forn and the generalized Navier-
Stokes equations for the fluid velocityv and the pressurep in the presence of an electric field
E are given by

(∂t + v · ∇)n = ω × n + δ⊥(λAn − h) , (1)

P2(∂t + v · ∇)v = −∇p −∇ · (T visc + Π) + π2ρE , (2)

∇ · v = 0 , (3)

for (x, y, z) ∈ Ω. These equations turn out to be a quasilinear parabolic system. The meaning
of the quantities is as follows. The vorticity is

ω =
1

2
(∇× v), (4)

and the molecular fieldh is given by

h = 2

(

∂f

∂n
−∇ ·

∂f

∂∇n

)

− εaπ
2(n · E)E (5)

where
2f = (∇ · n)2 + K2[n × (∇× n)]2 + K3[n · (∇× n)]2 , (6)

is the elastic energy density describing splay, twist (K2), and bend (K3) deformations, and
where

(

∂f

∂∇n

)

ij

:=
∂f

∂ni,j

with ni,j = ∂xj
ni.

We refer to [DO04] for a physical interpretation of the constantsP2, λ, K2, K3, andεa. The
electric fieldE = E(x, y, z, t) ∈ R3 is considered to be quasistationary, i.e. rotE = 0. It is
then split into an external forcing and some potential part,i.e.

E = Ep(t)(0, 0, 1)T −∇φ , (7)
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where usually in the experiments

Ep(t) = E0 cos ω0t (8)

with anE0 > 0 andω0 > 0.
The tensorsA, andT visc are, respectively, the shear flow tensor

Aij =
1

2
(∂ivj + ∂jvi), (9)

and the viscous stress tensor

−T visc
ij =

3
∑

k=1

(

α1ninjnk

(

3
∑

l=1

nlAkl

)

+ α5njnkAki + α6ninkAkj

)

(10)

+α2njmi + α3nimj + α4Aij

where
m = δ⊥(λAn − h) (11)

and with constant coefficientsα1, . . . , α6. The tensorΠ with

Πij =
3
∑

k=1

∂f

∂nk,j

nk,i (12)

is called the nonlinear Ericksen stress tensor. The projection tensor

δ⊥ij = δij − ninj (13)

in (1) guarantees that|n| = 1 as long as the solution exists. See [Tre96].
The second part of the WEM comes from the quasi-static Maxwell equations. In the

WEM [Tre96, TK98] there are two species of oppositely charged mobile ions. Under the
assumption of a linear recombination and zero diffusivity,the WEM consists of (1)-(3) and
two balance equations for the charge densityρ and the deviationσ of the local conductivity
from 1, namely

P1(∂t + v · ∇)ρ = −∇ · (µEσ) , (14)

(∂t + v · ∇)σ = −α2π2∇ · (µEρ) −
r

2
(2σ + σ2 − P1π

2αρ2) . (15)

Finally the system is closed by Poisson’s law

ρ = ∇ · (εE) . (16)

The dielectric tensorε and the conductivity tensorµ are given by

εij = δij + εaninj and µij = δij + σaninj .
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Similar toP2, the parameterP1 is a Prandtl–type time scale ratio. For a physical interpretation
of the constantsP1, σa, α, andr we again refer to [DO04]. The WEM will be considered
with the boundary conditions

∂zn2 = n3 = ∂zv1 = ∂zv2 = v3 = φ = 0 (17)

at z = 0, π.
Using Poisson’s lawE, resp.φ, can be expressed in terms ofρ and so (1)-(3) and (14)-

(15) can be rewritten as a system of dynamical equations forV = (n2, n3, v1, v2, v3, ρ, σ).
Thus, (1)-(3), (14), (15) is abbreviated as

∂tV = M(t)V + Ñ(t, V ) (18)

whereM(t)V stands for the linear and̃N(t, V ) for the nonlinear terms with respect toV .
The WEM equations are invariant under arbitrary translations inx andy and under the

reflections

S1 : (x, n2, n3, v1) → −(x, n2, n3, v1), (19)

S2 : (y, n2, v2) → −(y, n2, v2), (20)

S3 : (z, n3, v3, φ) → −(z, n3, v3, φ). (21)

The local existence and uniqueness of solutions is nontrivial due to the relatively compli-
cated mixture of quasilinear parabolic equations and balance laws. To our knowledge no local
existence and uniqueness result is documented so far in the literature. Thus, here we make a
first step and prove the local existence and uniqueness for initial conditions in a neighborhood
of the trivial solutionV = 0. We do this by bringing the WEM in a form where a standard
iteration scheme can be applied. In order to do so the regularity of the components ofV has
to be chosen properly, i.e. for instancen has to by chosen one time more regular thanv.
Notation. The Sobolev spaceHm(Ω) is the space ofm-times weakly differentiable functions
Ω → R equipped with the norm

‖u‖Hm(Ω) =

m
∑

|j|=0

‖∂j
xu‖L2(Ω) with ‖u‖2

L2(Ω) =

∫

Ω

|u(x)|2dx.

We shall also need fractional order Sobolev spaces and interpolation spaces. The symmetry
S3 allows to extend the WEM periodically into the bounded direction and to expand the
variables in Fourier series with respect toz, i.e we write for instance

n2(x, y, z) =

∫ ∫

∑

k3∈Z

n̂2(k1, k2, k3)e
ik1x+ik2y+ik3zdk1dk2.

and similar forn3, . . . , σ. Here the extensionsn2, v1, v2, σ, ρ will be even andn3, v3, φ odd
w.r.t. the third variable. We define

‖û‖2
l2(s) =

∫ ∫

∑

k3∈Z

|û(k1, k2, k3)|
2(1 + |k1|

2 + |k2|
2 + |k3|

2)sdk1dk2.
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Due to Parseval’s identity there is a one to one relation and norm equivalence between phys-
ical and Fourier space, i.e., for allm ∈ N there is a constantC > 0 such that

C−1‖û‖l2(m) ≤ ‖u‖Hm ≤ C‖û‖l2(m). (22)

In the following we useHm as abbreviation forHm(R2 × [0, 2π]) with periodic boundary
conditions in the third variable.

Using (22) we also defineHs for everys ≥ 0 as functions inL2 whose Fourier transform
is in l2(s). It is equipped with the norm

‖u‖Hs = ‖û‖l2(s).

Finally we note that as a consequence of the periodic boundary conditions interpolation
spaces ([LM72]) are trivially characterized. For instancefor ∆ : Hs+2 → Hs we have

[Hs, Hs+2]θ = {u : (1 + (−∆)θ)u ∈ Hs} = {u : (1 + |k|2θ)û ∈ l2(s)}

= {u : û ∈ l2(s + 2θ)} = Hs+2θ.

Theorem 1.1. Let θ ∈ (0, 1) and m ∈ N. There exists aC1 > 0 such that for all initial
conditions

V0 = (n2, n3, v1, v2, v3, σ, ̺)|t=0 ∈ [Hm+3+2θ]2 × [Hm+2+2θ]3 × [Hm+2]2

with ∇ · v = 0 and‖V0‖[Hm+3+2θ]2×[Hm+2+2θ ]3×[Hm+2]2 ≤ C1 there exists aT0 > 0 such that
(18) has a unique mild solution

V ∈ C([0, T0], [H
m+3]2 × [Hm+2]3 × [Hm+2]2) ∩ C1([0, T0], [H

m+1]2 × [Hm]3 × [Hm+1]2)

with V |t=0 = V0.

The additional regularity for(n2, n3)|t=0 andv|t=0 described byθ is needed to fulfill some
compatibilty conditions att = 0 to apply maximal regularity to the quasilinear parabolic sub-
system for(n2, n3) andv. As consequence,(n1, n2) andv enjoy further regularity properties,
e.g., they are Hölder continuous in time with values in[Hm+3]2 × [Hm+2]3, while further
regularity for the charge densityρ and the local conductivityσ are unclear, and we restrict to
the simple formulation of Theorem 1.1.

The plan of the proof is as follows. In§2.1 we explain that the WEM is an evolutionary
system for the variables collected inV , i.e. we eliminate the pressure term∇p and expressE
in terms ofV . In §2.2–§2.3 we extract the leading terms in the(n, v)-part, rewrite the balance
laws as quasilinear hyperbolic systems in the sense of [Kat75], prove a number of a priori
estimates and give the estimates for the remaining quasilinear and semilinear terms. Then in
§3 we formulate an iteration scheme and prove the convergenceof the sequence constructed
by the iteration scheme.
Acknowledgments. The paper is partially supported by the Deutsche Forschungsgemein-
schaft DFG under the grant Kr 690/18-1/2. The authors are grateful for helpful discussions
with Gerhard Dangelmayr, Lorenz Kramer, and Ian Melbourne.
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2 The structure of the WEM

2.1 The WEM as a dynamical system

To write the WEM as an evolutionary system inV = (n2, n3, v1, v2, v3, ρ, σ) we proceed as in
[SU07], where also the three Lemmas below are proved (LemmasA.2, A.3, A.4 in [SU07]).
Essentially the proofs follow by explicit calculation fromthe above Fourier representation
and (22). First we need to expressE in terms ofV . Therefore we have to solve

ρ =

3
∑

k=1

∂k(εkmEm) =

3
∑

k=1

3
∑

m=1

∂k

[

(δkm + εanknm)(E0 cos(ω0t)δm3 − ∂mφ)
]

with respect toφ under the boundary conditionsφ|z=0,π = 0. We find

(M + G)φ = F (n, ρ, E0)

where

F (n, ρ, E0) = −ρ + cos(ω0t)

3
∑

k=1

3
∑

m=1

∂k((δkm + εanknm)E0δm3) ,

Mφ = ∆φ + εa∂
2
1φ, Gφ = εa

3
∑

k=1

3
∑

m=1

∂k(nknm∂mφ) − εa∂
2
1φ .

Lemma 2.1. The linear operatorM−1 is bounded fromHs into {φ ∈ Hs+2 : φ = 0 at z =

0, π } .

Hence the electric potentialφ satisfies(1 + GM−1)Mφ = F (n, ρ, E0), whereGM−1 is
small forñ = n − (1, 0, 0)T small. By using Neumann’s series we formally obtain

φ = M−1(1 + GM−1)−1F (n, ρ, E0). (23)

Lemma 2.2. Let s ≥ 2, and let‖V ‖Hs be sufficiently small. Then the operatorM−1(1 +

GM−1)−1 is bounded fromHs into Hs+2.

Next we focus on the hydrodynamic part of (18) and define the projectionQ on the diver-
gence free vector fields byw = Qf , wherew solves

w −∇p = f, ∇ · w = 0, ∂zw1 = ∂zw2 = w3 = 0 at z = 0, π. (24)

Lemma 2.3. The projectionQ is continuous from[Hm]3 into {v ∈ [Hm]3 : ∇ · v = 0}.

Sincen2
1 + n2

2 + n2
3 = 1 for our purposes it is sufficient to considern2 andn3. Hence we

finally consider

∂tn2 = 〈e2,−(v · ∇)n + ω × n + δ⊥(λAn − h)〉 , (25)

∂tn3 = 〈e3,−(v · ∇)n + ω × n + δ⊥(λAn − h)〉 , (26)

∂tv = P−1
2 Q(−(v · ∇)v −∇ · (T visc + Π) + π2ρE) , (27)

∂tρ = −v · ∇ρ − P−1
1 ∇ · (µEσ), (28)

∂tσ = −v · ∇σ − α2π2∇ · (µEρ) −
r

2
(2σ + σ2 − P1π

2αρ2), (29)

under the boundary conditions (17).
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2.2 The quasilinear parabolic part

We start with the computation of the highest order derivative part in thev andn parts of the
system. Here and in the following⋆ stands for terms with less derivatives or terms in which
the highest derivative occurs nonlinearly.

We introduce the derivatioñn of the director from the planar alignment by

n = (1 + ñ1, ñ2, ñ3)
T

.

From(1 + ñ1)
2 + ñ2

2 + ñ2
3 = 1 we findñ1 = O(ñ2

2 + ñ2
3). Therefore

(∇ · n)2 = (∂x2
ñ2 + ∂x3

ñ3)
2 + ⋆, ∇× n = (∂x2

ñ3 − ∂x3
ñ2, −∂x1

ñ3, ∂x1
ñ2)

T + ⋆ ,

n · (∇× n) = (∂x2
ñ3 − ∂x3

ñ2) + ⋆ and n × (∇× n) = (0, −∂x1
ñ2, −∂x1

ñ3)
T + ⋆ .

Thus

2f = (∂x2
ñ2 + ∂x3

ñ3)
2 + K2((∂x1

ñ2)
2 + (∂x1

ñ3)
2) + K3(∂x2

ñ3 − ∂x3
ñ2)

2 + ⋆ .

Moreover

δ⊥ =









0 0 0

0 1 0

0 0 1









+ ⋆,

and therefore to calculateh in (5) we only need to calculate rows 2 and 3 of∂f

∂(∇n)
, i.e.,

2
∂f

∂(∇n)
=









⋆ ⋆ ⋆

2K2∂x1
n2 2(∂x2

n2 + ∂x3
n3) −2K3(∂x2

n3 − ∂x3
n2)

2K2∂x1
n3 2K3(∂x2

n3 − ∂x3
n2) 2(∂x2

n2 + ∂x3
n3)









+ ⋆ .

Thus,

2∇ ·
∂f

∂(∇n)
=









⋆

2K2∂
2
x1

ñ2 + 2∂2
x2

ñ2 + 2∂x3
∂x2

ñ3 + 2K3∂
2
x3

ñ2 − 2K3∂x2
∂x3

ñ3

2K2∂
2
x1

ñ3 + 2K3∂
2
x2

ñ3 − 2K3∂x2
∂x3

ñ2 + 2∂x2
∂x3

ñ2 + 2∂2
x3

ñ3









+ ⋆.

Using this expansion and〈ej , ω × n + δ⊥(λAn)〉 = ⋆ we find for the equations for∂tñ2 and
∂tñ3 in Fourier space that

∂t

̂(
ñ2

ñ3

)

= −2

(

K2k
2
1 + k2

2 + K3k
2
3 k2k3 − K3k2k3

k2k3 − K3k2k3 K2k
2
1 + K3k

2
2 + k2

3

) ̂(
ñ2

ñ3

)

+ ⋆ .

This matrix turns out to be negative definite ifK2 > 0 andK3 > 0.
Next we come to the equation forv. We proceed as above and compute the terms with

highest derivatives which are linear. Since in the∂tn-equation nov terms played any role
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we have some lower triangular block structure and so in the∂tv equation it is sufficient to
consider the linear terms with highest derivative ofv. All the rest will be denoted as above
with ⋆. Hence, it is sufficient to analyseT visc and inT visc theAkℓ terms. We find

−T visc
ij = (α1 + α5 + α6)δi1δj1Aij + α4Aij + ⋆

so that

∇ · T visc = α4∆v + (α1 + α5 + α6)









∂2
1v1

0

0









+ ⋆

where we used∇ · v = 0. Therefore the(n, v)–part is of the form

∂t

(

ñ2

ñ3

)

= Ln

(

ñ2

ñ3

)

+ Gn ,

∂tv = Lvv + Gv ,

whereLn is defined by its symbol in Fourier space

−L̂n = 2

(

K2k
2
1 + k2

2 + K3k
2
3 k2k3 − K3k2k3

k2k3 − K3k2k3 K2k
2
1 + K3k

2
2 + k2

3

)

,

where

Lvv = P−1
2 Q

[

α4∆v + (α1 + α5 + α6)









∂2
1v1

0

0









]

, (30)

and whereGn andGv stand for the remaining terms.Ln andLv generate analytic semigroups
which later allow to controlGn andGv by optimal regularity results.

Lemma 2.4. Let θ ≥ 0 and m ∈ N. a) The operatorLn : [Hm+2]2 → [Hm]2 defines an
analytic semigroupetLn in [Hm]2 satisfying

‖etLnu‖[Hm+2θ]2 ≤ C(1 + t−θ)‖u‖[Hm]2 .

b) The operatorLv : Q[[Hm+2]3] → Q[[Hm]3] defines an analytic semigroupetLv in Q[[Hm]3]

satisfying
‖eLvtu‖[Hm+2θ]3 ≤ C(1 + t−θ)‖u‖[Hm]3 .

Proof. The result follows from the fact that under the chosen boundary conditions the
problem can be extended periodically into the boundedz-direction such that the estimate
is a consequence of the representations ofLn and Lv in Fourier space and (22). Since
‖etL̂n‖R2×2 ≤ e−C̃|k|2 for a C̃ ≥ 0, we have that

‖etLnu‖[Hm+2θ]2 ≤ C‖etL̂n û‖[l2(m+2θ)]2 ≤ C‖e−C̃|k|2|û|‖l2(m+2θ)

≤ C sup
k

|e−C̃|k|2(1+k2)θ| ‖û‖(l2(m))2 ≤ C(1+t−θ)‖û‖(l2(m))2 ≤ C(1+t−θ)‖u‖(Hm)2 .
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Similarly the estimate foretLv follows.
In order to apply an iteration scheme to solve the quasilinear problem for(n2, n3) and

v coupled to the hyperbolic problem for(ρ, σ) we shall need maximal regularity results.
Therefore we first study the linear inhomogeneous problems

∂t(n2, n3) = Ln(n2, n3) + fn (31)

and
∂tv = Lvv + fv. (32)

Given, e.g.,fv ∈ C0,θ([0, T0], X) with 0 < θ < 1, whereX is some Banach space,
maximal regularity means that∂tv andLvv enjoy the same regularity asfv. Additional to
the natural assumption thatv0 = vt=0 ∈ D(Lv), the crucial point to obtain such maximal
regularity results are compatibility conditions att = 0, namely

Lvv0 + fv(0) ∈ DLv
(θ,∞). (33)

Here the real interpolation spaceDLv
(θ,∞) is the set of allv ∈ X such thatt1−θ‖Lve

tLvv‖X

is bounded ast → 0, see, e.g., [Lun95]. From Lemma 2.4a) or the fact that we haveperiodic
boundary conditions inz-direction we see that forX = [Hm]3 we obtainDLv

(θ,∞) =

[Hm+2θ]3. Since later in the iteration scheme for the nonlinear problem we havefv(t) =

Gv(V (t)) it will be sufficient to require sufficient regularity for theinitial dataV (0) of the
nonlinear problem. The problem for∂t(n2, n3) can be analyzed in the same manner, and for
later reference we note the following Lemma.

Lemma 2.5. For all θ ∈ (0, 1), m ≥ 0 and T0 > 0 there exists aC2 > 0 such that the
following holds.

a) If fn ∈ C0,θ([0, T0], [H
m+1]2) andLn(n2, n3)|t=0 +fn(0) ∈ [Hm+3+2θ]2, then there ex-

ists a unique solution(n1, n2) ∈ C0,θ([0, T0], [Hm+3]2)∩C1,θ([0, T0], [Hm+1]2) of (31) which
is bounded in this space byC2(‖Ln(n2, n3)|t=0 + fn(0)‖[Hm+3+2θ]2 + ‖fn‖C0,θ([0,T0],[Hm+1]2) +

‖(n2, n3)|t=0‖[Hm+3+2θ]2).
b) If fv ∈ C0,θ([0, T0], Q[[Hm]3]) and Lvv|t=0 + fv(0) ∈ [Hm+2+2θ]3, then there ex-

ists a unique solutionv ∈ C0,θ([0, T0], Q[[Hm+2]3]) ∩ C1,θ([0, T0], Q[[Hm]3]) of (32) with
norm bounded in this space byC2(‖Lvv|t=0 + fv(0)‖[Hm+2+2θ]3 + ‖fv‖C0,θ([0,T0],[Hm]3) +

‖v|t=0‖[Hm+2+2θ]3).

Proof. These are consequences of Lemma 2.4 and optimal regularity theory. See, e.g.,
[Lun95, Theorem 4.3.1] or [Sin85].

2.3 The balance laws

The equations (28), (29) for∂t̺ and∂tσ are of different type than (25)–(27). They are balance
laws, hence quasilinear hyperbolic and not quasilinear parabolic. Nevertheless there is some
damping in the(ρ, σ) part due to the−2σ term in theσ equation.
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Again we only concentrate on the terms with highest derivatives, i.e.

∂tρ = −vj∂jρ − P−1
1 ∂j(ajσ) (34)

∂tσ = −vj∂jσ − α2π2∂j(ajρ) + Gσ . (35)

where we used Einstein’s sum convention(aibi =
∑

i

aibi) and the abbreviation

a = µE,

and whereGσ stands for the remaining terms, which are semilinear. Again, we first treat
Gσ as an inhomogeneity and assume thatGσ and the coefficientsvj andaj are sufficiently
smooth and later relate this to the smoothness ofV .

To apply [Kat75] we need some a priori estimates. Fors ≥ 0 and with
∫

· =
∫

· dx we
find

1

2
∂t

∫

(∂s
kρ)2 = −

∫

(∂s
kρ)∂s

k(vj∂jρ) −

∫

(∂s
kρ)P−1

1 ∂s
k∂j(ajσ)

= −

∫

1

2
∂j((∂

s
kρ)2)vj + s.t. −

∫

P−1
1 aj(∂

s
kρ)(∂s

k∂jσ) + s.t.

= +

∫

1

2
(∂s

kρ)2(∂jvj) + s.t. −

∫

P−1
1 aj(∂

s
kρ)(∂s

k∂jσ) + s.t.

= −

∫

P−1
1 aj(∂

s
kρ)(∂s

k∂jσ) + s.t. ,

wherek = x, y, z and s.t. stands here and in the following for semilinear terms, i.e. for terms
with s or less derivatives acting onρ, σ. Similarly, we find

1

2
∂t

∫

(∂s
kσ)2 = −

∫

(∂s
kσ)∂s

k(vj∂jσ) −

∫

(∂s
kσ)∂s

k(α
2π2∂j(ajρ)) +

∫

(∂s
kσ)(∂s

kGσ)

= −

∫

α2π2aj(∂
s
kσ)(∂s

k∂jρ) + s.t. =

∫

α2π2aj(∂
s
k∂jσ)(∂s

kρ) + s.t. .

Thus we have
1

2
∂t

[

α2π2

∫

(∂s
kρ)2 + P−1

1

∫

(∂s
kσ)2

]

= s.t. .

Using Gronwall’s inequality gives the following result.

Lemma 2.6. Let s ≥ 1 andT0 > 0. Then for allC1 > 0 there exists aC2 > 0 such that the
following holds. Let(ρ, σ)|t=0 ∈ [Hs]2, v ∈ C([0, T0], Q[[Hs]3]), a ∈ C([0, T0], [H

s+1]3) and
Gσ ∈ C([0, T0], H

s), with norms bounded in these spaces byC1. Then there exists a unique
solution

(ρ, σ) ∈ C([0, T0], [Hs]2) ∩ C1([0, T0], [Hs−1]2)

of (34) and (35) with norm bounded in this space byC2‖(ρ, σ)|t=0‖[Hs]2.
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3 The nonlinear terms and the iteration scheme

In order to prove Theorem 1.1 we now combine the optimal regularity theory of [Sin85,
Lun95] for quasilinear parabolic equations and the existence theory of [Kat74, Kat75] for
quasilinear hyperbolic systems. The combination of the twomethods is nontrivial since,
in contrast to solutions of quasilinear parabolic systems,solutions of quasilinear hyperbolic
systems in general are not Hölder–continuous in time, cf. [Kat74, Sec.5.3].

The idea is to find solutions by the iteration scheme

∂t(n2, n3)i+1 = Ln(n2, n3)i+1 + Gn(Vi),

∂tvi+1 = Lvvi+1 + Gv(Vi),

∂tρi+1 = −
3
∑

j=1

(vj)i∂jρi+1 − P−1
1

3
∑

j=1

∂j((aj)iσi+1)

∂tσi+1 = −

3
∑

j=1

(vj)i∂jσi+1 − α2π2

3
∑

j=1

∂j((aj)iρi+1) + Gσ(Vi) .

(36)

Thus it remains to choose the space forV in such a way that givenVi we haveGn(Vi), Gv(Vi)

fulfill the assumptions of Lemma 2.5 andvi, ai andGσ(Vi) fulfill the assumptions of Lemma
2.6. Therefore we note the following Lemma, where we add the parameterα to deal with the
compatibility conditions in Lemma 2.5.

Lemma 3.1. For m ≥ 1 and θ ∈ [0, 1) the nonlinearityG = (Gn, Gv, 0, Gσ) is locally
Lipschitz continuous from[Hm+3+2θ]2×[Hm+2+2θ]3×[Hm+2]2 into [Hm+1+2θ]2×[Hm+2θ]3×

[Hm+2]2.

Proof. We haveω ∈ Hm+1+2θ by (4), f ∈ Hm+2+2θ by (6),E ∈ Hm+3 by (7) and Lemma
2.2,h ∈ Hm+1+2θ by (5),δ⊥ij − δij ∈ Hm+3+2θ by (13),A ∈ Hm+1+2θ by (9),m ∈ Hm+1+2θ

by (11),T visc ∈ Hm+1+2θ by (10), andΠ ∈ Hm+2+2θ by (12). Therefore the right hand side
Gn of (1) is in Hm+1+2θ and the right hand sideGv of (2) is inHm+2θ. We haveεij − δij ∈

Hm+3+2θ andµij − δij ∈ Hm+3+2θ. From ρ ∈ Hm+2 we immediately find that the terms
collected inGσ are inHm+2.

Proof of Theorem 1.1. To use the iteration scheme (36) we need to satisfy, in each step
i 7→ i + 1,

a) the regularity of the initial data, and the compatibilityconditions

Ln(n2, n3)|t=0 + fn(0) ∈ [Hm+3+2θ]2 andLvv|t=0 + fv(0) ∈ [Hm+3+2θ]3.

b) the conditions onv, a andGσ in Lemma 2.6;

c) the conditionsGn ∈ C0,θ([0, T0], [H
m+1]2) and Gv ∈ C0,θ([0, T0], Q[[Hm+1]3]) in

Lemma 2.5.
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Since the initial data are always the same, a) follows from Lemma 3.1 withθ > 0 chosen in
Theorem 1.1.

It is clear that Lemma 3.1 also holds for functions continuous resp. Hölder continuous in
time with values in the respective Sobolev spaces. Thus, we also obtain b).

Finally we need to check that the lack of Hölder continuity in time of the solutions(ρi, σi)

does not cause problems forGn(Vi), Gv(Vi). The idea is to trade some spatial differentiability
of (ρ, σ) for Lipschitz continuity in time. In detail, from (34) we findthat

‖ρ(t + δ) − ρ(t)‖Hm =

∥

∥

∥

∥

∫ t+δ

t

∂tρ dτ

∥

∥

∥

∥

Hm

=

∥

∥

∥

∥

∥

∫ t+δ

t

−

3
∑

j=1

vj∂jρ − P−1
1

3
∑

j=1

∂j(ajσ) dτ

∥

∥

∥

∥

∥

Hm

≤ Cδ

(

‖v‖C([0,T0],[Hm]3)‖ρ‖C([0,T0],Hm+1)

+ (‖ρ‖C([0,T0],Hm+1) + ‖n‖C([0,T0],[Hm+2]2))‖σ‖C([0,T0],Hm+1)

)

and similarly forσ. Hence

V ∈ C0,θ([0, T0], [H
m+3]2) × C0,θ([0, T0], [H

m+2]3) × C([0, T0], [H
m+2]2)

impliesσ, ρ ∈ C0,1([0, T0], H
m), whereC0,1([0, T0], X) ⊂ C0,β([0, T0], X) denotes Lipschitz

continuity in time with values inX. Thus we obtain c).
For smallC1, T0 > 0 from Theorem 1.1 we obtain a small Lipschitz constant in Lemma

3.1 which by using Lemma 2.5 and Lemma 2.6 implies the convergence of the iteration
scheme. Therefore, we are done.
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