
 
 
 
 
 
 
 
 
 
 
 

CONSISTENT ESTIMATION OF THE FIXED EFFECTS 
 

STOCHASTIC FRONTIER MODEL 
 
 
 
 
 
 
 
 
 Yi-Yi Chen 

Tamkang University 
 
 

 Peter Schmidt 
 Michigan State University 

Yonsei University 
 
 

Hung-Jen Wang 
National Taiwan University 

 
 
 
 
 
 
 
 
 
 

August 31, 2011 
 
 
  



 

 2

 
ABSTRACT 

 In this paper we consider a fixed-effects stochastic frontier model.  That is, we have panel 

data, fixed individual (firm) effects, and the usual SFA composed error.   

 Maximum likelihood estimation of this model has been considered by Greene (2005).  It is 

subject to the “incidental parameters problem,” that is, to possible inconsistency due to the number 

of parameters growing with the number of firms.  In the linear regression model with normal 

errors, it is known that the MLE of the regression coefficients is consistent, and the inconsistency 

due to the incidental parameters problem applies only to the error variance.  Greene’s simulations 

suggest that the same is true in the fixed effects SFA model. 

 In this paper we take a somewhat different approach.  We consider MLE based only on the 

joint density of the deviations from means.  In the linear regression model with normal errors, this 

estimator is the same as the full MLE for the regression coefficients, but it yields a consistent 

estimator of the error variance.  For the SFA model, the MLE based on the deviations from means 

is not the same as the full MLE, and it has the advantage of not being subject to the incidental 

parameters problem. 

 The derivation of the joint density of the deviations from means is made possible by results 

in the statistical literature on the closed skew normal family of distributions.  These results may be 

of independent interest to researchers in this area. 

 Simulations indicate that our within MLE estimator performs quite well in finite samples.   

 We also present some empirical examples.
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1.  INTRODUCTION  

In this paper we consider a fixed-effects stochastic frontier model of the form: 

(1)   ,  	,  0 . 

Here i = 1,…,N indexes firms and t = 1,…,T indexes time periods.  We have in mind a production 

frontier so that y is typically log output and X is a vector of functions of inputs.  The  are iid 

0, , the  are iid 0,  (i.e. half-normal), and X, v and u are mutually independent (so 

X can be treated as fixed).  This is a fixed-effects model in the usual sense that no assumptions are 

made about the , which we will refer to as the individual effects (or firm effects).  They are 

regarded as fixed numbers that can be estimated as parameters, or eliminated by suitable 

transformation. 

 This model has been considered by Greene (2005A, 2005B).  A similar model was 

considered earlier by Polachek and Yoon (1996), and a different but closely related model is 

discussed in Kumbhakar and Wang (2005) and Wang and Ho (2010).  The motivation for the 

model is that  represents technical inefficiency whereas  represents “heterogeneity” and 

presumably controls for time-invariant factors that affect the firm’s output but that are not 

regarded as inefficiency (e.g. because they are not under the control of the firm).  This is 

fundamentally different from earlier treatments, such as Pitt and Lee (1981) and Schmidt and 

Sickles (1984), in which inefficiency was time invariant and the only heterogeneity was the normal 

error  .  For example, in Schmidt and Sickles there was no  and inefficiency was measured by 

the difference across firms in their individual effects .  Whether systematic time invariant 

differences in firm output more likely represent heterogeneity or inefficiency is an arguable point.  

However, in this paper we bypass these philosophical issues and concentrate instead on the 

technical question of how to estimate the model (1) consistently. 
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 Greene (2005A) proposed the “true fixed effects” (TFE) estimator in which the  are 

estimated as parameters.  More precisely, he maximizes the usual SFA likelihood function (based 

on the pdf of the ) with respect to the parameters , … , , ,  and .  An unsolved question 

is whether this MLE is consistent, if asymptotics are understood to involve → ∞ (whether T is 

fixed or → ∞).  The issue is the so-called “incidental parameters problem” which arises because 

the number of parameters depends on the sample size (there are N of the ).   

 There is no clear general answer to the question of for which models the fixed-effects MLE 

is consistent.  For example, in the fixed-effects logit model, it is not consistent.  For the fixed 

effects linear model with normal errors (i.e. the model above but without the ), which is 

arguably more similar to the present model, the situation is well understood.  Here the MLE of  is 

consistent as → ∞, but the MLE of the error variance is inconsistent unless also → ∞.  The 

asymptotic bias in the estimate of the error variance for finite T is easily corrected.  Greene’s 

simulations suggest (but obviously cannot prove) that the situation for the fixed-effects SFA model 

is similar.  The MLE of  appears to be unbiased, but the MLE’s of the error variances are biased.  

A difference between these results and the results for the linear model with normal errors is that in 

the present case there is no known simple correction for the error variance estimates.  The error 

variances are important in the SFA context because they affect the extraction of estimated u from 

estimated  (Jondrow et al. (1982)). 

 In this paper we suggest an alternative to the TFE treatment of this model.  Specifically, we 

propose a “within MLE” that maximizes the likelihood based on the joint density of the deviations 

from the individual means of the .  That is, we remove the individual effects by the usual within 

transformation, and then apply MLE.  In the linear model with normal errors, this would lead to the 

same estimate of  as the TFE treatment.  Also, interestingly, it leads to a consistent estimate of 
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the error variance for fixed T.  In the SFA model, it does not lead to the same estimates of  or of 

the variance parameters as the TFE estimates.  The point, of course, is that we have removed the 

individual effects by the within transformation, and the number of remaining parameters does not 

depend on the sample size, so there is no incidental parameters problem.  Subject to the usual types 

of regularity conditions on X, the within MLE should be consistent. 

 This is the same strategy as was followed in Wang and Ho (2010).  The details are different 

because the models are different.  In particular, the fact that in this paper  varies randomly over 

t (whereas in Wang and Ho the random portion of their  was time invariant) makes the 

distribution theory considerably more difficult. 

 The derivation of the joint density of the deviations from means of the  is made possible 

by results in the statistical literature on the closed skew normal distribution.   Our likelihood is 

more complicated than the usual SFA likelihood, but simple enough that MLE based on it is 

feasible.  Our simulations indicate that the resulting estimates are quite reliable, and specifically 

that we do not encounter the bias in estimation of the variance parameters that Greene found for 

the TFE estimator. 

The plan of the paper is as follows.  In Section 2 we give a brief review of the linear 

regression model with normal errors, and we show that the within MLE of  is the same as the 

TFE estimate, but that the within estimate of the error variance is consistent as → ∞ with T 

fixed, unlike the TFE estimate.  In Section 3 we provide a compendium of results on the closed 

skew normal family of distributions.  In Section 4 we apply these to the fixed effects SFA model to 

construct the likelihood that our estimator will maximize.  Section 5 gives the results of our 

simulations.  In Section 6 we show the results of some empirical applications.  Section 7 

concludes.  There is also an Appendix that contains some technical details and proofs. 
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2. REVIEW OF THE FIXED-EFFECTS LINEAR MODEL 

 In this Section we provide a brief review of results for the linear regression model with 

fixed effects and normal errors.  The model is the same as model (1) above, but without the 

one-sided error u.  That is, 

(2)   ,  

where, as above, the  are treated as fixed and the 	are iid normal.  No assumptions are made 

about the individual effects . 

 We will need some notation for means and deviations from means.  For any variable  , 

we define the (individual) mean for firm i as ̅ ∑  , and we define the deviations from the 

individual means as ̃ ̅ .  The transformation from  to ̃  is called the within 

transformation.  Note that it annihilates time invariant variables; specifically, 0 . 

 The true fixed effects (TFE) estimator is least squares applied to (2), treating the 

parameters as , … , , .  It is sometimes called OLS with dummy variables (OLSDV) because 

it is calculated as a regression of y on [X, dummy variables for the firms].  With normal errors, it is 

the MLE, and the MLE of  is ∑ ∑ .  The MLE of  is not 

consistent as → ∞ with T fixed, but a consistent estimate can be obtained by multiplying the 

MLE by  . 

There are many estimators of  that are the same as the TFE estimator for this model, but 

which would not necessarily be the same as the TFE estimator for more complicated models like 

the fixed-effects SFA model.  Here is a listing of some of them. 

a.  Within estimator.  Perform the within transformation on equation (2) to obtain: 
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(3)  

(Note that this transformation has removed .)  Then apply OLS to (3).  Also, the TFE estimates 

of the  can then be recovered as 

(4)    where  is the within estimate. 

 b. IV1.  Do instrumental variables on (2), where the instruments are  . 

c. IV2.  Do instrumental variables on (3), where the instruments are  . 

d. Mundlak (1978). Regress  on [ , .  The estimated coefficients of  are the 

estimate of . 

e. Chamberlain (1980).  Regress 	on [ , , , … , ].  The estimated coefficients of 

 are the estimate of . 

The point of this listing is to make clear that there are many estimators that equal the TFE 

estimator for the linear model with normal errors, but which would be different from the TFE 

estimator for the panel data SFA model.  We will now define one other such estimator, which will 

be the one that we will extend to the panel data SFA model. 

 f. Within MLE.  Maximize the likelihood given in equation (10) below, which is based on 

the joint density of the first (T-1) deviations from individual means of the  . 

To motivate this estimator, we first state some well-known results from the panel data 

literature.  If the  in (2) are iid 0, , then (since 	  the log likelihood 

for the model is 

(5)  ln L = constant 	 ∑ ∑  . 

Using the identity that, for any , … , , ∑ ∑ ̅ ̅  , we can factor this as: 

(6)  ln L = constant 	   
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 where 

(7)  ∑ ∑   ,  ∑  . 

(As above,  , etc.)  This leads to the following MLE’s:  	within estimator, 

 ,  .  The incidental parameters problem is reflected in the fact that  

is inconsistent as → ∞ with T fixed.  A consistent estimator is obtained by dividing  by 

N(T-1) rather than NT.   

 The factorization in (6) depends on properties of the normal distribution, notably the 

independence of the mean and the deviations from means, and would not generalize to other 

distributions.  However, the concept of means and deviations from means obviously does 

generalize.  To pursue this point, we consider the likelihood based only on the deviations from 

means (i.e., the likelihood after the within transformation), which is a concept that is meaningful 

for any distribution of the errors.  So far as we are aware this is an original (though obvious) 

suggestion.  We define ∗ as the vector of the first T-1 deviations from the mean for individual i: 

(8)  ∗ , … , , ′. 

THEOREM 1:  The (log) pdf of ∗ is equal to 

(9)  ln ∗  constant – 	  ∑  . 

Proof:  See Appendix 1. 

Note that the sum in (9) is over all T squared deviations from means, so that it does not 

matter which T-1 deviations were used to define ∗  .  Obviously, any T-1 deviations from the 

mean contain the same information as all T. 

Using the result in Theorem 1, we can define the within likelihood: 

(10)   ln  constant  	   . 
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Maximizing this expression yields the within-MLE’s:   = within estimator,  .  

Thus the problem of the inconsistency of the MLE of  has been solved by using the likelihood 

based only on the deviations from individual means. 

The consistency of the within-MLE’s is not surprising, given that we have transformed 

away the individual effects .  Now there is no incidental parameters problem. 

To relate this result to the discussion of the MLE above, consider the following.  If 

, … , ′, we can make the transformation 

(11)  
∗

̅  . 

Here A is a nonsingular matrix with | | =  .  Explicitly, for any integer n, let 1  be an n 1 

vector of ones, and 1 1 ′ be an  matrix of ones.  Then 

(12A)  	, 1 , 

(12B)  1 ′ . 

Since 0, ∗ and ̅  are independent in the normal case (though not necessarily for other 

distributions).  Clearly ̅  is distributed as 0, .  This leads to a factorization of the likelihood 

given in (6) above as 

(13)  ln L = ln 	  , 

where ln  is given in (10) above, and  

(14)  ln  constant 	ln 	. 

The source of the inconsistency of the MLE of  is that it uses the information in  as well as in 

.   appears to be informative about , but in fact it is not, because ≡ 0 when evaluated 

at the MLE’s. 
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3. THE CLOSED SKEW NORMAL DISTRIBUTION 

We now return to the stochastic frontier composed error, which we will write for the 

moment (suppressing subscripts for observations) as , where v is distributed as 

0, , u is distributed as 0,  (i.e. half-normal), and v and u are independent.  Let  

and  .  Then the density of the composed error is 

(15)  . 

This distribution is a member of the skew normal family of distributions introduced by 

Azzalini (1985). 

DEFINITION 1:  A random variable Z is distributed as SN( ) (skew normal with 

parameter λ) if its density is 2  , ∞ ∞ , where φ and Φ are the standard normal 

pdf and cdf, respectively. 

The connection to the stochastic frontier composed error was made by Domínguez-Molina, 

González-Farías and Ramos-Quiroga (2003).  The composed error  =  where z is SN( ). 

Our ultimate interest is in finding the density of deviations from means of a set of 

independent composed errors.  To accomplish this, we need to embed the composed error 

distribution in a more general family of distributions which is closed under linear combination.  

This is the closed skew normal (CSN) family, for which closure under linear combinations was 

established by González-Farías, Domínguez-Molina and Gupta  (2004A).   

The remainder of this section draws heavily on González-Farías, Domínguez-Molina and 

Gupta  (2004B), hereafter GDG. 

DEFINITION 2:  A p-dimensional random variable Z is distributed as 

, , , , ,  if its density is ; , ; ,  .  Here  and  are 
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the p-variate normal density and the q-variate normal cdf, respectively, and 0; ,

.  The dimensions of the parameters are as follows: : 1, : , : , :

1, : . 

The relevance of this to the SFA model is that the composed error , with parameters  and 

, is distributed as , 0, , , 0,1 . 

It is well known that the normal distribution has some important and convenient properties.  

(i) If two random variables are marginally normal and independent, they are jointly normal.  (ii) If 

two random variables are jointly normal, they are marginally normal.  (iii) If two random variables 

are jointly normal, the distribution of either one conditional on the other is normal.  (iv) Linear 

combinations of jointly normal random variables are normal.  The CSN family has analogous 

properties, as the following results show. 

 RESULT 1:  (Proposition 2.4.1 of GDG)  “Independent marginally CSN random variables 

are jointly CSN”  If ′, … , ′ ′ where the  are mutually independent and  ~ 

, , , , , ∆ , then Z ~ ∗, ∗
∗, ∗, ∗, ∗, ∆∗ , where ∗ ∑ , ∗ ∑ , 

∗ ′, … , ′ ′, ∗ , … , ′, ∗  ⊕ , ∗ ⊕ , ∆∗ ⊕ ∆  .  Here ⊕ is 

the matrix direct sum operator that makes matrices A and B into a block diagonal matrix:  A⊕B = 

.   

COROLLARY 1:  (Corollary 2.4.1 of GCG)  If ′, … , ′ ′ where the  are iid 

, , , , , , then Z ~ ∗, ∗
∗, ∗, ∗, ∗, ∆∗ , where ∗ , ∗ , 

 ∗ 1 ⊗  , ∗ ⊗  , ∗ ⊗  , ∗ 1 ⊗  , ∆∗ ⊗ ∆, where ⊗ is the 

Kronecker product. 
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 RESULT 2:  (Lemma 2.3.2 of GDG)  “Marginal distributions of jointly CSN random 

variables are CSN”  Let Z ~ , , , , ,  and partition Z =  where  has dimension k 

and  has dimension p-k.  Partition ,  and 			  accordingly.  

Define ∗  , •  =  and ∆∗ ∆ • .  Then  ~ 

, , , ∗, , ∆∗ . 

RESULT 3:  (Proposition 2.3.2 of GDG)  “Conditional distributions of jointly CSN 

random variables are CSN”  Let the notation be as in Result 2.  Then the distribution of  

conditional on  is 

, , • , , ∗ , ∆  . 

RESULT 4:  (Proposition 2.3.1 of GDG)  “Linear combinations of jointly CSN random 

variables are CSN”  Let Z ~ , , , , ,  and let A be , ,	rank(A) = m.  Define 

 , ′, ′ , ∆ ∆ ′ ′ .  Then 

AZ ~ , , , , , ∆  . 

 

4. WITHIN-MLE ESTIMATION OF THE PANEL SFA MODEL 

In this section we will use the results from Section 3 to derive the densities of the means 

and deviations from means of composed errors. 

We begin with the vector of composed errors for firm i, , … , ′.  The  are iid 

with density given in equation (15) above.  However, it is more useful for our present purposes to 

note, as we did in Section 3, that the  are distributed as , 0, , , 0,1 . 

LEMMA 1:   ~ , 0 , , , 0 ,   



 

 13

 Proof:  This result follows immediately from Corollary 1 above. 

We now wish to decompose  into its mean and the deviations from means, exactly as was 

done to the vector of errors  in Section 2.  We define ̅ ∑  and ̃∗ as the vector of the first 

T-1 deviations from the mean: 

(16)  ̃∗ ̃ , … , ̃ , ′  ,  where ̃ 	 ̅  . 

As in Section 2, we then write  

(17)  
̃∗

̅   

where  and  are defined in equations (12A) and (12B).  These are linear combinations of  

and Result 4 of the previous Section can be used to derive their distribution. 

 THEOREM 2: 

(A)   ̃∗ ~ , 0 , ,
1 ′

, 0 , , 

(B)   ̅  ~ , 0, , 1 , 0, 1 , 

(C)   ̃∗ and ̅  are not independent (except when  = 0) . 

Proof:  See Appendix 2. 

 We are now in a position to write down the pdf’s of ̃∗ and ̅ . 

 THEOREM 3: 

(A)   ̃∗  • ̃∗; 0	,  • ̃ ; 0 ,  

where 0; 0, 1 . 

(B)    ̅  = • ̅ ; 0, • ̅ 1 ; 0, 1  

where  = 0; 0, 1  =  . 

Proof:  See Appendix 2. 
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 It is important to note that in equation (A) above, ̃  contains all T deviations from ̅  

whereas ̃∗ contains only the first T-1 deviations.  However, it is legitimate that ̃  appears in the 

expression for ̃∗ , since ̃  is a function of ̃∗.  (If you know the first T-1 deviations from the 

mean, you know all T.) 

 We now can form the within likelihood by multiplying (over i = 1, 2,…, N) the expression 

in equation (A) of Theorem 3, with the substitution ̃  and similarly for ̃∗.		This leads 

to the following expression for the within likelihood: 

(18)  ln constant ∑ ∗ ∗ ; 0	,  

   ∑ ; 0 , . 

The within MLE (WMLE) is defined by the maximization of the within likelihood with respect to 

,  and .  We repeat that there is no incidental parameters problem; the  do not appear in 

(18).  Subject to some regularity conditions (the details of which we will not pursue) on the , the 

WMLE is consistent and asymptotically normal.  No efficiency claims are made. 

 Similarly, we now can form the between likelihood by multiplying (over i = 1, 2,…, N) the 

expression in equation (B) of Theorem 3, with the substitution ̅ .  This leads to 

the following expression for the between likelihood: 

(19)  ln constant ∑ ; 0	,  

   ∑ 1 ; 0, 1 . 

The between likelihood contains ,  and  but we deliberately ignore any information it 

may contain about those parameters and base their estimation on the within likelihood only.  We 

can note that the MLE (TFE estimator) is based on the joint density of .  According to Sklar’s 

Theorem (see, e.g., Nelsen (1999), p. 15), this joint density can be written as the product of three 
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terms:  (i) the density of the deviations ̃∗; (ii) the density of the mean ̅ ; and (iii) the copula 

density that captures the dependence between ̃∗ and ̅ , which is not zero.  So the MLE 

(implicitly) uses all three of these terms, whereas the within MLE ignores terms (ii) and (iii), 

which contain the incidental parameters. 

The between likelihood can be used to obtain estimates of the .  We simply maximize the 

between likelihood with respect to the , treating the other parameters ( ,  and ) as fixed at 

the within MLE estimates.  Because we have independence over i, this is a separate maximization 

for each i.  We will call this estimator the between estimator of ,  denoted .  Explicitly, it 

maximizes 

(20) ; 0	,  + 1 ; 0, 1  

where ,  and  are the WMLE estimates.  (The expression in (20) is just the contribution of 

observation i to the between likelihood.) 

 A simpler estimate of  can be obtained by mean-adjusting the usual estimator for the 

fixed-effects linear model.  In that model, if  is the within estimator, the fixed effects estimates of 

the individual effects are .  In the SFA model, this estimator needs to be modified 

because the expectation of ̅  is not zero; it equals –  .  Therefore the 

mean-adjusted estimate is 

(21)   

where  and  are the WMLE estimates. 

 Subject (again) to some regularity conditions on the , both  and  should be 

consistent as → ∞. 
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  Evaluation of the within and between likelihoods requires the evaluation of T-dimensional 

normal integrals.  This is feasible, even for moderately large T, because of the special 

(equicorrelated) nature of the T-dimensional variance matrix.  Some discussion of these 

computational issues can be found in Appendix 3. 

 

5. SIMULATIONS 

In this Section we report the results of Monte Carlo simulations to evaluate the 

performance of the TFE and WMLE estimators.  For ease of presentation, the model is reproduced 

below. 

(22)    ,  	,  0 , i=1,…,N, and t=1,…,T, 

(23)  ~ 0, , 

(24)   ~ 0, , 

(25)   , 

(26)   . 

Note that the variance of  is  = 	 .  This is different from 	in equation (25), 

which equals  rather than var( ). 

The data generation process is as follows. We first generate , i=1,…,N, from a N(0,1) 

distribution, and then use the following equation to obtain  : 

(27)   ∙ √1 ∙ ,    	

where ~ 0,1 .  Therefore  has mean zero and variance equal to one, and the correlation 

between  and  is equal to	 .  The  and  are drawn from the distributions in (23) and (24), 

respectively.  Finally,  is obtained from (22).   
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For a given experiment (set of parameters), we keep the data for  and  the same in all 

of the replications.  Only  and  are redrawn in each replication.  The number of replications 

(R)  is 1000.  

 The parameters to be chosen are , , , τ, λ, and either  or .  We set  = 1,  = 1 

and  = 0.5 in all of the experiments.  For the other parameters, we consider N = {100, 200}, T = 

{5,10}, and 1, 2 .  

For the parameters , , ,  and , we report the mean, variance, standard deviation 

and mean squared error (MSE) of the within MLE (WMLE) and the MLE (TFE) estimates.  (The 

likelihoods are maximized with respect to  and , and then the implied estimates of  and  

are calculated.)  Since the , 1, … , , are also fixed parameters in the model, we report the 

(mean of the) same set of statistics for the . For instance, the MSE is calculated for each  over 

the R replications, and these MSE’s are averaged over the N observations to arrive at the mean of 

the MSE.  Results are reported for both the between MLE and the mean-corrected estimates of  , 

and also for the TFE estimates.  Finally, in each replication we also compute the Jondrow et al. 

(1982) inefficiency index, and a similar set of statistics for this index are also reported.  (Here, in 

calculating bias and MSE, we treat the inefficiency index as an estimate of .)  For the MSE and 

bias, the statistics are averaged first over i for a given replication and then over replications.  For 

the variance, we obtain the value from the identity that MSE = variance + bias2. 

 Table 1 reports the results with N=100, T=5, and 1 (upper panel) and 2 (lower panel).  

The results show that  is estimated very well by both the WMLE and TFE methods, for both 

values of .  Apparently the incidental parameters problem does not affect the estimation of the 

slope coefficients.  This result was also found by Greene (2005A) and Wang and Ho (2010).   
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 For the variance parameters, however, the TFE estimates suffer from a severe bias problem.  

The problem basically is underestimation of , which is also reflected in underestimation of  

and .  A similar result was found by Wang and Ho (2010).  For the variance parameters, the 

MSE of the WMLE estimates is substantially smaller than the MSE of the TFE estimates.  This is 

due to smaller bias, as just discussed.  The variances of the WMLE and TFE estimates are 

comparable.  This suggests that the TFE estimate could be useful if a bias correction could be 

found. 

For both the WMLE and TFE estimates, the precision of estimation of the variance 

parameters is less than we would hope.  For example, for the WMLE estimate of λ, the standard 

deviation is 0.486 when λ = 1 and 0.615 when λ = 2.  Looking more closely, we can see that in fact 

 is estimated quite precisely but  is not.  This is more of a problem when  is small.  For 

example, when  = 1, which corresponds to 0.733, the standard deviation of  is 

0.454.  When  = 2, which corresponds to 1.630 and  0.408, the standard deviation of 

 is 0.412, which is only slightly smaller, but considerably smaller relative to the true value of .   

For the estimated fixed effects and the JLMS index, the between MLE and the 

mean-corrected estimators perform equally well, with negligible differences between them.  Again, 

the MSE of these estimates is dominated by the variance, and the bias is always small.  For the TFE 

estimates, however, the bias is quite large.  For instance, the upper panel shows that the bias of the 

fixed effect is -0.012 for the between MLE while it is -0.295 for the TFE estimate.  Unsurprisingly, 

for the TFE estimates, the biases of  and of | ̂  are approximately equal.  The 

frontier is being placed incorrectly and that is reflected in the bias of the inefficiency estimates. 

Table 2 shows the results for larger N (N = 200).  Larger N helps to reduce the MSE of all of 

the estimated parameters based on the WMLE.  Both bias and the variance are reduced, and the 
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 MSE is generally cut by a factor of two (the same factor by which N increased).  Larger N is also 

helpful for the TFE estimates, although the effect is not as clear-cut.  The bias of the TFE estimates 

(of everything except ) remains substantial.  

Table 3 (N = 100, T = 10) and Table 4 (N = 200, T = 10) correspond to Tables 1 and 2 but 

with a larger value of T.  Increasing T reduces the MSE of all of the estimates.  Large T seems to be 

more valuable for the TFE estimates than for the WMLE estimates.  The reason for that result is 

not clear.  However, even with larger T, it remains true that the biases in the estimated variance 

parameters are in general much smaller for the WMLE than for the TFE.  In our view that is still 

the main argument in favor of the WMLE. 

 

6. EMPIRICAL EXAMPLES 

6.1. U.S. Steam Electric Power Generation Utilities 

In this empirical example we estimate a stochastic frontier production function for a panel 

of U.S. steam electric power generation utilities. The data is the same as in Rungsuriyawiboon and 

Stefanou (2008) and comprises 72 utilities for the years from 1986 to 1996, with a total number of 

792 observations. We thank Spiro Stefanou for providing the data.  Details of the data construction 

are found in Rungsuriyawiboon and Stefanou (2008). 

Output is defined as the amount of electric power generated (during the year) using 

fossil-fuel fired boilers and is measured in megawatt-hours. The input variables are labor and 

maintenance (“labor” hereafter), fuel, and capital stock. The labor and fuel measures are obtained 

by dividing the respective cost of the input by the corresponding price index, and the capital stock 

is measured using the valuation of base and peak load capacity at replacement cost in a base year 

and then updating it in the subsequent years based on the value of net additions to steam power 
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 plants.  The variables are then scaled to have unit means before taking logarithms, and the 

transformed variables are denoted by y, l, f, k, for output, labor, fuel, and capital stock, respectively. 

With this transformation, the first-order coefficients of the inputs in a translog function are the 

elasticities of output with respect to the inputs (evaluated at the means of the variables).  Finally, a 

time trend “T” is also included in the model. 

 The model specification is as follows: 

   β β β β β β β β

																							β β , 

(28)            ~ 0, , 

               ~ 0, . 

In this equation,  is the unobserved “heterogeneity” of utility i, which is treated as fixed; the 

random variable  is the “statistical error”; and the non-negative random variable  is the 

“technical inefficiency.” As noted in the introduction of the paper, we do not wish to take a 

position on the issue of whether differences across firms in the effects  are differences in 

heterogeneity for which we wish to control, or whether they also may reflect differences in 

time-invariant efficiency.  But in any case we will refer to the effects as heterogeneity. 

We apply three different estimators to the model given in equation (28).  The stochastic 

frontier (SF) estimator is the MLE of the model without including the effects .  The other two 

estimators are the true fixed effect (TFE) estimator suggested by Greene (2005A, 2005B) and the 

WMLE estimator proposed in this paper.  In the case of WMLE, the inefficiency index of Jondrow 

et al. (1982) is computed using  α .  

The estimated parameter values are presented in Table 5.  The most obvious feature of the 

results in Table 5 is that the SF results are substantially different from the TFE and WMLE results.  
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 That is, it matters substantially whether the unobserved fixed effects are included in the model or 

not.  For instance, compare the output elasticity with respect to labor of 0.115 for the SF estimates 

to 0.031 and 0.032 for the TFE and WMLE estimates.  Similarly large differences occur for the 

elasticities of output with respect to the other inputs.  The returns to scale (the sum of the input 

elasticities) are much larger when heterogeneity is not accounted for in the model. 

 The estimated inefficiencies are on average much larger in the SF results than in the TFE or 

WMLE results.  Compare mean inefficiencies of 0.314 to 0.107 or 0.111.  This occurs because the 

estimated value of   is much larger in SF (0.1617) compared with TFE (0.0193) or WMLE 

(0.0191).  This is an expected result, because when  is ignored in estimation, differences across 

firms in their unobserved heterogeneity are forced into inefficiency, and so the estimated 

inefficiency picks up the effect of heterogeneity in addition to inefficiency. 

 Comparing results from TFE and WMLE, both of which account for the effects  in 

estimation, we find that they produce comparable slope coefficients, which is consistent with the 

findings of Greene (2005A) and Wang and Ho (2010). The main difference between the TFE and 

WMLE results is that σ  is higher for WMLE (0.0036) than for TFE (0.0027).  However, the 

similarities between the WMLE and TFE results clearly outweigh the differences.   

 Table 6 reports Kendall’s τ rank correlation coefficients between the estimated 

inefficiencies from the three estimators. One useful interpretation of the coefficient is that (1-τ)/2 

gives the probability that a random pair of observations would rank differently in the two series 

being compared.  As shown in the Table, the SF estimates produce very different inefficiency 

rankings than the TFE or WMLE estimates.  The TFE and WMLE estimates produce inefficiency 

rankings that are relatively similar.  However, for TFE and WMLE, the rank correlation coefficient 

indicates that there is about a 7% probability that a random pair of observations would be ranked 
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 differently by the two estimators.  So the differences between TFE and WMLE, while not terribly 

large, are still nontrivial. 

6.2.  Capital Investment with Financing Constraints 

In our second empirical example, we estimate a model of capital investment with financing 

constraints using a panel dataset of Taiwanese firms. Wang (2003) showed that a firm’s 

investment behavior can be estimated using a stochastic frontier model, where the frontier 

equation represents potential investment without financing constraints and the “inefficiency” term 

captures the effects of the constraints on investment.   

The empirical model is based on the Q theory of investment and is specified as the follows. 

ln ln ln ln , 

(29)                        ~ 0, , 

~ 0, . 

 
The dependent variable is the rate of capital investment, and the explanatory variables include the 

unobserved firm fixed effects ( ), the log of Tobin’s Q (ln ), the log of the sales to capital ratio 

(ln / ) and its lag. The investment and sales variables are divided by  to control for a scale 

effect, where  is the replacement cost of capital measured at the beginning of the period. Details 

of the construction of the data are in Wang (2003). After deleting observations with missing values 

due to incomplete information and data transformation, the data used in estimation consists of 202 

publicly traded firms in the years from 2001 to 2005. The total number of observations is 994.  

 The SF, TFE and WMLE results are in Table 7.  As in the previous example, the SF 

estimates, which ignore heterogeneity, are very different from the TFE and WMLE estimates, 

which control for heterogeneity.  Ignoring heterogeneity leads to a very large value of 2ˆu  relative 
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to , which leads to a very large estimate of the effect of financing constraints on investment in 

Taiwan.  Again, we suspect that the inefficiency estimates may have picked up the effect of 

heterogeneity in this case. On the other hand, TFE and WMLE (both of which allow for 

heterogeneity) produced comparable parameter estimates. As in the previous example, the main 

difference is that the WMLE estimate of  is bigger than the TFE estimate.  

Table 8 shows the Kendall’s τ rank correlation coefficients for the efficiency estimates 

from the various models. Again, while SF produces very different inefficiency rankings, the 

rankings from TFE and WMLE are similar. 

6.3. Discussion  

 A puzzle that we have not been able to resolve is that the WMLE and TFE estimates are 

much more similar in the empirical examples than in the simulations.  Consider the second 

empirical example.  The parameter values (N = 202, T = 5,  = 0.976, ,  = 0.773) are 

quite similar to the parameter values for the simulation in the top panel of Table 2 (N  = 200, T = 5, 

 = 1).  But the difference between WMLE and TFE in the mean of the  is only 0.002 in 

the empirical example whereas it is 0.136 in the simulation.  We checked our simulation results 

carefully to make sure that the differences in the reported means and variances were not caused by 

outliers, and they were not.  In virtually every replication of the experiment the difference in the 

mean efficiency levels was bigger than in the empirical example.  There are only a few possible 

explanations for these results.  The first is just randomness.  An empirical example is like looking 

at a single replication of a simulation, and anything can happen.  This is a proper but not entirely 

convincing possible explanation.  A second possible explanation is that the model we fit may be 

misspecified in the empirical example, whereas in the simulations the model is always correctly 

specified.  Again this is a proper explanation, but we don’t really know what kind of 
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 misspecification we might have or what it would do to the results.  It will be interesting to see what 

applied researchers who (we hope) use this model will find. 

 

7. CONCLUDING REMARKS 

 The aim of this paper was to provide a consistent estimator for the fixed-effects stochastic 

frontier model of Greene (2005A, 2005B).  We did this by deriving the likelihood for the 

deviations from individual means of the data (i.e., the within-transformed data).  Maximizing this 

within-likelihood defines the within-MLE (WMLE).  Unlike Greene’s true fixed effects estimator, 

the WMLE is free from the incidental parameters problem and should be consistent, subject to the 

usual regularity conditions on the regressors. 

 The WMLE performed well in our simulations.  We also presented two empirical examples 

to show that the estimator is feasible and reasonable with actual data. 

 A lingering philosophical question is whether time-invariant firm-specific effects should 

be interpreted as heterogeneity that should be controlled for before estimating inefficiency, or as 

part of inefficiency.  This is an important question that the model of this paper cannot resolve.  

Columbi et al. (2011) distinguish time-invariant heterogeneity from time-invariant inefficiency 

using distributional assumptions:  heterogeneity is assumed to be normal, whereas inefficiency is 

half-normal.  An alternative source of identification would be to identify variables that are 

correlated with inefficiency but not heterogeneity, or vice versa.  This would be a natural way to 

extend the model of this paper. 
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APPENDIX 1 

Proof of Theorem 1 

 We write ∗  with  defined in equation (12A) of the text.  Therefore ∗ is 

distributed as 0,  where ′ .  Then 

(A1)  ∗  constant 	 | | /  exp  

 Some tedious but routine algebra reveals that ,  = 

, and  , a  singular (idempotent) matrix.  

Therefore 

(A2)  ′ ′   

     ∑ ̅  . 

Also | | =  where D | | .  Note that D is a constant in the sense that it 

does not depend on the parameters.  Therefore 

(A3)  ln  constant – 	  ∑  . 

 

APPENDIX 2 

Proof of Theorem 2 

We begin with the fact that  ~ , 0 , , , 0 , .  So in terms of the 

generic notation , , , , , , we have , 0 , , , 

∆ .   
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Let  be defined as in equation (12A).  Then (as in Appendix 1):  , 

,  = 
1 ′

 and  = . 

Now we are ready to calculate the distribution of ̃∗ =  which in generic notation will 

be 	, , , , , ∆ .  Using RESULT 4 of the main text:  

 = 0, 

 =  = , 

 = (  = 
1 ′

 , 

 0, 

∆ ∆  =  +     

    -  

 = 1  =  . 

This proves part (A) of Theorem 2. 

Next we consider the distribution of ̅  where  is defined as in equation (12B).  

Note that 	  ,  , 1  and  .  So, 

similarly to the above derivation, we use RESULT 4 of the text:  

 = 0, 

 =  =  , 

 = ( 1  = 1  , 

 0, 
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∆ ∆  =  +     

   - 1 1  

 = 1 . 

This proves part (B) of Theorem 2.  

To prove part (C) of Theorem 2, we use RESULT 3 to evaluate the distribution of ̅  

conditional on ̃∗, and we show that this distribution depends on ̃∗  unless 0.  Again using the 

notation in equations (11) and (12), we have 
̃∗

̅  and using RESULT 4 this vector 

is distributed as , , , , , , where 0, , , ν  = 0 and ∆	 	 .  

Then according to RESULT 3, the distribution of ̅  conditional on ̃∗ is  

(A4)  , ̃∗ , • , , ∗ ̃∗ , ∆  . 

Here the subscripts “1” and “2” reflect the partitioning of  into  and . 

 We note that ∗ appears in only two places.  The first is in the term ̃∗ .  

However, this term equals zero because 0 .  The other place is in the term 

∗ ̃∗ .  Since ν = 0, this will equal zero if and only if ∗ 0.  From its definition in 

RESULT 2, ∗  , and so (with 0) ∗  where B is the left 

block of dimension 1  of .  Clearly this block cannot be zero since the matrix is 

nonsingular.  (Or, more explicitly, we can calculate that 1 .)   So ∗ 0, and ̅  is 

independent of ̃∗, if and only if 0.  This is the case that the  are normal. 

Proof of Theorem 3 
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 We begin with ̃∗ .  As above, its distribution is 	, , , , , ∆ .  From 

DEFINITION 2, its density is  

(A5)  ̃∗ • ̃∗; , • ̃∗ ; , ∆  

where 0; , ∆ .  The definitions of , , ,  and ∆  are as given 

above in the proof of part (A) of Theorem 2.  (i) The term ̃∗; ,  reduces trivially to the 

form in part (A) of Theorem 3 when we substitute  = 0 and .  (ii) 

Similarly, in the term ̃∗ ; , ∆ , we substitute 0 and ∆   = .  We 

also need to rewrite the first argument:  ̃∗  =  ̃∗ = 
1 ′

 ̃∗.  But 1 ̃∗ = 

̅  = ̃  and so 
1 ′

̃∗ = ̃  and ̃∗   = ̃ .  With these substitutions we 

obtain ̃ 	; 0, , which is the same as in part (A) of Theorem 3.  (iii) The generic 

form for  is 0; , ∆ .  But 0 and ∆  = ( ) + 

 = 1 .  So again we obtain the same expression as in part (A) of Theorem 3. 

Next we consider ̅  = .  As above, its distribution is 	, , , , , ∆ .  From 

DEFINITION 2, its density is  

(A6)  ̅ • ̅ ; , • ̅ ; , ∆  

where 0; , ∆ .  The definitions of , , ,  and ∆  are as given 

above in the proof of part (B) of Theorem 2.  (i) For the term ̅ ; ,  we simply substitute 

0 and .  (ii) For the term ̅ ; , ∆ , we substitute 0 and ∆  = 

1 .  Also ̅  = ̅ 	 = 1 ̅ , using the definition of  and the 

fact that 0.  (iii) The generic form for  is 0; , ∆ .  But 0 and 
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∆  = 1  + ( 1 1  = 1  .  Therefore  = 

0; 0, 1 .  Thus we arrive at the expression in part (B) of Theorem 3. 

 

APPENDIX 3 

Computational Issues 

Evaluating the within-likelihood function involves an evaluation of the cdf of a 

T-dimensional zero-mean normal random variable. Since the T scalar random variables that make 

up this T-dimensional random variable are not independent, this cdf is a T-dimensional integral 

whose numerical evaluation can be cumbersome and very slow when T is not small. In this 

Appendix we show that by taking the advantage of the special variance-covariance structure that 

arises in our specific case, the T-dimensional integration problem can be reduced to a 

one-dimensional problem, which greatly simplifies the computation. The simplification procedure 

follows the method outlined in Kotz et al. (2000). 

The variance-covariance matrix in question is , so that each of the diagonal elements 

is 1  and the off-diagonal elements are all equal to .  In the following discussion we will use 

a slightly more general notation.  Let  ′ , , … , where  

					 ,  

				 ,  

   , , .  

(Our case corresponds to 1 and .)  Then , , … ,  can be represented as 

, 1,2, … , , 
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where , , … ,  are independent standard normal variables. The inequality  is 

equivalent to .  Let	 .  Then 

… … …

. 

This is a single integral that can be evaluated by numerical quadrature methods. 
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 Table 1: Simulation Results with N=100, T=5 
 

1   

 WMLE estimator  TFE estimator 

 bias var std MSE  bias var std MSE 

̂  0.001 0.003 0.058 0.003 ̂  -0.002 0.004 0.059 0.004 

̂  0.088 0.236 0.486 0.244 ̂ -0.305 0.43 0.655 0.522 
2̂  0.061 0.099 0.315 0.103 2̂ -0.402 0.089 0.298 0.25 
2ˆ v  -0.034 0.027 0.165 0.028 2ˆ v -0.089 0.026 0.163 0.034 
2ˆu  0.095 0.206 0.454 0.215 2ˆu  -0.313 0.198 0.445 0.296 
B
î  -0.012 0.257 0.507 0.257 î  -0.295 0.318 0.563 0.404 
M
î  0.000 0.261 0.511 0.261      

Bu )|E(   -0.015 0.281 0.531 0.282 )|E( u -0.293 0.360 0.600 0.446 
Mu )|E(   -0.010 0.284 0.533 0.284      

2   

 WMLE estimator  TFE estimator 

 bias var std MSE  bias var std MSE 

̂  0 0.003 0.055 0.003 ̂  -0.002 0.003 0.056 0.003 

̂  0.072 0.378 0.615 0.383 ̂ -0.670 0.325 0.570 0.774 
2̂  -0.019 0.093 0.305 0.093 2̂ -0.751 0.076 0.275 0.639 
2ˆ v  0.006 0.018 0.132 0.018 2ˆ v 0.060 0.018 0.134 0.021 
2ˆu  -0.025 0.169 0.412 0.170 2ˆu  -0.811 0.155 0.394 0.812 
B
î  -0.048 0.216 0.465 0.218 î  -0.340 0.251 0.501 0.367 
M
î  -0.017 0.219 0.468 0.219      

Bu )|E(   -0.051 0.322 0.567 0.324 )|E( u -0.339 0.409 0.639 0.524 
Mu )|E(   -0.033 0.325 0.570 0.326      

 
Note: The B and M supscripts indicate results using between-MLE and mean-adjusted estimation, 
respectively, for α . 
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 Table 2: Simulation Results with N=200, T=5 
 

1   

 WMLE estimator  TFE estimator 

 bias var std MSE  bias var std MSE 

̂  -0.001 0.002 0.039 0.002 ̂  -0.001 0.002 0.04 0.002 

̂  0.054 0.115 0.339 0.118 ̂ -0.038 0.354 0.595 0.355 
2̂  0.028 0.053 0.231 0.054 2̂ -0.293 0.076 0.275 0.161 
2ˆ v  -0.024 0.015 0.122 0.015 2ˆ v -0.153 0.022 0.148 0.045 
2ˆu  0.052 0.114 0.337 0.116 2ˆu  -0.140 0.172 0.415 0.191 
B
î  -0.007 0.226 0.476 0.226 î  -0.147 0.291 0.539 0.313 
M
î  0.004 0.228 0.478 0.228      

Bu )|E(   -0.010 0.243 0.493 0.243 )|E( u -0.146 0.327 0.572 0.348 
Mu )|E(   -0.006 0.244 0.494 0.244      

2   

 WMLE estimator  TFE estimator 

 bias var std MSE  bias var std MSE 

̂  0 0.001 0.037 0.001 ̂  0.001 0.001 0.038 0.001 

̂  0.045 0.191 0.437 0.193 ̂ -0.349 0.107 0.327 0.228 
2̂  -0.013 0.053 0.23 0.053 2̂ -0.604 0.029 0.171 0.394 
2ˆ v  0 0.009 0.095 0.009 2ˆ v -0.014 0.006 0.077 0.006 
2ˆu  -0.013 0.095 0.309 0.095 2ˆu  -0.590 0.056 0.236 0.403 
B
î  -0.038 0.208 0.456 0.210 î  -0.211 0.195 0.441 0.239 
M
î  -0.008 0.210 0.458 0.210      

Bu )|E(   -0.043 0.307 0.554 0.309 )|E( u -0.210 0.315 0.562 0.359 
Mu )|E(   -0.025 0.309 0.556 0.310      

 
Note: The B and M supscripts indicate results using between-MLE and mean-adjusted estimation, 
respectively, for α . 
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 Table 3: Simulation Results with N=100, T=10 
 

1   

 WMLE estimator  TFE estimator 

 bias var std MSE  bias var std MSE 

̂  -0.001 0.002 0.039 0.002 ̂  0.000 0.002 0.039 0.002 

̂  0.004 0.085 0.291 0.085 ̂ 0.069 0.187 0.432 0.191 
2̂  0.000 0.042 0.205 0.042 2̂ -0.101 0.059 0.243 0.069 
2ˆ v  -0.005 0.012 0.108 0.012 2ˆ v -0.103 0.016 0.127 0.027 
2ˆu  0.005 0.088 0.296 0.088 2ˆu  0.002 0.129 0.359 0.129 
B
î  -0.013 0.126 0.355 0.126 î  -0.035 0.150 0.387 0.151 
M
î  -0.016 0.125 0.354 0.125      

Bu )|E(   -0.019 0.232 0.481 0.232 )|E( u -0.035 0.267 0.516 0.268 
Mu )|E(   -0.020 0.231 0.481 0.232      

2   

 WMLE estimator  TFE estimator 

 bias var std MSE  bias var std MSE 

̂  0.000 0.001 0.037 0.001 ̂  0.000 0.001 0.037 0.001 

̂  0.009 0.103 0.322 0.103 ̂ 0.457 0.216 0.465 0.424 
2̂  -0.019 0.036 0.190 0.036 2̂ -0.048 0.039 0.197 0.041 
2ˆ v  0.003 0.005 0.073 0.005 2ˆ v -0.112 0.005 0.070 0.017 
2ˆu  -0.022 0.061 0.246 0.061 2ˆu  0.064 0.064 0.254 0.068 
B
î  0.011 0.107 0.328 0.108 î  0.018 0.100 0.316 0.100 
M
î  -0.010 0.106 0.326 0.106      

Bu )|E(   -0.006 0.269 0.519 0.269 )|E( u 0.018 0.273 0.523 0.273 
Mu )|E(   -0.018 0.268 0.518 0.268      

 
Note: The B and M supscripts indicate results using between-MLE and mean-adjusted estimation, 
respectively, for α . 
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 Table 4: Simulation Results with N=200, T=10 
 

1   

 WMLE estimator  TFE estimator 

 bias Var std MSE  bias var std MSE 

̂  0 0.001 0.027 0.001 ̂  0.001 0.001 0.026 0.001 

̂  -0.016 0.052 0.228 0.052 ̂ 0.062 0.104 0.322 0.107 
2̂  -0.012 0.025 0.159 0.025 2̂ -0.105 0.035 0.186 0.046 
2ˆ v  0.004 0.008 0.087 0.008 2ˆ v -0.097 0.010 0.099 0.019 
2ˆu  -0.016 0.056 0.236 0.056 2ˆu  -0.008 0.077 0.278 0.077 
B
î  -0.017 0.116 0.340 0.116 î  -0.025 0.128 0.358 0.129 
M
î  -0.019 0.115 0.339 0.116      

Bu )|E(   -0.023 0.219 0.468 0.22 )|E( u -0.025 0.238 0.488 0.239 
Mu )|E(   -0.024 0.219 0.468 0.220      

2   

 WMLE estimator  TFE estimator 

 bias Var std MSE  bias var std MSE 

̂  0 0.001 0.025 0.001 ̂  0 0.001 0.026 0.001 

̂  -0.002 0.052 0.227 0.052 ̂ 0.460 0.130 0.361 0.342 
2̂  -0.012 0.017 0.132 0.018 2̂ -0.033 0.021 0.145 0.022 
2ˆ v  0.003 0.003 0.054 0.003 2ˆ v -0.115 0.003 0.054 0.016 
2ˆu  -0.016 0.030 0.173 0.03 2ˆu  0.082 0.036 0.191 0.043 
B
î  0.015 0.104 0.322 0.104 î  0.024 0.097 0.311 0.097 
M
î  -0.006 0.103 0.321 0.103      

Bu )|E(   -0.002 0.263 0.513 0.263 )|E( u 0.025 0.269 0.519 0.27 
Mu )|E(   -0.014 0.263 0.513 0.263      

 
Note: The B and M supscripts indicate results using between-MLE and mean-adjusted estimation, 
respectively, for α . 
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Table 5. Estimation Results for Power Generation Utilities 

 

 
SF TFE WMLE 

coeff. std. err. coeff. std. err. coeff. std. err.

l̂ 	 0.115*** 0.020 0.031 0.021 0.032 0.029 

f̂  0.571*** 0.024 0.661*** 0.025 0.666*** 0.027 

k̂  0.251*** 0.029 0.064* 0.039 0.061 0.050 

ll̂  0.027 0.041 -0.123*** 0.047 -0.131*** 0.031 

ff̂  -0.219*** 0.055 0.063* 0.035 0.067*** 0.023 

kk̂  -0.172*** 0.057 0.240*** 0.065 0.246*** 0.053 

lf̂  -0.026 0.042 0.134*** 0.032 0.140*** 0.018 

lk̂  -0.096** 0.047 -0.006 0.038 -0.005 0.026 

fk̂  0.300*** 0.038 -0.264*** 0.043 -0.272*** 0.023 

T̂  0.021*** 0.002 0.012*** 0.001 0.011*** 0.002 
2ˆu  0.1617*** 0.010 0.0193*** 0.002 0.0191*** 0.003 
2ˆ v  0.0026*** 0.001 0.0027*** 0.001 0.0036*** 0.0002 

mean 
inefficiency 

0.314 0.107 0.111 

 
Note 1: The estimated intercept and fixed effect parameters are not reported. 
Note 2: *: significant at 10% level; **: significant at 5% level; ***: significant at 1% level. 
Note 3: The mean inefficiency is the sample average of the Jondrow et al. (1982) inefficiency index. 
 
 
 

Table 6. Kendall’s  Rank Correlation Coefficients between Estimated Inefficiencies 
 

SF TFE WMLE

SF 1.000 

TFE 0.271 1.000 

WMLE 0.221 0.862 1.000 

 
Note:  The number (1-τ)/2 gives the probability that a random pair of observations would rank 

differently in the two series being compared.  
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 Table 7. Estimation Results for Capital Investment with Financing Constraints 
 

 
SFA TFE WMLE 

coeff. std. err. coeff. std. err. coeff. std. err. 

1̂ 	 0.644*** 0.072 0.607*** 0.109 0.613*** 0.113  

2̂  -0.019*** 0.104 0.151* 0.087 0.154* 0.088  

3̂  0.258** 0.104 0.387*** 0.084 0.376*** 0.087  
2ˆu  3.430*** 0.304 0.565*** 0.165 0.547*** 0.064  
2ˆ v  0.498*** 0.070 0.399*** 0.057 0.574*** 0.171  

mean 
inefficiency 

1.462 0.595 0.593 

 
Note 1: The estimated intercept and fixed effect parameters are not reported. 
Note 2: *: significant at 10% level; **: significant at 5% level; ***: significant at 1% level. 
Note 3: The mean inefficiency is the sample average of the Jondrow et al. (1982) inefficiency index. 
 
 
 

Table 8. Kendall’s  Rank Correlation Coefficients between Estimated Inefficiencies 
 

SF TFE WMLE

SF 1.000 

TFE 0.403 1.000 

WMLE 0.387 0.940 1.000 

 
Note:  The number (1-τ)/2 gives the probability that a random pair of observations would rank 
differently in the two series being compared. 
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