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ABSTRACT 
Owing to its impact on the industrial economy, the job shop scheduler and controller are vital algorithms 
for modern manufacturing processes. This paper is concerned with the review of the  modeling of agent 
based markov chain for job shop scheduling and control. The work adopts an alternative view on job-shop 
scheduling problem where each resource is equipped with adaptive agent that, independent of other 
agents makes job dispatching decision based on its local view of the plant. Given the fact that agent based 
modeling  is proven to be an effective way of modeling complex systems that are not easy to characterize 
analytically, this work is focused on addressing the JSP by developing an agent based model in which all 
information of the dynamics of the model is formulated as a Markov chain.  
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1.0 Introduction 

The urgent need for high responsiveness and flexibility in coping with the dynamic market changes has 
been demonstrated by the study carried out by Zhang and Sharifi (2001) [1] involving a case with 12 
companies and a questionnaire survey with 1000 companies. The analysis of the study also indicates that, 
in order to achieve high responsiveness, one of the operational issues to be focused on is production 
planning and control, particularly process planning and production scheduling, which must be 
dynamically and cost-effectively integrated. However, the conventional control strategies for 
manufacturing systems were not designed to achieve such responsiveness.   

In the United States alone, there are over 40,000 factories producing metal-fabricated parts [2].  These 
parts end up in a wide variety of products sold in the US and elsewhere.  These factories employ roughly 
over 3 million people and ship close to $ 7 billion worth of products every year.  The vast majority of 
these factories are what is called “job shops”, meaning that the flow of raw and unfinished goods through 
them is completely random. Over the years, the behavior and performance of these job shops have been 
the focus of considerable attention in the Operations Research (OR) literature. 

Manufacturing industries are facing a growing and rapid change.  Major trends like globalization, 
customer orientation and increasing market dynamics lead to a shift in both managerial and 
manufacturing principles: enterprises have to become more flexible, open, fast, effective, self-organized, 
decentralized, to sum it up: agile [3].  Manufacturing serves as a basic function for any agile enterprise.  
The call for agility challenges the shop floor with several problems. An important issue in a 
manufacturing environment is the improvement of resource utilization.  A classical way of achieving 
improved resource utilization is by using scheduling algorithms [4].  As defined by Baker [5] scheduling 
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is concerned with the problem of assigning a set of jobs to resources over a period of time.  Effective 
scheduling plays a very important role in today’s competitive manufacturing environment.  Performance 
Criteria such as machine utilization, manufacturing lead times, inventory costs, meeting due dates, 
customer satisfaction, and quality of products are all dependent on how efficiently the jobs are scheduled 
in the system [6].  Hence, it becomes increasingly important to develop effective scheduling approaches 
that help in achieving the desired objectives. 
The scheduling and planning of production order have an important role in the manufacturing system.  
The diversity of products, increased number of orders, the increased number and size of workshops and 
expansion of factories have made the issue of scheduling production orders more complicated, hence the 
traditional methods of optimization are unable to solve them [7][8]. 
With respect to related studies, [9] proposed a methodology for solving the job shop problem based on the 
decomposition of mathematical programming problems that used both Benders-type [10] and 
Dantzig/wolfe-type [11] decompositions.  The methodology was part of closed loop, real-time, two-level 
hierarchical shop floor control system.  The top-level scheduler (i.e., the supremal) specified the earliest 
start time and the latest finish time for each job.  The lower level scheduling modules (i.e., the infimals) 
would refine these limit times for each job by detailed sequencing of all operations.  A multi-criteria 
objective function was specified to include tardiness, throughput, and process utilization cost.  The 
limitations of this methodology stem from the inherent stochastic nature of job shops and the presence of 
multiple, but often conflicting, objectives made it difficult to express the coupling constraints using exact 
mathematical relationships. This made the schedule not to converge. Furthermore the rigid centralization 
of the scheduler made it not able to adjust to disturbances at the shop floor. [12] evaluated the use of MRP 
or MRP-11 to create a medium-range scheduler.  MRP system’s major disadvantages are rigidity and the 
lack of feedback from the shop floor, but also the tremendous amount of data that have to be entered in 
the bill of materials and the fact that the model of the manufacturing system and its capacity are 
excessively simple.        
As can be deduced from these techniques, most approaches to job-shop scheduling assume complete task 
knowledge and search for a centralized solution.  These techniques typically do not scale with problems 
size, suffering from an exponential increase in computation time.  The centralized view of the plant 
coupled with the deterministic algorithms characteristic of these schedulers do not allow the 
manufacturing processes to adjust the schedule (using local knowledge) to accommodate disturbances 
such as machine breakdowns.  Hence a production scheduling and control that performs reactive (not 
deterministic) scheduling and can make decision on which job to process next based solely on its partial 
(not central) view of the point becomes necessary.  This requirement puts the problem in the class of 
agent based model (ABM).  Hence this work adopts an alternative view on job-shop scheduling problem 
where each resource is equipped with adaptive agent that, independent of other agents makes job 
dispatching decision based on its local view of the plant.   
 
1.1 Statement of the Problem 
This work explore the well known n x m static Job Scheduling Problem (JSP) [13] in which n jobs must 

be processed exactly once on each of m machines.  Each job i (1  i  n) is routed through each of the m 

machines in a predefined order ߨi, where ߨi(j) denotes the jth machine (1  ʲ  m) in the routing order.  
The processing of job ¡ on machine     ߨi(ʲ) is denoted Oij and is called an operation.  An operation Oij 
must be processed on machine ߨi(ʲ) for an integral duration Tij ൒ О.  The scheduling objective is 
makespan minimization, i.e., to minimize the completion time of the last operation of any job. 
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As indicated in the introduction of this work, the existing deterministic shop floor schedulers do not 
possess the capability that allow the dispatch of Oij to react to disturbances on the factory floor, such as 
break down of ߨi(ʲ), arrival of new job i, all which require frequent re-planning that introduces 
complexities (making the JSP N-P hard).  Also given the fact that agent based modeling (ABM) is proven 
to be an effective way of modeling complex systems that are not easy to characterize analytically, this 
paper is focused on addressing the JSP by developing an agent based model in which all information of 
the dynamics of the model is formulated as a markov chain.  
 
1.2 Significance of the Study 

Efficient shop floor scheduling is very vital in a production system that relies heavily on the tight 
integration of the upstream supplier of parts, the midstream manufacturer and assembler of 
components, and the downstream distributor of finished goods.  The successful outcome of this work 
should be of great prospect to raising the performance of this sort of supply chain that relies heavily 
on the shop floor scheduling and control mechanism of the middle manufacturer. 
Globalization and strong competition in the current market place have forced companies to change 
their ways of doing business.  Manufacturers have been compelled to adopt strategies such as Build-
to-order (BTO) or Configuration-to-order (CTO)  services.  These all geared towards harnessing Just-
in-Time (JIT) and Total Quality Management (TQM) strategies in order to realize greater plant 
productivity, improved processes and products, lower cost and higher profits.  The methodical 
leverage of the contributions of this work would help remove the bottleneck currently inherent at the 
shop floor towards the effective exploitation of these production management strategies.   
 

 
2.1 Job Shop Scheduling 
Scheduling is an important tool for manufacturing and engineering, where it can have a major impact on 
the productivity of a process [14].  In manufacturing, the purpose of scheduling is to minimize the 
production time and cost, by telling a production facility when to make, with which staff, and on which 
machine. 
Survey of the literature indicates that the job shop scheduling problem (or job-shop problem) is at least 70 
years old.  In the publications [15][16][17], job shop scheduling is reported as an optimization problem in 
computer engineering and operations research in which ideal jobs are assigned to resources at particular 
times.  The most basic version is described [15] as follows: 
Given n jobs J1, J2, …… Jn of varying sizes, which need to be scheduled on m identical machines, the 
task is to work out the scheme for assigning job i to machine mi in order to minimize the makespan.  The 
makespan is the total length of the schedule (that is, when all the jobs have finished processing). In the 
literature nowadays, the problem is presented as an online problem (dynamic scheduling), that is, each job 
is presented, and the online algorithm needs to make a decision about that job before the next job is 
presented. This problem is one of the best known online problems, and was the first problem for which 
competitive analysis was presented, by Graham [18]. Best problem instances for basic model with make 
span objectives are due to Taillard [19].   
 
 
 
2.2 Job Shop Scheduling: Problem Representation  
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Exploration of the literature indicates the disjunctive graph [21] as one of the popular models used for 
describing the job shop scheduling problem (JSP) instances [22]. 
A mathematical statement of the problem can be as follows: 
Let m = {M1, M2, ……Mm} and J= {J1, J2,……Jn} be two finite sets. On account of the industrial origins 
of the problem, the Mi are called machines and the Jʲ are called jobs.   

 
Let ई denote the set of all sequential assignments of jobs to machines, such that every job is done by 
every machine exactly once; element ई ∈ ߯ may be written as n x m matrices, in which column i lists the 
jobs                   
that machine Mi will do, in order. For example, the matrix 

ݔ     ൌ
1 2
2 3
3 1

    

 
 
Means that machine M1 will do the three jobs J1, J2, J3, in the order  J1, J2, J3, while machine M2 will do 
the jobs in the order J2, J3, J1.  Suppose also that there is some cost function ∁: ߯ → ሾ0 ൅ ∞ሿ. The cost 
function may be interpreted as a “total processing time”, and may have some expression in terms of time. 
Cij: M x J → ሾ0 ൅ ∞ሿ, the cost /time for machine Mi to do job Jʲ. 

The job-shop problem is to find an assignment of jobs ई ∈ ߯ such that ∁ሺݔሻ is a minimum, that is, there is 

no ݕ ∈ ߯ such that  ∁ሺईሻ ൐ ∁ሺݕሻ.  
The reference [15] noted that one of the first problems that must be dealt with in the JSP is that many 
proposed solutions have infinite cost: i.e., there exists ݔ∞ ∈ ߯ such that ∁ሺݔ∞ሻ ൌ 	൅	∞.  Infact, it is quite 
simple to concoct examples of such ݔ∞ by ensuring that two machines will deadlock, so that each waits 
for the output of the other’s next step. 
 
Graham had already provided the list scheduling algorithm, which is (2-1/m) – competitive, where m is the 
number of machines [18].  Also, it was proved that list scheduling is optimum online algorithms for 2 and 
3 machines.  The Coffman – Graham algorithm [23] for uniform – length jobs is also optimum for two 
machines, and is (2-2/m) – competitive.  Bartal et.al. [24] presented an algorithm that is 1.986 competitive.  
It is reported [25] that a 1.945 – competitive algorithm was presented by Kanger, Philips and Torry.  
Albers [26] provided a different algorithm that is 1.923 – competitive.  Currently, the best known result is 
an algorithm given by Fleischer and Wahl, which achieves a competitive ratio of 1.9201 [27].    
 
2.3 Offline Makespan Minimization 
The simplest form of the offline makespan minimization problem deals with atomic jobs, that is jobs that 
are not subdivided into multiple operations.  It is equivalent to packing a number of items of various 
different sizes into a fixed number of bins, such that the maximum bin size needed is as small as possible. 
Hochbaum and Shmoys [28] presented a polynomial-time approximation scheme that finds an 
approximate station to the offline makespan minimization problem with atomic jobs to any desired degree 
of accuracy.  
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2.4 Job Consisting of Multiple Operations 
The basic form of the problem of scheduling jobs with multiple (m) operations over m machines, such 
that all of the first operations must be done on the first machine, all of the second operations on the 
second, etc., and a single job cannot be performed in parallel, is known as the open shop scheduling 
problem.  Various algorithms are reported [29] in the literature. 
A heuristic algorithm by  Johnson [30] can be used to solve the case of a 2 machine N job problem when 
all jobs are to be processed in the same order.  The steps of the algorithm are as follows: 
 Job Pi has two operations, of duration Pi 1, Pi 2, to be done on machines M1, M2 in that sequence. 

 Step 1. List A = {1,2, ….., N}, List L1 = { }, List L2 = { }  

 Step 2, from all available operation durations, pick the minimum.   
If the minimum belongs to Pk1, 

remove K from list A; Add K to end of list L1 if minimum belongs to  Pk2, remove K from list A; Add K 
to beginning of list L2. 
 Step 3. Repeat step 2 until list A is empty  
 Step 4. Join list L1, list L2.  This is the optimum sequence. 
Johnson’s method only works optimally for two machines.  However, since it is optimal, and easy to 
compute, some researchers have tried to adopt it for M machines, (m>2). 
The idea is as follows:  Imagine that each job requires m operations in sequence, on m1, m2, ….Mm, the 
first m/2 machines are combined into an (imaginary) machining center, MC1, and the remaining machines 
into a machining center MC2.  Then the total processing time for a job P on MC1 = Sum (operation times 
on first m/2 machines), and processing time for job P on MC2 = sum (operation times on last m/2 machines).  
By doing so, the m – machine problem is said to be reduced to a two machining center scheduling 
problem.  This can then be solved by using the Johnson’s method.    
 
2.5 Markov Chain 
A Markov Chain [31] named after Andrey Markov, is a mathematical system that undergoes transition 
from one state to another on a state space.  A Mark Chain is a stochastic process with the Markov 
property.  The term “Markov Chain” refers to the sequence of random variables such a process moves 
through, with the Markov property defining serial dependence only between adjacent periods (as in a 
“Chain”).  It can thus be used for describing systems that follow Chain-of linked events, where what 
happens next depends only on the current state of the system. In the literature, different Markov processes 
are designated as “Markov Chains”.  Usually however the term is reserved for a process with a discrete 
set of times (i.e. a discrete-time Markov Chain (DTMC) [32], although some authors use the same 
terminology to refer to a continuous – time Markov Chain without explicit mention [33][34].    While the 
time parameter definition is mostly agreed upon to mean discrete-time, the Markov Chain state space does 
not have an established definition: the term may refer to a process on an arbitrary general state space [35].  
However, many uses of Markov Chain employ finite or countable (discrete on the real line) state space, 
which have a more straightforward statistical analysis.   
 
2.6 Formal Definition 
A Markov Chain is a sequence of random variable X1, X2, X3,…… with the Markov property, namely 
that, given the present state, the future and past states are independent.  Formally, 
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 Pr (Xn+r = x/X1, = x1, X2 = x2 ….., Xn = xn) = Pr (Xn+r = x/Xn = xn), if both conditional probabilities are 
defined, i.e. 
 if Pr (X1 = x1, ……, Xn = xn) >0   the possible values of Xi form a countable set S called the state space 
of the Chain. 
Markov Chains are often described by a sequence of directed graphs, where the edges of graph n are 
labeled by the probabilities of going from one state at time n to other states at time n+1,  
Pr (Xn+1 = x/Xn = xn).  The same information is represented by the transition matrix from time n to time 
n+1.  However, Markov Chains are frequently assumed to be time-homogenous, in which case the graph 
and matrix are independent of n and so are not presented as sequences. 
These descriptions highlight the structure of the Markov Chain that is independent of the initial 
distribution Pr (X1 = x1).  When time-homogenous, the Chain can be interpreted as a state machine 
assigning a probability of hopping from each vertex or state to an adjacent one.  The probability Pr (Xn = 
x/X1 = x1) of the machines state can be analyzed as the statistical behavior of the machine with an element 
x1 of the state space as input, or as the behavior of the machine with the initial distribution Pr (X1 = y) = 
[x1 = y] of states as input, where (P) is the /verson bracket.  The stipulation that not all sequences of states 
must have nonzero probability of occurring allows the graph to have multiple connected components, 
suppressing edges encoding a zero (O) transition probability, as if a has a nonzero probability of going to 
b but a and x lie in different connected components, then Pr (Xn+1 = b/Xn = a) is defined, while Pr (Xn+1 = 
b/X1 = x, …..xn = a) is not. [35] 
Variations  
 Continuous –time Markov processes have a continuous index 
 Time-homogenous Markov Chains (or stationary Markov Chains) are processes where Pr (Xn+1 = 

x/Xn = y) = Pr (Xn = x/Xn-1 = y) for all n.  The probability of the transition is independent of n.   
 A Markov Chain of order m (or a Markov Chain with memory m), where m is finite, is a process 

satisfying  
Pr (Xn = xn/Xn-1 = xn-1, Xn+2 = xn-2, …….. X1 = x1)   
= Pr (Xn = xn/Xn-1 = xn-1, Xn-2 = xn-2, …….. Xn-m = xn-m) for n > m      2.1 

In other words, the future state depends on the past m states.  It is possible to construct a Chain (Yn) from 
(Xn) which has the ‘classical’ Markov property by taking as state space the ordered m – tuples of x values, 
i.e.  Yn = (Xn, Xn-1, ………, Xn-m+1). 
 
Transient Evolution 
The probability of going from state i to state j in n time steps is 
Pij

(n) =Pr (Xn = j /X0 = i)                                                    2.2 
and the single – step transition is 
Pij =Pr (X1 = j /X0 = i)                                                      2.3 
For a time-homogenous Markov Chain: 
Pij

(n) =Pr (Xk+n = j /Xk = i)                                                 2.4 
and  
Pij =Pr (Xk+1 = j /Xk = i)                                                   2.5 
The n-step transition probabilities satisfy the Chapman –Kolmogrov equation, that for any K such that 
0<k<n,   
                                                                        2.6 
 Pij (n) = ∑  Pir

(k) Prʲ
(n-

k)                                             
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where S is the state space of the Markov Chain.   
The marginal distribution Pr (Xn = x) is the distribution over states at time n.  The initial distribution is Pr 
(X0=x).  The evolution of the process through one time step is described by  
                                                                                            
            2.7 
                                                                                     
Properties 
A state j is said to be accessible from a state i (written i→j) if a system started in state ड़ has a non-zero 
probability of transitioning into state j at some point.  Formally, state j is accessible from state:   
If there exists an integer nij ≽ 0 such that  
Pr (Xnij = j/X0 = i) = Pij

(nij) > 0.                                            2.8 
This integer is allowed to be different for each pair of states hence the subscripts in nij.  Allowing n to be 
zero means that every state is defined to be accessible from itself. 
A state i is said to communicate with state j (written i↔j) if both i ⟶ j and j ⟶ i.  A set of state (is a 
communicating class if every pair of states in C communicates with each other, and no state in C 
communicates with any state not in C.  It can be shown that communication in this sense is an 
equivalence relation and thus that communicating classes are the equivalent classes of this relation.  A 
communicating class is closed if the probability of leaving the class is zero, namely that if i is not in j, 
then j is not accessible from i. 
A state i is said to be essential or final if for all j such that i ⟶ j it is also true that j ⟶ i.  A state i is 
inessential if it is not essential [36].    
A Markov Chain is said to be irreducible if its state space is a single communicating class, in other words, 
if it is possible to get to any state from any state. 
 
Periodicity  
A state i has period k if any return to state i must occur in multiple of k time steps.  Formally, the period 
of a state is defined as: 
K = gcd {n : Pr (Xn = i/X0 = i) ൐ 0} 
(where “gcd” is the greatest common division).  Note that even though a state has period k, it may not be 
possible to reach the state in k steps.  For example, suppose it is possible to return to the state in 
{6,8,10,12….} time steps; k would be 2, even though 2 does not appear in this list. 
If k = 1, then the state is said to be a periodic: returns to state i can occur at irregular times, in other 
words, a state i is aperiodic if there exists n such that for all n1	≽ ݊,  
Pr (Xn

1 = i /X0 = i) > 0 
Otherwise (k>1), the state is said to be periodic with period k.  a Markov Chain is aperiodic if every state 
is aperiodic.  An irreducible Markov Chain only needs one aperiodic state to imply all states are 
aperiodic.  Every state of a bi partite graph has an even period.    
 
 
 
Recurrence  
A state i is said to be transient if, given that the system start in state i, there is a non-zero probability that 
the system will never return to i formally, but the random variable Ti be the first return time to state i (the 

Pr (Xn = j) = ∑  Prʲ  Pr (Xn-1 = r) =  ∑(n)  Prʲ Pr (X0 = r)     
 

                                                                      ∞ 

Pr (Ti < ∞) = ∑  fii(n) < 1                                2.9 
         n=1                                               
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“hitting time”):  Ti = inf{n≽1:Xn = i /X0 = i} the number fii
(n) = Pr (Ti = n)  is the probability that state is 

returned to for the first time after n steps.  Therefore, state i is transient if                                                                               
 
 
State i is recurrent (or persistent) if it is not transient.  Recurrent states are guaranteed to have a finite 
hitting time. 
Even if the hitting time is finite with probability 1, it need not have a finite expectation.  The mean 
recurrence time at state i is the expected return time Mi. 
          
                                                                                 2.10 
 
State i is positive recurrent (or non-null persistent) if Mi is finite; otherwise, state i is null recurrent (or 
null persistent). 
It can be shown that a state i is recurrent if and only if the expected number of visits to this state is 
infinite, i.e. 
                                                                     2.11 
 
 
 A state i is called absorbing if it is impossible to leave this state.  Therefore, the state i is absorbing if and 
only if  
Pii = 1 and Pij = 0 for i ‡ j    

 
2.7 Agent-Based Modeling (ABM) 
Agent-based modeling (ABM) is a modeling approach reported [37] to have gained increasing attention 
over the past 18 years or so.  This growth trend is evidenced by the increasing number of applications, 
articles appearing in modeling and applications journals, funded programs that call for agent-based 
models incorporating elements of human and social behavior, the growing number of conferences on or 
that have tracks dedicated to agent-based Modeling, the demand for ABM courses and instructional 
programs, and the number of preparations at conferences such as the WSC that references agent-based 
Modeling.  Some authors [38][39] contend that ABM “is a third way of doing science” and could 
augment traditional deductive and inductive reasoning as discovered methods. 
Based on survey of the literature, it can be said that agent-based modeling is being applied to many areas, 
spanning human social, physical and biological systems.  It is reported that applications range from 
modeling ancient civilizations that have been gone for hundreds of years, to designing new markets for 
products that do not exist right now. Heath et al [40] provides a review of agent-based modeling 
applications.  Selected applications that use the Repast agent-based modeling toolkit are listed in table 
2.1.  All of the cited publications make the case for agent-based Modeling as the preferred modeling 
approach against other modeling techniques for the problem addressed. These cited publications (refer to 
table 2.1) argue that agent-based modeling is used because only agent-based model can explicitly 
incorporate the complexity arising from individual behaviors and interactions that exist in the real-world. 
 
2.8           Designing Agent-Based Model      
Modern software practices are based on a template design approach in which recurring elements are 
codified and reused for new applications; this approach has proven very valuable in designing model’s as 

                                                                     ∞ 

Mi = £ [Ti] = ∑݊. fii(n)                                
        n=1                                               
 

         ∞ 

  ∑ Pii
(n)  =   ∞ 

    n=0                                       
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well as software.  Several formats have been proposed for describing agent-based designs.  Chief among 
these standards is Grimm et al’s “Overview, Design concepts, and Detail (ODD) protocol [56].  ODD 
describes models using a three-part approach: overview, concepts, and details.  The model overview 
includes a statement of the model’s intent, a description of the main variables, and a discussion of the 
agent activities and timing.  The design concepts include a discussion of the foundations of the model, 
and the details include the initial setup configuration, input value definitions, and description of any 
embedded models [56]. 
North et.al [57] discussed product design patterns for agent-based modeling.  For example, design 
patterns that have proven themselves useful for agent-based modeling includes: 
 Scheduler scramble:  The problem addressed is when two or more agents from the ABM pattern can 

schedule events that occur during the same clock tick.  Getting to execute first may be an advantage 
or disadvantage.  How do you allow multiple agents to act during the same clock tick without giving a 
long-term advantage to any one agent? 

 Context and projection Hierarchy:  The problem addressed is how to organize complex space into a 
single unified form such that  individual agents can simultaneously exist in multiple spaces and the 
spaces themselves can be seamlessly removed and added. 

 Strategy:  The problem addressed is how to let clients invoke rules that may be defined long after the 
clients are implemented?  There are a set of rules that need to be dynamically selected while a 
program is running.  There is a need to separate rule creation from rule activation. 

 Learning:  The problem addressed is to how to model agents that adapt or learn.  There is need for 
agents to change their behavior over time based on their experiences.    
 
       

2.8   Markov Chain Approach for Agent-Based Modeling 
Sven et.al [58] analyzed the dynamics of agent based models from a Markovian perspective and derived 
explicit statements about the possibility of linking a microscopic agent model to the dynamical processes 
of macroscopic observables that are useful for a precise understanding of the model dynamics.  These 
authors strongly argue that it is in this way the dynamics of collective variables may be studied, and a 
description of macro dynamics as emergent properties of micro dynamics, in particular during transient 
times, is possible.  This work [58] is a contribution to interweaving two lines of research that have 
developed in almost separate ways:  Markov Chains and agent-based models.  The former represents the 
simplest form of a stochastic process while the later puts a strong emphasis on heterogeneity and social 
interactions.  
The usefulness of the Markov Chain formalism in the analysis of more sophisticated ABM has been 
discussed by Izquierds  [59], who looked at 10 well-known social simulation models by representing 
them as a time-homogeneous Markov Chain.  Among these models are the schelling segregation model 
[60], the Axelrod model of cultural dynamics [61] and the sugar scape model from Epstein and Axtell 
[62].  The main idea of Izquierdo et al [59] is to consider all possible configurations of system as the state 
space of the Markov Chain.  Despite the fact that all the information of the dynamics on the ABM is 
encoded in a Markov Chain, it is difficult to learn directly from this fact, due to the huge dimension of the 
configuration space and its corresponding Markov transition matrix.  The work [59] mainly relies on 
numerical computations to estimate the stochastic transition on metrices of the models. 
Consider an ABM defined by a set N of agents, each one characterized by individual attributes that are 
taken from a finite list of possibilities.  The set of possible attributes is denoted by S and is called the 
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configuration space  the set of all possible combinations of attributes of the agent, i.e.,  = SN.  This also 
incorporates models where agents move on a lattice (e.g., in the sugarscape model) because we can treat 
the sites as “agents” and use an attribute to encode whether a site is occupied or not.  The updating 
process of the attributes of the agents at each time step typically consists of two parts.  First, a random 
choice of a subset of agents of agents is made according to some probability distribution w.  Then the 
attributes of the agents are updated according to a rule, which depends on the subset of agents selected at 
this time.  With this specification, ABM can be represented by a so-called random map representation 
which may be taken as an equivalent definition of a Markov Chain [63].  Hence, ABM are Markov 

Chains on  with a transition matrix P. for a class of ABM the transition probabilities P(x,y) can be 

computed for any pair ݔ,   .N of agent configurations.  The process (,P) is referred to as micro chain߳ݕ
When performing simulations of an ABM the actual interest is not in all the dynamical details but rather 
in the behavior of variables at the macroscopic level (mean job completion time, mean waiting time, mean 

tardiness, etc.).  The formulation of an ABM as a Markov Chain (,ṕ) enables the development of a 
mathematical framework for linking the Micro-description of an ABM to a Macro-description of interest.  
Namely from the Markov Chain perspective, the transition from the micro to the macro level is a 

projection of the Markov Chain with state space  onto a new state space X by means of a (protection) 

map ߨ from  to X.  The meaning of the projection ߨ is to lump sets of Micro configuration in  

according to the macro property of interest in such a way that, for each xєX, all the configurations of  in 
  .share the same property (x) 1-ߨ
 
 
3.0             Summary of Related Literature 
Scheduling understood to be an important tool for manufacturing and engineering has a major impact on 
productivity of a process [14].  In manufacturing, the purpose of scheduling is to minimize the production 
time and cost, by telling a production facility when to make with which staff, and on which machine.  
Cited publications argued that agent-based modeling is used because only agent-based model can 
explicitly incorporate the complexity arising from individual behavior and interactions that exist in the 
real-world.  [58] contributed to interweaving Markov Chains and agent-based modeling.  [59] worked on 
and represented 10 well-known simulation models as a time homogenous Markov Chain.  The author’s 
main idea is the formulation of the system configuration as the state space of the Markov Chain. 
 
 [12] evaluated the use of MRP or MRP-11 to create a medium-range scheduler. MRP system’s major 
disadvantages are rigidity and the lack of feedback from the shop floor, but also the tremendous amount 
of data that have to be entered in the bill of materials and the fact that the model of the manufacturing 
system and its capacity are excessively simple.  As can be deduced from these techniques, most 
approaches to tackle job-shop scheduling problem assume complete task knowledge and search for a 
centralized solution.  These technique typically do not scale with problem size, suffering from an 
exponential increase in computation time.  The centralized view of the plant coupled with the 
deterministic algorithms characteristic of these schedulers do not allow the manufacturing processes to 
adjust the schedule (using local knowledge) to accommodate disturbances such as machine break downs.  
Hence a production scheduling and control that performs reactive (not deterministic) scheduling and can 
make decision on which job to process next based solely on its partial (not central) view of the point 
becomes necessary.  This requirement puts the problem in the class of agent based model (ABM).  Hence 
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this work adopts an alternative view on job shop scheduling problem where each resource is equipped 
with adaptive agent that independent of other agents, makes job dispatching decision based on its local 
view of the plant.                
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1: Block Diagram of the Proposed ABM Framework for Solving the JSP 
 
Fig. 1 presents the shop for scheduler agent, shop floor control (SFC) agent, order agent and the machine 
(or work station) agent.  This figure shows the interaction between the scheduler agent and other agents. 
First the agent needs a model of the surrounding agents.  Agents have to register themselves with the SFC 
agent.  Second, resources like a machine (or workstation) needs to notify the shop control agent when 
they have spear productivity capability.  The order agent sends request for production capacity (to the 
scheduler agent or SFC agent), the function of the shop floor control agent is to match the request of the 
order agent with the offers of the resources on a certain instance of time.  The SFC agent therefore uses 
the schedules it receives regularly from one or more schedules.  Order agents and resources (or 
workstation) are not obliged to wait with their request and offers until the operation is executable or the 
resource is free.  This enables the agents to foresee future events and consider the consequences of it.  
This will be used to have, e.g. an idle machine (workstation) waiting for an important order, even when 
work is available. 
 
 
3.2   Analysis of the Existing System 
Analysis of the integer programming formulation of the job shop scheduling problem is presented.  In the 
integer programming technique, it is assumed that each job consists of m operations and most pass 
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through each machine exactly one.  All machines are available at time zero.  Furthermore, the total 
number of sublots is given and consistent sublot sizes are considered.  In addition, transport times are 
negligible.  With the notations and assumptions, the model can then be summarized as follows: 
min Cmax                                                                                             3.1 
 
subject to: 

   = Di i                                                          3.2 

  X
ij

 ൒ 0 
i,j                                                                3.3 

δijk ൑ Xij  i,j,k                                                                                        3.4 
tijk

’ ൒  tijk + rik 
. δijk + Pik . Xij   (0ijk, 0ijk

’)ЄA                                         3.5 

ti (j+1)k ൒  tijk + rik 
. δijk + Pik . Xij   i, k, j, < s                                       3.6 

Cmak ൒ tisk + rik . δisk + Pik . Xis  i, 0isk Є L                                 3.7 

tijk ൒  ti’ j’ k + ri’ k . 
δi’ j’ k + Pi’ k . Xi’ j’  -  H . Yiji’ j’ k 

ti’ j’ k ൒  tijk + rik . 
δijk + Pik . Xij  -  H . Yi’ ji’ j’ k 

Yi ji’ j’ k + Yi’ j’ i j k  =  1   i ‡ i’, j, j’                                                              3.8   

δi1k = 1  i, k                                                                                          3.9 

δi (j + 1)k ൒ Yi j i’ j’ k -  Yi (j + 1) i’ j’ k   

i ‡ i’, j < s, j’ k                                                                                          3.10 

In this model the conventional make span objective function (3.1) is employed, constraint (3.2) ensure 
that all required units are produced.  Constraints (3.3) are the non-negativity conditions.  Since sublots 
sizes may equal 0, the actual number of sublots is possibly smaller than the given number S.  This adds 
flexibility to the formulation with the fixed total number of sublot(s) obviously, no setup is necessary, if 
the corresponding sublot doesn’t exist.  Constraints (3.4) are therefore used to avoid redundant setups.  
Constraints (3.5) represent the precedence relations of the operations that belong to the same sublot. 
When attached setup times are taken into consideration, the setup of a certain machine cannot begin until 
the corresponding sublot has been transferred to this machine.  Constraint (3.5) fulfill this requirement on 
the other hand, detached setups can be performed in advance, with no regard to the availability of sublots.  
The constraints can then be slightly modified as:  
      
tijk

’ +rik
’

 . δijk
’ ൒  tijk + rik . δijk + Pik . Xij            

      (0ijk, 0ijk’) Є A                      3.11 
Constraint (3.6) states that a sublot can only be scheduled on a certain machine after the sublots with 
smaller induces of the same job finish their processing. For instance, the second sublot cannot be 
processed prior to the first sublot of the same job.  Due to the simultaneous determination of sublot 
sequences and sublot sizes, constrained (3.6) can be employed without loss of generality.  These 
constraints provide the basis for the concise formulation of setup times. 
Constraint (3.7) indicates that the makespan is refined by the latest completion time of the last operation 
of the sublot with the maximal index (s). 
Theoretically, constraint (3.6) can be removed. The makespan is thus determined by: 

Cmak ൒ ti,k + rik - δi,k + Pik . Xij  i, j, k                                               3.12 
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Owing to the complex interactions between sublots and machines, this formulation generally requires 
more iteration to solve an identical problem. 
Constraint (3.8) are adopted to determine the sequences on machines and to prevent overlapping of 
operations.  If Yiji’j’k takes the value 1, only the first set of constraint is relevant, which indicate that 
operation 0i’j’k must be processed after the completion of operation 0ijk.  If Yiji’j’k equals 0, the second set 
of constraints operate in a similar manner.   
In view of setups, constraint (3.9) ensures that the machines are properly adjusted before processing the 
first sublot of each job.  Note that only one setup is essential, if sublots of the same job are consecutively 
scheduled on a certain machine.  According to (3.6), operation 0ijk should always be scheduled before   
0i(j + 1)k. If these two operations are processed directly one after the other, δi(j+1)k takes the value 0 
automatically.  As long as there is an operation of any other job in between, the rigid side of the 
corresponding equation equals 1, which forces δi(j+1)k to be 1.  Therefore, constraint (3.10) ensures that 
all the consecutively scheduled sublots of the same job are processed under a single setup. 
 
 
 
4.0     SUMMARY / CONCLUSION 

The production manager of a job shop will use the results of agent based scheduling in several aspects of 
decision making. At the broadest level is capacity planning, in which the need for additional capacity and 
the type of capacity needed are identified. To a great extent, efficient scheduling can improve the 
utilization of existing processors so that expensive additions to capacity can be postponed. Simple 
procedures, such as “first come first served” or random selection, will often produce unacceptable 
solutions, resulting in delayed deliveries, the unbalanced utilization of processors, and the like. A clear 
understanding of the nature of scheduling at this most detailed level and the procedures of scheduling will 
provide input to the higher level decisions. 
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