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Abstract. A major portion of software development effort is spent in
testing and debugging. Execution sequence collected in the testing phase
can be a rich source of information for locating the fault in the program,
but the exact execution sequence of a program, i.e., the actual order of
execution of the statements in the program, is seldom used due to the
huge volume. In this study, we apply data mining techniques on this data
to reduce the debugging time by narrowing down the possible location
of the fault. Our method applies N-gram analysis to rank the executable
statements of a software by level of suspicion. We conducted three case
studies to demonstrate the effectiveness of our proposed method. We also
present comparison with other approaches, and illustrate the potential
of our method.

1 Introduction

Software fault localization is a long standing and very important problem in
software engineering. Due to the human involvement in the software develop-
ment process, it is virtually impossible to develop software free from any kind
of fault (a.k.a. bug or defect). Once a fault is in a software, it is a tedious,
time-consuming and difficult process to find its location in the source code as
the developer may have to go through the entire code to find the fault. For this
reason, research in automated fault localization techniques to indicate or point
to possible fault locations is extremely valuable. A lot of research effort has gone
into automating the process of discovering the fault location, or Software fault
localization [1,2,3,4,5,6,7].

Usually fault localization utilizes test cases – sets of inputs with known ex-
pected outputs. If the actual output does not match the expected output, the
test case has failed. Various information can be collected during the execution of
the test cases for later analysis. This information may include statement coverage
(the set of statements that were executed at least once during the execution),
and exact execution sequence (the actual order in which the statements were
executed during the test case executions). Since we will be working only with
the exact execution sequence in this paper, we refer to it as trace. Usually, the
usefulness of trace data is limited by the sheer volume. Data mining tradition-
ally deals with large volumes of data, and in this research, we apply data mining
techniques to process this trace data for fault localization.
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From trace data, we generate N -grams, i.e., subsequences of length N . From
these, we choose N -grams that appear more than a certain number of times in the
failing traces. For these N -grams, we calculate the confidence – the conditional
probability that a test case fails given that the N -gram appears in that test
case’s trace. We sort the N -grams in descending order of confidence and report
the statements in the program in the order of their first occurrence in the sorted
list. We have tested our method on the Siemens suite, the Space program and
grep [8]. Our implementation have produced better results on these three suites
than the most standard method Tarantula [1].

This paper is organized as follows. In Section 2, we discuss the related termi-
nologies and ideas. In Section 3, we present the complete algorithm. In Section 4,
we discuss the reults of applying our algorithm on Siemens suite, Space and grep.
In Section 5, we discuss other relevant research. Finally, in Section 6, we present
the conclusions from this study and discuss future directions of research.

2 Background

In this section, we discuss the concepts, ideas and definitions related to our
method of solving the problem namely execution sequences, N -gram analysis,
linear execution blocks and association rule mining.

2.1 Execution Sequence

Let P be a program with n lines of source code, labeled as L = {l1, l2, . . . , ln}.
For example, in the sample program mid from [1] in Fig. 1(a), L = {4, 5, 6,
10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 24} after excluding comments, blank
lines and structural constructs like ‘}’. A test case is a set of input with known
outputs. Let T = {t1, t2, . . . , tn} be the n test cases for program P . Each test
case ti = 〈Ii, Xi〉 has the input Ii and expected output Xi. When program P is
executed with input Ii, it produces actual output Ai. If Ai = Xi, then we say
ti is a passing test case, and if Ai �= Xi then we say ti is a failing test case.
For example, the 6 test cases for the program mid in [1], T = {t1, t2, . . . , t6},
are shown in Table 1. Let Y = 〈y1, y2, . . . , yk〉 , yi ∈ L be the trace of program
P when running test case T . Then, for mid the trace for the test case t1 is
Y1 = 〈4, 4, 5, 10, 11, 12, 14, 15, 24, 6〉. We define two sets based on the outcome of
the test cases – passing traces which is YP = {Yi|ti is a passing test case} and
failing traces which is YF = {Yi|ti is a failing test case}.

We define our problem as: given program P with executable statements L,
test cases T and actual outputs A, the problem is to rank the statements in L
according to their probability of containing the fault. To compare our method
with other methods like [1], we report our results in terms of statements, but it
can also work at function level.

Given an ordered list, an N -gram is any sub-list of N consecutive elements
in the list. The elements of the N -gram must be in the same order as they were
in the original list, and they must be consecutive. Given an execution trace Y ,
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Table 1. Test cases for program mid [1]

Test Input Expected Actual Test case Trace
Case, ti Ii Output, Xi Output, Ai type

t1 3, 3, 5 3 3 Passing 4,4,5,10,11,12,14,15,24,6
t2 1, 2, 3 2 2 Passing 4,4,5,10,11,12,13,24,6
t3 3, 2, 1 2 2 Passing 4,4,5,10,11,18,19,24,6
t4 5, 5, 5 5 5 Passing 4,4,5,10,11,18,20,24,6
t5 5, 3, 4 4 4 Passing 4,4,5,10,11,12,14,24,6
t6 2, 1, 3 2 1 Failing 4,4,5,10,11,12,14,15,24,6

an N -gram GY,N,α is a contiguous subsequence 〈yα, yα+1, yα+2, . . . , yα+N−1〉 of
length N starting at position α. For a trace Y , the set of all line N -grams is
GY,N = {GY,N,1, GY,N,2, . . . , GY,N,K−N+1}.

2.2 Linear Execution Blocks

From the set of all traces, we identify the execution blocks, i.e., the code segments
with a single point of entry and a single point of exit. For this, we construct the
Execution Sequence Graph XSG(P ) = (V, E) where the set of vertices is V ⊆ L
such that for each vi ∈ V , vi ∈ Yk for some k. E is the set of edges such that
for each edge 〈vi, vj〉 ∈ E, we have vi, vj ∈ Yk for some k and that vi and vj are
consecutive in Yk. This is similar to a Control Flow Graph, but the vertices in
an XSG represent statements rather than blocks. In this graph, there is an edge
between two vertices only if they were executed in succession in at least one of

Fig. 1. (a) Sample source code: mid.c, (b) execution sequence graph for program mid
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the execution traces. The XSG for mid is given in Fig. 1(b), where we can see
that the blocks of mid are {b1, b2, . . . , b10} = { 〈4〉, 〈5, 10, 11〉, 〈12〉, 〈18〉, 〈20〉,
〈19〉, 〈24, 6〉, 〈14〉, 〈13〉, 〈15〉 }. Thus, trace of test case t1 can be converted to
block level trace by 〈b1, b2, b3, b8, b10, b7〉.

It should be noted that our definition of blocks is different than the traditional
blocks [9]. Since we identify blocks from traces, our blocks may include function
or procedure entry points. For example, 〈5, 10, 11〉 will not be a single block by
the traditional definition since it has a function started at line 10. Due to this
difference, we name our blocks Linear Execution Blocks, defined as follows: A
Linear Execution Block B = 〈vi, vi+1, . . . , vj〉 is a directed path in XSG such
that the indegree of each vertex vk ∈ B is 0 or 1. Advantages of using block traces
are: (a) it reduces the size of the traces, and, (b) in a block trace, each sequence of
two blocks indicate one possible branch. Therefore, in N -gram analysis on block
traces, each block N -gram represents N − 1 branches. This helps the choice of
N for N -gram analysis, discussed in Section 3.1.

2.3 Association Rule Mining

Association Rule Mining searches for interesting relationships among items in a
given data set [10]. It has the following two parts:

Frequent Itemset Generation. Search for sets of items occurring together
frequently, called a Frequent Itemset, whose frequency in the data set, called
Support, exceeds a predefined threshold, called Minimum Support.

Association Rule Generation. Look for association rules like A ⇒ B among
the elements of the frequent itemsets, meaning that the appearance of A in a
set implies the appearance of B in the same set. The conditional probability
P (B|A) is called Confidence, which must be greater than a predefined Minimum
Confidence for a rule to be considered. More details can be found in [10].

In our research, we model the blocks as items and the block traces as the
transactions. For example, Y1 = 〈b1, b2, b3, b8, b10, b7〉 is a transaction for mid
corresponding to the first test case, T1. We generate frequent itemsets from the
transactions with the additional constraint that the items in an itemset must be
consecutive in the original transaction. To do this, we generate N -grams from
the block traces, and from them, we choose the ones with at least the minimum
support. For a block N -gram GYi,N,p, support is the number of failing traces
containing GYi,N,p:

Support(GYi,N,p) = |{Yj |GYi,N,p ∈ Yj and Yj ∈ YF }| (1)

For example, for mid, the support for 〈b2, b3, b8〉 is 1 since it occurs in one failing
trace. We add the test case type to the itemset. For example, after adding the
test case type to the itemset 〈b2, b3, b8〉, the itemset becomes 〈b2, b3, b8, passing〉.
Then, we try to discover association rules of the form A ⇒ failing from these
itemsets where the antecedent is a block N -gram and the consequent is failing.
Therefore, the block N -grams that appear as antecedents in the association
rules are most likely to have caused the failure of the test case. We sort these
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block N -grams in descending order of confidence. For a block N -gram GYi,N,p,
confidence is the conditional probability that the test case outcome is failure
given that GYi,N,p appears in the trace of that test case. That is,

Confidence(GYi,N,p) =
Prob(GYi,N,p ∈ Yj and tj is a failing test case)

Prob(GYi,N,p ∈ Yj)
(2)

For example, the confidence the rule 〈b2, b3, b8〉 ⇒ failing has confidence 0.33.
After sorting the block N -grams, we convert the blocks back to line numbers
and report this sequence of lines to investigate to find the fault location.

3 Methodology

In this section, we present our methodology for localizing faults. As input we
use the source code, the test case types and the traces for all the test cases, and
produce as output an ordered list of statements, sorted in order of probability of
containing the fault. We first convert the traces to block traces, and then apply
N -gram analysis on these block traces to generate all possible unique N -grams
for a given range of N . For each N -gram, we count its frequency in passing and
failing traces. The set of N -grams and their frequencies are analyzed using the
association rule mining technique described in Section 2.3.

The execution of the faulty statement may not always cause failure of the test
case. There might be quite a number of test cases in which the faulty statement
was executed but it did not cause a failure. In most cases, the failure is depen-
dent on the sequence of execution. A specific sequence or path of execution will
cause the program to fail, and this sequence will be very common in the failing
traces but not so common in the passing traces. Therefore we can find these
subsequences that are most likely to contain the fault by analyzing the traces
during passing and failing test cases.

3.1 Parameters of Algorithm

There are two major parameters in the algorithm - the first one is MinSup,
the minimum support for selecting the N -grams, and the second is NMAX , the
maximum value of N for generating the N -grams. Taking a low value of mini-
mum support will result in the inclusion of irrelevant N -grams in consideration.
Therefore, we should take minimum support at a high value. Our experience
suggests that 90% is a good choice. However, choice of an appropriate NMAX

is harder. Two execution paths can differ because of conditional branches. Such
differences can be detected by 2-grams. Again, the same function can be called
from different functions, which can also be detected with 2-grams. Since we are
using execution blocks, an N -gram can capture (N − 1) branches, and a choice
of 2 or 3 for NMAX should give good results in most cases. If we use higher
N -grams, the algorithm will still be able to find the fault, but due to larger
N -grams, we will have to examine more lines to find the fault.
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Algorithm 1. Fault Localization using N -gram Analysis
1: procedure LocalizeFaults(Y, YF , K, MINSUP )
2: for all Yi ∈ Y do
3: Convert Yi to block trace
4: end for
5: NG ← φ
6: for N = 1 to NMAX do
7: NG ← NG ∪ GenerateNGrams(Y,N)
8: end for
9: Lrel ← {n|n ∈ NG and |n| = 1}

10: for all n ∈ Lrel do
11: if Support(n) �= |YF | then
12: Remove n from NG and Lrel

13: end if
14: end for
15: NG1 ← {n|n ∈ NG and for all s ∈ Lrel, s �∈ n}
16: NG ← NG − NG1

17: for all n ∈ NG do
18: if Support(n) < MINSUP then
19: Remove n from NG
20: end if
21: end for
22: for all n ∈ NG do
23: NF ← | {Yk|Yk ∈ YF and n ∈ Yk} |
24: NT ← | {Yk|Yk ∈ Y and n ∈ Yk} |
25: n.confidence ← NF ÷ NT
26: end for
27: Sort NG in descending order of confidence
28: Convert the block numbers in the N-grams in NG to line numbers
29: Report the line numbers in the order of their first appearance in NG
30: end procedure

3.2 Algorithm

In this section, the complete algorithm is presented in Algorithm 1. Following is
a description of the steps in the algorithm.

L2B: Convert exact execution sequences to block traces. From the line
level traces, we create the Execution Sequence Graph (XSG) as described in
Section 2.1. From the XSG, we find the Linear Execution Blocks (LEB). Then
we convert the traces into block traces in lines 2 to 4 of Algorithm 1.

GNG: Generate N-grams. In this step, we first generate all possible N -grams
of lengths 1 to NMAX from the block traces. The generation of all N -grams from
a set of block traces for a given N is done in lines 1 to 7, and the generation and
combination of all the N -grams are done in lines 5 to 8. Then, we find out how
many passing and failing traces each N -gram occurs in.
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Algorithm 2. N -gram generation
1: function GenerateNGrams(Y,N)
2: G ← φ
3: for Yi ∈ Y do
4: G ← G ∪ GYi,N

5: end for
6: return G
7: end function

FRB: Find Relevant Blocks. From 1-gram, we construct a set of relevant
blocks, Brel that contains only those blocks that have appeared in each of the
failing traces in lines 10 to 14.

EIN: Eliminate Irrelevant N-grams. In lines 15 to 16, we discard those
N -grams that do not contain any block from the relevant block set, Brel.

FFN: Find Frequent N-grams. In lines 17 to 21, we eliminate N -grams with
support less than the minimum support as described in Section 2.3.

RNC: Rank N-grams by Confidence. For each surviving N -gram, we com-
pute its confidence using Eqn. 2. This is done in lines 22 to 26. Then we order
the N -grams in order of confidence in line 27.

B2L: Convert Blocks in N-grams to Line Numbers. We convert each
block in the N -grams back to line numbers using the XSG in line 28.

RLS: Rank Lines According to Suspicion. We traverse the ordered list of
N -grams, and report the line numbers in the order of their first appearance in
the list. This is done in line 29.

If there are multiple N -grams with the same confidence as the N -gram con-
taining the faulty statement, the best case will be the ordering in which the
faulty statement appears in the earliest possible position in the group, and
the worst case will be the ordering in which the faulty statement appears in
the latest possible position.

4 Case Study

We define the number of lines a programmer needs to examine to find out the
fault location as the rank of the program. For example if we have to check α
lines to find the fault location of a program, then we say α is the rank of that
program. When we are comparing two methods, the method that gives smaller
rank is the more effective method. For example, for a program P if method M1
gives the rank α and method M2 gives rank β and if α < β then it is said that M1
performs better than M2. For a program with multiple versions, if methodology
M1 gives smaller ranking for more faulty versions than M2 then we say M1
is better than M2 for that program. Section 4.1 describes the test suites and
programs downloaded from [8] used in this study.
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4.1 Test Suites

The Siemens suite contains 7 programs. The number of faulty versions range
from 7 to 41, number of executable statements range from 55 to 216, and number
of test cases range from 1052 to 5542. Of the 132 faulty versions, three were not
used in our study because one did not have any failing test case and two had
faults in header files. The Space program has 6218 lines of executable code, 38
faulty versions and 13585 test cases. We did not use 3 faulty versions in our study
because there were no failing tests for these versions. The grep program has 3306
executable statements, 470 test cases and 18 versions. Compared to [11] that
failed to detect any of these faults, we could detect 4 faults in our environment.
So we used these 4 versions and also used 2 faults injected by [11], and followed a
similar approach to inject 13 more bugs, for a total 19 faulty versions. Manually
injected faults are designed to mimic realistic bugs, as described in [11].

4.2 Running the Tests

We conducted our experiments on a Sun Microsystems with 64 bit Intel CPU,
1GB physical memory running Solaris 5.10. We used GCC 3.4.3 and GDB 6.6.
For each program, we generated the expected outputs by running the correct
program for each test case. Then, we executed the program with the test cases
through GDB using a java program to collect the traces. The advantage of using
GDB to collect traces is that unlike other studies [6,2] no instrumentation is
needed, and we can collect the complete data even if there is a segmentation fault.
After data collection, we compared the output of each run with the corresponding
expected output and labeled accordingly as passing or failing.

4.3 Applying and Evaluating Our Method

We applied our method on the data collected in Sect. 4.2. For each version, we
ran our method for N = 1, 2, . . . , 6 and minimum support of 30%, 40%, . . . , 90%
and determined the best case and worst case ranks of the line containig the fault
in the source code as described in Section 3.2. From these ranks, we calculated
the percantage of code that needs to be examined to find a fault in the best and
worst case. From this experiment we found that the best result is obtained when
N = 3, Minimum Support = 90%, validating our analysis in Section 3.1.

To evaluate our method we compared our results with results from Taran-
tula [1]. To make the comparison fair we had to collect the data and run Taran-
tula again because [1] excluded 10 faulty versions and used slightly different
number of test cases. We collected the coverage data using a revised version of
χSuds [12]. The comparisons of the results are discussed in the following sections.

The Siemens Suite. Fig. 2 shows the comparison between the Tarantula [1]
and our N -gram method. The horizontal axis represents the cumulative percent-
age of code to be examined and the vertical axis represents the total number of
faulty versions for which bug can be detected by examining this percentage of
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Fig. 2. Comparison between N-gram and Tarantula Method for Siemens suite

code. In worst case N -gram method can discover 80 out of 129 faults by examin-
ing only 20% of code while Tarantula can discover only 68 faults from the same
percentage of code. Also, in most cases the best case result for N -gram method
is better than the best case result for Tarantula, and also worst case result for
N -gram method is always better than the worst case result for Tarantula. Also
we can see that in worst case N -gram method can discover all 129 faults by
examining 78% code while Tarantula has to examine 89% code to discover all
faults. Also, we can see from Table 2 that in best case N -gram method performs
better than Tarantula method in 120 versions and in worst case our method
performs better than Tarantula method in 92 versions.

The Space Program. Fig. 3(a) gives the comparison for Space program be-
tween Tarantula [1] and our N -gram method. The axes are same as Fig. 2. In
worst case N -gram method can discover 24 faults out of 35 by examining only
1% of code while Tarantula can discover 22 faults by examining that much code.
The best and worst case results for N -gram method is always better than the
best and worst case results for Tarantula respectively. Also, in worst case N -
gram method can discover all faults by examining 20% code while Tarantula
needs 32% code for this. For 12 faulty versions out of 35 our worst case result
is better than Tarantula’s best case result. Table 2 shows that in best case our
method performs better than Tarantula in 21 versions and in worst case our
method performs better than Tarantula in 31 versions out of 35.

The grep Program. Fig. 3(b) shows that in worst case N -gram method can
discover all faults by examining only 5% of code while Tarantula can discover
only 11 faults by examinig that percentage of code. The graph also shows that the
worst case result for N -gram method is always better than the best case result
for Tarantula. Table 2 shows that in best case our method performs better than
Tarantula method in 17 versions and in worst case our method peforms better
than Tarantula method in all versions.
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Fig. 3. (a) Comparison between N-gram and Tarantula Method for Space, (b) Com-
parison between N-gram and Tarantula Method for grep

Table 2. Pairwise comparison between N-gram and Tarantula Method

Siemens Suite Space Grep
Ngram better than Tarantula in best case 120 21 17
Tarantula better than Ngram in best case 4 8 2
Ngram equal to Tarantula in best case 5 6 0
Ngram better than Tarantula in worst case 92 32 19
Tarantula better than Ngram in worst case 28 1 0
Tarantula equal to Ngram in worst case 9 2 0

From the above results we can say that N -gram method outperforms than
Tarantula [1] in all of the programs. We also observe from this result that our
method perform very well for larger programs and it proves that our method
can handle large volume of data than the traditional method.

5 Related Works

In the last few years, a lot of research has been done in this area. In [3], Guo et. al.
selected a single passing execution most similiar to a failing trace tried to identify
the fault location based on their differences. In [13], Renieris et. al. also find the
most similar passing traces but they use nearest neighbor method to measure simi-
larity. Liblit et. al., in [5], described how to collect program execution traces at run
time by deploying assertions in the program. They collected only predicate level
trace and gave their results at function level. Jones et. al., in their work [1], present
a visualization technique using the coverage matrix of the program execution to
identify suspicious statements. Denmat et. al. shows in [14] that Association Rule
Mining can be applied on coverage matrix. Liu et. al., in their work [2], took each
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logical expressions as features and tried to detect features that behave differently
in passing and failing runs. They also used clustering to detect multiple bugs in [6].
Their method give result in function level. In their research in [4] on software be-
havior graphs, they used SVM classification to detect suspicious subgraphs, pro-
ducing a back trace for the fault location. Other works on software behavior graph
mining include [15], where Fatta et. al. present their work on finding discrimina-
tive patterns based on the failing and passing program execution. Besides test case
analysis, researchers also analyze the source code to detect the defect in the source
code which may cause software failure, for example, [16,17,18,19,20].

6 Conclusions and Future Works

We have developed a new fault localization algorithm by analyzing the statement
sequences of faulty versions. Applying N -gram analysis to fault localization has
a very promising future as the results presented in this paper indicate. Using our
method, worst case average number of lines to check is 18 in the Siemens suite,
78 for Space and 231 for grep. These results are much better than those achieved
by the most standard method Tarantula [1], whose corresponding results are 26
lines, 146 lines and 1488 lines respectively. In all cases, our worst case result is
better than Tarantula’s worst case result. This shows that our method is both
practical and produces better results. Speciallly for larger programs our method
produces much better results than [1]. In this study our method only works on
single fault, but it can be extended to multiple faults by grouping the failing
cases which are caused by same fault and applying our method on these groups.

Research using exact execution sequences, as well as applying data mining to
fault localization, is still in beginning phase and there are a lot of avenues to
explore and places for improving the results. We are investigating augmenting
the execution traces with data flows in order to pinpoint data-driven faults. With
software sizes growing with time, processing the huge data collected from test
cases will eventually only be possible with data mining methods. Even then, we
need to improve our methods to reduce execution time and space. Scalability has
to be studied to ensure that it can be applied to large scale software. Also, since
it is very common in real life, we need to develop methods to handle multiple
faults. It is our belief that research in these directions can help significantly
reduce the efforts required to produce fault-free software.
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