International Journal of Pure and Applied Mathematics
Volume 42 No. 4 2008, 563-568

GROUP-THEORETIC GENERATION OF NON-UNIFORM PSEUDO-RANDOM SEQUENCES FOR SIMULATION

Marco Pollanen
Department of Mathematics
Trent University
1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, CANADA
e-mail: marcopollanen@trentu.ca

Abstract

Many applications involving statistical simulation, such as Monte Carlo methods, require non-uniform random sequences. These are usually created by first generating a uniform sequence and then using techniques such as rejection sampling or transformation. In this paper we introduce a new method to directly generate, without transformation or rejection, some non-uniform pseudo-random sequences. This method is a group-theoretic analogue of linear congruential pseudo-random number generation. We provide examples of such sequences, involving computations in Jacobian groups of plane algebraic curves, that have both good theoretical and statistical properties.

AMS Subject Classification: 14H40, 65C10, 65C05, 68W20
Key Words: pseudo-random sequences, non-uniform sequences, Jacobian groups, stochastic simulation

1. Introduction

Pseudo-random numbers are a critical part of modern computing, especially for use in simulations and cryptography, and consequently there are a myriad of algorithms for generating pseudo-random sequences. Thus far, almost all of the pseudo-random number literature has focused on generating sequences with uniform distribution.

The most popular and well-studied pseudo-random number generator is the linear congruential generator (LCG), proposed by Lehmer in 1948, which is defined by $x_{n} \equiv a x_{n-1}+b \bmod m$, where a, b, m, and seed x_{0}, are integers. In
this paper we study the analagous problem of multiply sequences, where $b=0$, $m=1$, and x_{0} is a real number.

Let S_{n} be a sequence of propositions about the sequence y_{n}. Following the definition by Franklin [3], we define

$$
P\left(S_{n}\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{S_{n} \text { is true } \\ 1 \leq n \leq N}} 1,
$$

when the limit exists.
A sequence y_{n} is ∞-distributed (Knuth [6]) if, for every value of k,

$$
P\left(a_{1} \leq y_{n}<b_{1}, \cdots, a_{k} \leq y_{n+k-1}<b_{k}\right)=\left(b_{1}-a_{1}\right) \cdots\left(b_{k}-a_{k}\right)
$$

for all real a_{j}, b_{j}, with $0 \leq a_{j}<b_{j} \leq 1$ for $1 \leq j \leq k$.
∞-distributed sequences are of interest in that they automatically pass a large number of asymptotic statistical tests for randomness, including: the frequency test, serial test, gap test, poker test, coupon collector's test, permutation test, run test, maximum-of- t test, collision test, birthday spacings test, serial correlation test, and tests on subsequences (Knuth [6]).

It was shown by Franklin [3] and Pollanen [10] that as a approaches ∞, multiple sequences are ∞-distributed and thus have good statistical properties. This is not only of theoretical interest, as we will show that we can construct sequences with non-uniform densities, by using multiply sequences over Jacobian groups of certain algebraic curves, that empirically pass many statistical tests for randomness. Similar sequences have also been used by Pollanen [9] for quasi-random number generation.

2. Multiply Sequences in Jacobian Groups

Consider a hyperelliptic curve C of genus g defined by $y^{2}=f(x)$, where $f(x)$ is a polynomial of degree $2 g+1$ with distinct roots in \mathbb{C}. The basic theory of algebraic curves can be found in [2]. Associated with each hyperelliptic curve is a Jacobian group \mathbb{J} with an Abelian structure. An efficient algorithm for adding points in the Jacobian was described by Cantor [1]. Thus, if we let P_{0} be a point in \mathbb{J} of infinite order, we may define a sequence in \mathbb{J} by $P_{n+1}=a P_{n}$, $n \geq 0$.

To determine the distribution our sequence defines, we need to take another view of the Jacobian, namely the Jacobian variety. Using a basis of first order
differentials of the first kind,

$$
\left\{\frac{d x}{y}, \frac{x d x}{y}, \cdots, \frac{x^{g-1} d x}{y}\right\},
$$

and the associated lattice of their periods $\Lambda \subset \mathbb{C}^{g}$, we define a natural embed$\operatorname{ding} L: C \rightarrow \mathbb{C}^{g} / \Lambda$ by

$$
P \rightarrow\left(\int_{\infty}^{P} \frac{d x}{y}, \int_{\infty}^{P} \frac{x d x}{y}, \ldots, \int_{\infty}^{P} \frac{x^{g-1} d x}{y}\right) .
$$

Obviously $L(\infty)=(0, \ldots, 0)$. Now, given two points P and Q in \mathbb{J}, the AbelJacobi Theorem guarantees that:

$$
\begin{gathered}
\left(\int_{\infty}^{P} \frac{d x}{y}, \ldots, \int_{\infty}^{P} \frac{x^{g-1} d x}{y}\right)+\left(\int_{\infty}^{Q} \frac{d x}{y}, \ldots, \int_{\infty}^{Q} \frac{x^{g-1} d x}{y}\right) \\
=-\left(\int_{\infty}^{P \oplus Q} \frac{d x}{y}, \ldots, \int_{\infty}^{P \oplus Q} \frac{x^{g-1} d x}{y}\right) \bmod \Lambda .
\end{gathered}
$$

As there is a natural bijection between \mathbb{C}^{g} / Λ and $\mathbb{R}^{2 g} / \mathbb{Z}^{2 g}$ given by linear transformation, the sequence $P_{n+1}=a P_{n}$ has a natural identification to $\mathbf{y}_{n}=$ $c^{n} \mathbf{y}_{0} \bmod \mathbb{Z}^{2 g}$ for $\mathbf{y}_{0} \in \mathbb{R}^{2 g} / \mathbb{Z}^{2 g}$ and c some integer. It was shown by Franklin [4] that, for almost all choices of y_{0}, the sequence defined as y_{n} is uniformly distributed in $\mathbb{R}^{2 g}$. Thus, the Jacobian determinant of our map L can be used to calculate the density to which our sequence of points P_{n} converges.

3. Empirical Results

In the case when $g=1$, we have an elliptic curve $y^{2}=x^{3}+a x^{2}+b x+c$. The points of the curve coincide with the Jacobian group. Accordingly, we can derive a group law for addition on the curve (see Lang [7]). Given a point $P=[x, y]$ on the elliptic curve, the duplication formula defines the x-coordinate of $2 P$ as

$$
x(2 P)=\frac{x^{4}-2 b x^{2}-8 c x+b^{2}-4 a c}{4\left(x^{3}+a x^{2}+b x+c\right)} .
$$

Note that, although the use of elliptic curves over finite fields has recently been used by Hess and Shparlinski [5] for uniform random number generation, our method is fundamentally different and focuses on non-uniform distributions.

For our tests, a sequence was calculated by taking the x-coordinates of the sequence of points $P_{n}=2{ }^{101} P_{n-1}$ on an elliptic curve, with initial point P_{0} having the x-coordinate equal to 100 (the y-coordinate was not relevant, as

Figure 1: Comparison of pseudo-random versus theoretical density for the elliptic curve $y^{2}=x^{3}-x$ with 3524322 samples

Figure 2: Scatter plot of density generated from the hyperelliptic curve $y^{2}=x^{5}+x^{4}-2 x^{3}+7 x^{2}-x+4$ versus contour plot of bivariate density proportional to $\frac{|x-y|}{\sqrt{\left(x^{5}+x^{4}-2 x^{3}+7 x^{2}-x+4\right)\left(y^{5}+y^{4}-2 y^{3}+7 y^{2}-y+4\right)}}$ on $[-2,2] \times$ $[0,2]$
all our operations were duplications). Thus, the algorithm used was a simple execution of the following recursion (101 iterations per sample):

$$
x \rightarrow \frac{x^{4}-2 b x^{2}-8 c x+b^{2}-4 a c}{4\left(x^{3}+a x^{2}+b x+c\right)},
$$

which theoretically leads to a density proportional to

$$
1 / \sqrt{x^{3}+a x^{2}+b x+c}
$$

The curve used for the arithmetic was $y^{2}=x^{3}-x$, and so the expected density was proportional to $\frac{1}{\sqrt{x^{3}-x}}$. Note that, as x_{0} was rational, the entire sequence was rational (although we would expect rounding errors to propagate). As there is an isomorphism between the elliptic curve and a fundamental parallelogram in the complex plane, the asymptotic results for multiply sequences in Section 2 apply. Thus, for a multiplier as large as 2^{101}, we anticipate excellent statistical results. Some theoretical statistical bounds are given by Pollanen [10].

We performed an empirical test in which a total of $3,524,322$ samples were generated on the interval $[-1,1]$ using double precision arithmetic with the GNU C compiler. Normalized elliptic logarithms were used to convert the samples into 24 -bit "uniform" samples in $[0,1)$. The resulting sequence of bits was subjected to Marsaglia's DIEHARD testing standard [8], which even some supposedly good pseudo-random number generators can fail. With a threshold of $\alpha=0.001$ for the resulting p-values, the sequence passed each of the DIEHARD tests. A histogram of the actual density plotted against the theoretical density is presented in figure 1.

In Figure 2, we plotted a scatter plot of 10,000 samples of a bivariate density generated from the curve $y^{2}=x^{5}+x^{4}-2 x^{3}+7 x^{2}-x+4$, with an overlayed contour plot of the theoretical density. This method shows promise for generating classes of multivariate pseudo-random sequences related to hyperelliptic curves, and perhaps could be generalized to larger classes of distributions by employing more general plane algebraic curves (see Volcheck [11]).

References

[1] D.G. Cantor, Computing in the Jacobian of a hyper-elliptic curve, Math. Comp., 48 (1987), 95-101.
[2] C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, AMS Surveys VI, New York (1951).
[3] J.N. Franklin, Deterministic simulation of random processes, Math. of Comp., 17 (1963), 28-59.
[4] J.N. Franklin, Equidistribution of matrix-power residues modulo One, Math. of Comp., 18 (1964), 560-568.
[5] F. Hess, I. Shparlinski, On the linear complexity of multidimensional distribution of congruential generators over elliptic curves, Design. Code. Cryptogr., 35 (2005), 111-117.
[6] D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Volume 2, Addison-Wesley, New York (1998).
[7] S. Lang, Elliptic Curves: Diophantine Analysis, Springer-Verlag, New York (1978).
[8] G. Marsaglia, Diehard: A battery of tests for randomness, http://www.stat.fsu.edu/pub/diehard/ (1996).
[9] M. Pollanen, Formal group laws and non-uniform quasi-random sequences, Int. J. Pure Appl. Math., 37 (2007), 79-100.
[10] M. Pollanen, Bounds on equipartition tests for multiply sequences, Preprint (2007).
[11] E.J. Volcheck, Computing in the Jacobian of a plane algebraic curve, In: Proceedings of the First Algorithmic Number Theory Symposium, Cornell University (1994).

