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Statistical Model Selection Criteria 
and Bayesianism 

I. A. Kieseppaitt 
University of Helsinki 

Two Bayesian approaches to choosing between statistical models are contrasted. One 
of these is an approach which Bayesian statisticians regularly use for motivating the 
use of AIC, BIC, and other similar model selection criteria, and the other one is a new 
approach which has recently been proposed by Bandyopadhayay, Boik, and Basu. The 
latter approach is criticized, and the basic ideas of the former approach are presented 
in a way that makes them accessible to a philosophical audience. It is also pointed out 
that the former approach establishes a new, philosophically interesting connection be- 
tween the notions of simplicity and informativeness. 

1. Introduction. In recent years philosophers of science have shown some 
interest for statistical model selection criteria. There are several reasons 
for such interest. Perhaps the most obvious of these is the fact that in 
many of the typical applications of model selection criteria the methodo- 
logical rules which are associated with them instruct us to behave in ac- 
cordance with the traditional idea that simple models should be preferred 
to more complicated ones, other things being equal. Hence, the theoretical 
justifications of the model selection criteria seem to justify this traditional 
methodological doctrine in some important special cases. 

Statistical model selection criteria are quantities which depend on the 
available measurement results and on the properties of the considered 
model, and they are associated with methodological rules which state that 
one should choose the model for which the criterion receives its smallest 
value. The two most popular model selection criteria are the Akaike 
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Information Criterion (AIC) and the Bayesian Information Criterion 
(BIC).1 The use of AIC has originally been motivated by the wish to max- 
imize the value of a quantity which philosophers have called the predictive 
accuracy of the model (see Forster and Sober 1994; cf. Kieseppa 1997), 
and the use of BIC is motivated by the Bayesian idea that one should 
choose the model with the largest posterior probability. 

In Bandyopadhayay, Boik, and Basu 1996 it was claimed that one could 
use this Bayesian idea for defending the use of a large variety of different 
ways of choosing between models. The way in which Bandyopadhayay, 
Boik, and Basu arrive at this conclusion has subsequently been criticized 
by the statistician Jouni Kuha in Kuha (n.d.). Kuha also points out in 
ibid. that there is a more standard Bayesian argument with which one can 
arrive at a similar conclusion. This argument can be used for motivating 
not only the use of BIC, but also the use of AIC and various other infor- 
mation criteria. It is also quite interesting philosophically, among other 
reasons because it establishes a connection of a new kind between the 
informativeness and the simplicity of the considered models. 

However, Kuha's presentation of this argument is very dense, rather 
technical, and, accordingly, for most philosophers quite difficult to follow. 
It is badly in need of being complemented by a discussion of the same 
topics which is more accessible to a philosophical audience and which 
emphasizes the philosophically relevant aspects of its subject matter. Such 
a complementation will be presented below. 

2. AIC, BIC, and Curve-Fitting. Until now philosophers have discussed 
the use of statistical model selection criteria mostly in the context of curve- 
fitting problems, and below I shall follow this practice. Of course, these 
problems constitute only a minor subset of the set of all the problems to 
which the criteria can be applied. 

Curve-fitting problems are problems of finding a curve which expresses 
the connection between two quantities-which we shall call x and y-on 
the basis of a finite sample within which one has measured their values. 
Such measurement results can be represented by tabulating the observed 
x values and the observed y values for each item in the sample in the way 
that is illustrated by Figure 1. As the figure indicates, we shall below use 
the capital letters X and Y for referring respectively to the list of the ob- 
served x values and the list of the observed y values that would appear in 
such a table. 

The measurement results can, of course, also be represented as points 

1. For standard introductions to the statistical methods based on AIC see, e.g., Saka- 
moto et al. 1986 and Burnham and Anderson 1998. The use of BIC is discussed at 
length in, e.g., Raftery 1995. 
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Figure 1. 

in a co-ordinate system. The task of picking up a curve-like, e.g., the 
straight line in Figure 1-which one supposes to express the connection 
between x and y can be divided into two parts: first one chooses a statistical 
model for the connection of x and y, and then one picks up its best-fitting 
curve. Each of these models specifies a family of curves and claims that 
one of its curves is the "true curve" in the sense that Y-i.e., the observed 
combination ofy values-has a conditional probability distribution which 
is centered around this curve. The family of curves in question might, e.g., 
be the family of all straight lines, or the family of all parabolas. 

In order to keep things simple, we shall below focus our attention on 
the case in which according to each considered model the error distribu- 
tion-i.e., the probability distribution of the difference of the observed y 
value and the y value which corresponds to the observed x value on the 
true curve-is a fixed normal distribution with some known variance a2. 
The curves which such models allow for are normally identified by a list 
of quantities, the parameters of the model. As a rule, the larger the number 
of parameters of a model is, the larger is the variety of different curves 
that it allows for. For example, the model which claims that the true curve 
is a straight line has in its standard representation two parameters, but 
the model which claims that the true curve is a parabola has three of them. 

When the parameters of the model M are denoted by a1, a2, ... , a,, 
each combination of the values of a1, a2, ... , ak corresponds to a prob- 
ability distribution of the y values in Ywhich is conditional on the x values 
in X. When the error distribution is known, such probability distributions 
further correspond in a one-to-one fashion to the curves that the consid- 
ered model allows for. Whenever a, a2, ... , ak is a combination of pa- 
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rameter values, the probability distribution which corresponds to it can 
be denoted by 

prob(Ygiven X, M, and a,, a2,..., ak). 

To be quite precise, the quantity prob(Y given X, M, and a,, a2, ..., ak) 

is not the probability of Y, when X, M, and a1, a2,..., ak have been given. 
Rather, it expresses the probability density of Y when X, M, and a,, a2, 
... . ak have been given. An analogous remark also applies to all the other 
quantities of the form prob( ... given ... ) which occur below. 

The above quantity is at the same time the likelihood of the curve which 
corresponds to the parameter values a, a2, . . ., ak. The curve which has 
the largest likelihood is normally taken to be the best-fitting curve within 
its model. The parameter values which correspond to this curve will below 
be denoted by ae,i, a,,,. . . , ek (where 'e' is short for 'estimated'). Using 
this notation, the definitions of the AIC and BIC values of an arbitrary 
model M can be expressed as follows (see, e.g., Burnham and Anderson 
1998, 46 and 68): 

(1) AIC(M) = -2 (logarithm of prob( Y given X, M, and 
ae,l, ae,2 .. , ae,k )) + 2(number of parameters of M) 

(2) BIC(M) = -2 (logarithm of prob(Y given X, M, and 
are,, ae,2 ..., e,k)) + (logarithm of n)(number of parameters 
of M) 

In these formulas, as well as elsewhere in this paper, the word 'loga- 
rithm' refers to the natural logarithm, and the letter n denotes the number 
of items in the sample. As already stated, the criteria are associated with 
methodological rules which state that one should choose the model with 
the smallest criterion value: 

(Rule-AIC) Among the considered models choose the model M for which 
AIC(M) receives its smallest value! 

(Rule-BIC) Among the considered models choose the model M for which 
BIC(M) receives its smallest value! 

The logarithm which occurs in the first term of the expressions of AIC(M) 
and BIC(M) is the log likelihood of the best-fitting curve of the considered 
model, and it can be viewed as a measure of thefit between the model and 
evidence. Since this measure of fit is multiplied by a negative number in the 
two formulas, (Rule-AIC) and (Rule-BIC) both instruct us to prefer mod- 
els which fit the evidence well. The latter terms of the two expressions are 
different, but each of them is the product of the number of the parameters 
of the model and a quantity which has the same value for all models. The 
number of the parameters of a model can be viewed as a measure of its 
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complexity, since a model with a small number of parameters is, as a rule, 
simple in the sense that it allows a smaller variety of curves than a model 
with a large number of parameters. If one thinks about the number of 
parameters in this way, both AIC and BIC will be seen to give an advan- 
tage to simple models over complicated ones, since according to both of 
the two criteria, when two models fit the evidence approximately equally 
well, the simpler model should be preferred. However, the amount of such 
an advantage is different in the two criteria. 

3. The Bayesian Approach to Model Choice. A Bayesian approach to model 
choice is based on the idea that the model with the largest posterior prob- 
ability should be chosen. The posterior probability of a model M is its 
probability after the evidence has become known, and it depends on the 
one hand on how well the available evidence fits M, and on the other hand 
on the prior probability of M. This probability, which we shall denote by 
prior(M), is the probability that M had before the evidence became avail- 
able. 

In our current context the posterior probability of a model M is the 

probability of M, given that the observed y and x values are the ones in Y 
and X, respectively. When this probability is denoted by probability(M 
given X and Y), the basic idea of a Bayesian approach to model selection 
can be formulated as the following methodological recommendation: 

(B) Choose the model for which probability(M given X and Y) is largest 
among the considered models M! 

Below we shall denote the probability distribution of Y-i.e., of the ob- 
served y values-given that the observed x values are the ones in X and 

given that M is correct, by prob( Y given X and M). The Bayes formula 

implies that probability(M given X and Y) is proportional to the product 
of the prior(M) and prob(Y given X and M), so that the rule (B) can be 
reformulated as follows: 

(B') Choose the model for which prior(M) Xprob( Y given X and M) is 

largest among the considered models M! 

In order to be able to apply this methodological recommendation one has 
to fix the prior probabilities of the considered models, and one has to 
calculate prob(Y given X and M). This quantity is different from the quan- 
tities 

prob(Ygiven X, M, and a, a, . . . , ck) 

which we discussed earlier and which were associated with the individual 
curves of the model M, rather than with the whole model M. In Bayesian 
statistics the probabilities of the former type are calculated by introducing 
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separately for each model a prior probability distribution of the parameter 
values. Such a distribution can be denoted by 

prior(a, a2, .. . ., akgiven M). 

Together with the known distribution 

prob(Ygiven X, M, and a,, a2, . .., ,k), 

the prior distribution of the parameters suffices to determine the value of 
the quantity 

prob( Y given X and M) 

which occurs in (B'). Of course, different choices of the prior distribution 
lead to different values of prob(Y given X and M) and, accordingly, to 
different choices between models when the rule (B') is applied. Next we 
shall have a quick look at the way Bandyopadhayay, Boik, and Basu 
choose this distribution, and we then turn to a discussion of a more stan- 
dard way of choosing it. 

4. The Approach of Bandyopadhayay, Boik, and Basu. In order to provide 
a unified treatment for the argument of Bandyopadhayay et al. and its 
more customary alternative we shall put the rule (B') into a form in which 
its connection with the statistical model selection criteria is easy to see. 
First we observe that since the logarithm function is an increasing function, 
the rule (B') can be formulated also by saying that one should choose the 
model M for which 

logarithm of [prior(M) X prob( Y given X and M)] 

is largest. Secondly, since the logarithm function "converts products into 
sums" in the sense that 

logarithm of [A X B] = [logarithm of A] + [logarithm of B] 

for any numbers A and B, the rule (B') is further equivalent with a rule 
which instructs us to choose the model for which the value of 

[logarithm ofprior(M)] + [logarithm of prob(Y given X and M)] 

is largest. This recommendation is clearly equivalent with the following 
rule: 

(B") Choose the model for which (- 2)[logarithm ofprob(Y given X 
and M)] + (- 2)[logarithm ofprior(M)] is smallest among the 
considered models M! 

A comparison of (B") and the definitions of BIC(M) and AIC(M) suggests 
an obvious way in which one could give a Bayesian defense to the use of 
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these and other information criteria. The rule (B") would be equivalent 
with, e.g., (Rule-BIC) if the prior distributions of parameters were such 
that, firstly, the difference of 

logarithm of prob( Y given X and M), 

which occurs in (B"), and 

logarithm of prob(Y given X, M, and ae,, ae,,2, ... a ,, 

which occurs in the definition of BIC(M), was a constant which had the 
same value for all the considered models, and if, secondly, the difference 
of 

(- 2)[logarithm ofprior(M)] 

and 

(logarithm of n)(number of parameters of M) 

was a constant which had the same value for all the considered models. 
In Bandyopadhayay et al. 1996 one considers a family of prior distri- 

butions which depends on a parameter T. The parameter has been chosen 
in such a way that the former of the above conditions becomes valid in 
the limit in which z approaches infinity.2 Hence, the approach of Bandyo- 
padhayay et al. seems to enable one to give a new Bayesian defense for 
BIC. Of course, if this defense is acceptable, it can easily be modified so 
that it turns into an acceptable defense of AIC or of some other similar 
criterion: one just has to keep the prior distributions of the parameters 
within each model the way they are, but change the prior probabilities of 
the models so that they produce the criterion in question. 

However, Kuha (n.d.) contains several criticisms of the approach of 

Bandyopadhayay et al. The most obvious of these is that their results are 
concerned with the case in which z = oo, but the value oo of the parameter 
z does not correspond to legitimate prior distribution. My refusal to give 
this criticism the same weight that Kuha gives to it is based on the fact 
that it is easy to modify the argument of Bandyopadhayay et al. in such 
a way that this criticism no longer applies to it: one can choose a prior 
which corresponds to some very large, finite value of T and observe that 
their results must be almost exactly valid for this legitimate prior. Kuha 
also makes another criticism which is, in my view, more serious: Bandyo- 

2. The validity of the former condition follows from the fact, which is stated in Ban- 

dyopadhayay et al. 1996, 268, that with their choice of priors the posterior probability 
of each model is in the limit in which zr-oo proportional to the product of its prior 
probability and its maximum likelihood. 
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padhayay et al. assume that there is much more prior information con- 
cerning the values of the parameters of the large models than concerning 
the values of the parameters of the small models. There seems to be no 
other reason for making this assumption than the fact that, if Bandyo- 
padhayay et al. did not make it, their conclusions would not follow. 

Hence, the new approach to calculating the posterior probabilities 
which occur in (B') can be rejected for rather obvious reasons, because of 
the unreasonable and ad hoc way in which the prior distributions of the 
parameters are chosen in this approach. However, the more traditional 
approach to calculating them is worthy of more attention than philoso- 
phers have until now given to it. 

5. The Standard Bayesian Construction. The argument which we shall now 
consider can be used for motivating the use of (Rule-BIC), (Rule-AIC), 
and other similar rules when all the considered models are taken to have 
the same prior probability. Whenever this is the case the rule (B") becomes 
equivalent to the following simpler rule: 

(B"') Choose the model for which (- 2)[logarithm ofprob(Y given X 
and M)] is smallest among the considered models M! 

The value of prob(Y given X and M) depends on the prior probabilities 
that the parameters have within the model M. Unlike in the construction 
of Bandyopadhayay et al., in the argument we are currently considering 
this prior distribution has not been chosen in an ad hoc manner, with the 
aim of giving some particular value to prob(Y given X and M) in sight. 
Rather, its choice is motivated by the use of a quantitative measure of 
informativeness of the prior distribution. 

There is a natural measure for the amount of information that the 
available observations contain concerning the values of the parameters. If 
one assumes that the model M is true, so that the true curve is the curve 
which corresponds to some combination ac*, a2*, .. , ak* of the values 
of the parameters of this model, it becomes possible to ask how the esti- 
mates ae,, ae2, ... , atek of these values would be distributed if one re- 
peatedly measured the values of y for those x values for which measure- 
ments are currently available. As a matter of fact, it is fairly easy to 
explicitly calculate the probability distribution which the estimates ae,,, 
ae,2, ... , aoek would have in this case. This distribution is a many- 
dimensional normal distribution-it is k-dimensional when there are k pa- 
rameters-and it is centered around the true values al*, a2*, . .. ak* of 
the parameters (see, e.g., Wetherill 1986, 7-8). 

Just like the familiar one-dimensional normal distribution specifies a 
distribution for some single quantity z, this k-dimensional normal distri- 
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bution gives a probability distribution for the combination of the values 
of the parameter estimates ae,l, ae,2, ... , tk. However, the one- 
dimensional and the many-dimensional distributions differ in so far that 
the one-dimensional normal distribution can be represented graphically 
by the familiar bell-shaped curve, but the many-dimensional distribution 
does not have any analogous graphical representation. 

The extent to which a one-dimensional normal distribution of a quan- 
tity z is uninformative can naturally be measured by its variance. To see 
why this is the case, one can imagine that a quantity z has a true value z*, 
and that there is a method of measuring this value which is such that the 
probability distribution of the measurement result is a normal distribution 
which is centered around z*. The bell-shaped curve which represents this 
normal distribution grows broader as the variance of the distribution 
grows larger, which means that when the variance of this distribution 
becomes larger, the judgments that one can reasonably make on the basis 
of a measured value of z concerning its true value (i.e., z*) become less 
and less informative. This makes it natural to take the inverse of the var- 
iance of z, i.e., the quantity 1I(variance of z), to be a measure of informa- 
tiveness of the one-dimensional normal distribution of the quantity z. 

This measure of informativeness has an analogy also in the k-dimen- 
sional case. A k-dimensional probability distribution does not have any 
single number as its variance; rather, the k-dimensional analogy of the 
variance is the covariance matrix, which is an array of (k x k) numbers. 
The covariance matrix of the estimates aOe,, ae,2, . . . , ae.k specifies both the 
variances that the different estimates ae,i, ae2, . .. , Oe.k have when they 
are considered separately and their mutual covariances which measure the 
extent to which their values depend on each other. Similarly with the var- 
iance of a one-dimensional normal distribution, the numbers which appear 
in this matrix grow larger the smaller the amount of information that the 
probability distribution gives about a,*, a2*, ... , ak*, i.e., about the 
unknown true values of cxl, oL2, ... , o,. Analogously with the one- 
dimensional case, it is natural to take the inverse of this matrix to be a 
measure of the informativeness of the probability distribution concerning 
OLI*, ?2*, .. .., Ok*. This measure of informativeness is sometimes called 
the observed information matrix:3 

(3) [Observed information matrix] = inverse of [covariance matrix of the 

parameter estimates Oae, e,2, . . , a e,k] 

Here we shall not explain in a detailed manner what one precisely speaking 
means by the inverse of a matrix: for our purposes the only essential fea- 

3. See, e.g., Kuha (n.d.), Section 3; cf. Wetherill 1986, 7, formula (1.5). 
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ture of such an inverse is its being analogous with the inverse of a number 
in so far that, the larger are the numbers in a matrix, the smaller are, as 
a rule, the numbers which appear in its inverse. 

The observed information matrix which is defined by (3) is approxi- 
mately proportional to the number of the available observations: if the 
number of the available observations, e.g., rises from 100 to 200, the num- 
bers which appear in this matrix will be approximately doubled as well. 
More precisely, this is typically the case when the x values of the new 
measurements have the same order of magnitude with the x values that 
have been measured earlier, like when they, e.g., are between some of the 
x values that have been measured previously. 

This makes it natural to think of the information that each single ob- 
servation brings as approximately given by the matrix 

(lln)[Observed information matrix], 

when n is the number of the available observations. Here the operation of 
multiplying a matrix by (lln) should be understood in the obvious way, 
as yielding a matrix each of whose elements has been obtained from the 
corresponding element of the original matrix by multiplying it by (l/n). 
Similarly, it is natural to think that the amount of information that no 
observations would bring as given by 

(4) [Information matrix for no observations] = (non)[Observed information 
matrix]. 

Now, also the prior distribution that the true values of the parameters 
a1, a2, ... , ak are supposed to have in a Bayesian approach is a 
k-dimensional probability distribution, and this is often assumed to be 
normal. Reasoning by analogy, one can measure the informativeness of 
this distribution also by the inverse of its covariance matrix. In the Bayes- 
ian construction that we are currently considering this inverse is taken to 
be the matrix which corresponds, in the sense that was explained above, 
to no imagined observations for some no. In other words, one chooses the 
prior distribution in such a way that 

(5) Inverse of [Covariance matrix of prior distribution] = [Information 
matrix for no observations]. 

When the prior distribution of the parameters a,, a2,..., ak of the model 
M have been fixed in this way, it becomes possible to calculate the value 
prob( Y given X and M). When the result of this calculation is substituted 
into the expression which occurs in (B"'), the value of this expression turns 
out to be4 

4. This follows immediately from formula (6) of Kuha (n.d., Section 3), and some- 
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(6) (- 2)[logarithm of prob(Y given X and M)] - (-2)[logarithm ofprob 
(Ygiven X, M, and ae,, ae,2, .. . 9 e,k) + log (nlno)(number of 
parameters of M) + constant. 

Comparison of this formula with the definition of BIC(M) shows that this 
construction leads to BIC when n, is chosen to be 1, i.e., when the prior 
distribution is thought of as containing as much information concerning 
the value of the considered quantity as a single observation would contain. 
Similarly, the construction leads to AIC when no is chosen in such a way 
that log (n/no) = 2, which is equivalent with n = (lle2)n. 

This means that the case in which this Bayesian construction leads to 
AIC and the one in which it leads to BIC differ in so far that when one 
arrives at AIC the prior distribution of the parameters contains more in- 
formation concerning their values than when one arrives at BIC. In the 
former case the information in the prior distribution corresponds to a 
number no of imagined observations which grows as the number of actual 
observations, n, grows. It is also clear that the same construction can be 
used for yielding any information criterion of the form 

(-2)[logarithm ofprob(Y given X, M, and ae,i, ae,2 . . , ae,k) 

+ f(n)(number of parameters of n), 

where fin) is an arbitrary function of n, by adjusting the information in 
the prior distribution of the parameters suitably. 

6. Concluding Remarks. We have seen that a Bayesian approach to model 
choice is more flexible than the Akaikean approach, which is motivated 

by the wish to maximize predictive accuracy. The latter approach leads to 
the particular information criterion AIC, but the Bayesian approach pro- 
duces a whole family of different information criteria which correspond 
to different assumptions concerning the amount of available prior infor- 
mation concerning the values of the parameters. Such flexibility could be 
viewed as a positive aspect of the Bayesian approach, but it could also be 
used as a criticism of Bayesianism. After all, such flexibility shows that 

Bayesianism fails to answer the question how one should choose between 
models when it is not clear how the prior probabilities of their parameters 
should be fixed. 

Despite this obvious criticism, the Bayesian construction which we 
discussed above is quite interesting philosophically. This is because it 
builds a connection between the important methodological concepts of 

informativeness and simplicity. In its typical applications the Bayesian 

what less directly from formula (7) in Smith and Spiegelhalter 1980, 215; cf. also Raftery 
1995, 131. 
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method of justifying the use of various model choice criteria which we 
described above leads to the conclusion that, the more prior information 
concerning the values of the parameters the researchers are assumed to 
have, the less weight they should give to the simplicity of the model that 
they choose. In this short paper we have not been able to analyze the 
significance of this conclusion in a detailed manner. However, already at 
this stage we can state where, also more generally, the philosophically 
interesting aspects of Bayesian approaches to model selection are to be 
found. They are associated with ways in which the different ways of fixing 
the prior distributions that the parameters have within each model make 
researchers give different amounts of advantage to simpler models, and 
not with the more or less trivial observation that, if one fixes the prior 
probabilities that the models themselves have in such a way that the simpler 
models have larger prior probabilities, Bayesian methodological rules will 
instruct us to prefer simple models to more complicated ones. 
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