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SUMMARY 
During the commissioning of the prototype of the sequential 
combustion turbine 3T24 extensive measurements of the com-
pressor performance at design- and off-design-operation were 
accomplished besides the investigation of the other compo-
nents of the GT. While the compressor performance at design 
operating conditions was as expected the data obtained 
showed some unexpected deviations from previously perfor-
med measurements of a 1/3-scale test rig of the low pressure 
compressor. This paper summarizes the results of the measu-
rements and presents a detailed comparison between the mea-
sured performance of the GT compressor, the design data and 
the test rig. The discussion is focused on the influence of sca-
ling effects on the aerodynamic performance and stage mat-
ching with particular emphasis on the Reynolds Number influ-
ence at different aerodynamic speeds. Furthermore some as-
pects of the starting behavior of the compressor are presented. 

INTRODUCTION 
The new family of ABB gasturbines, the GT24 (60 Hz) and 
GT26 (50 Hz), are characterized by a sequential combustion 
system with a second combustion chamber between the high 
pressure turbine and the low pressure turbine (Joos et al., 
1996). Figure 1 shows a cross section of the upper half of the 
GT24 with the air intake from the right, the 22-stage compres-
sor, the EV combustor, 1-stage high pressure turbine, SEV-
combustor and 4-stage IS pressure turbine. This type of ther-
modynamic cycle combines high specific power, high efficiency 
and low emissions but requires a fairly high pressure in order 
to meet the optimum thermodynamic efficiency. Therefore the 
development of a new compressor with a pressure ratio of 30:1 
was necessary in order to meet the requirements of the cycle. 
This compressor was designed with variable inlet guide vane, 
vane 1 and vane 2 to meet the requirements for massflow 
variation and is equipped with airfoils of controlled diffusion 

type (Meindl et al., 1995). The first 15 stages were tested in a 
113-scale test rig in order to validate the performance of the 
design. The test rig was operated at an inlet pressure of 0.5 bar 
in order to reduce the power consumption which lead to a 
reynolds number ratio of 6 between GT and rig compressor. 

NOMENCLATURE 
vibration amplitude 
intake massflow 
rotational speed 
aerodynamic speed 
gas constant 
Reynolds number 
setting angle of inlet guide vane 
polytropic efficiency 

Subscripts 

0. 	aerodynamic 
admissible 

Os 
	reference 

Superscripts 

0* 	normalized with design value 

Abbreviations 

EV 
	

environmental combustor 
SEV 
	

sequential EV combustor 
IGV 
	

inlet guide vane 
CT 
	

gas turbine 
CL 
	

operating line 
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Fig. 1 Cross section of the GT24 gas turbine 

PROTOTYPE PERFORMANCE MEASUREMENTS 
The intake massflow and efficiency of the 'large scale' prototy- 
pe compressor were investigated in detail during idle and load 
operating conditions for various aerodynamic speeds and guide 
vane settings. 

The massflow variation as a function of the normalized aerody-
namic speed was measured in the prototype engine by means 
of the static pressure drop along the compressor intake duct. 
These measurements were carried out during idle operation in 
a speed range between n aer-0.9 and n a*=1.08 and under base- 

load conditions according to the variations of ambient tempera-
ture during the commissioning phase. Figure 2 shows the mea-
sured mass flow variation of the GT compressor and that of the 
test rig, scaled to the GT size and inlet conditions. On the first 
hand the intake massflow of the GT compressor at nominal 
speed is approximately 1.4% higher than the intake massflow 
of the rig. This is mainly a Reynolds number effect and was 
expected to be in this order of magnitude. Furthermore the 
massflow variation as a function of aerodynamic speed is less 
in the large scale compressor. This behavior was somewhat 
unexpected and will be discussed later in more detail. 

Fig. 2 Massflow variation as a function of normalized aerodynamic speed 
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The variation of the intake massflow at nominal speed as a 
function of the setting of the variable guide vanes is shown in 
fig. 3. The massflow can be reduced to less than 60% of the 
nominal flow, which provides an optimum means for variation 
of the GT power output while maintaining the high turbine ex- 
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haust temperature and therefore low emissions and high effi-
ciency under off design operation. With the exception of the 
already mentioned offset at Ami=0 °, the behavior of GT and rig 
compressor are nearly identical. 
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Fig. 3 Massflow variation at nominal speed as a function of IGV setting angle 

Figure 4 provides an overview of the measured mass flow 
variation as a function of variable guide vane settings and 
aerodynamic speed. As no variation of the mechanical rotatio-
nal speed was possible during operation under load, most of 
the measurements were performed during idle operation. As 
expected, the variation of the intake massflow with aerodyna-
mic speed is reduced for closed guide vanes as the exit Mach 

number of the inlet guide vane increases and this row becomes 
dominant for the flow characteristic. For closed guide vanes the 
influence of the backpressure is neglectable which is also true 
in the region of high aerodynamic speeds at nominal guide 
vane setting. The expected reduction of the intake massflow 
under baseload conditions at low aerodynamic speeds is also 
shown in the figure. 
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Fig. 4 	Massflow variation of the GT compressor as a function of normalized aerody- 
namic speed and variable guide vane setting 
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The measured variation of the polytropic efficiency as a functi-
on of the aerodynamic speed is shown in fig. 5. The graphs 
are valid for nominal guide vane setting and a backpressure 
according to the baseload operating line. Differing from the 
discussions above the graphs for the GT compressor and the 
rig are normalized individually, as an accurate measurement of 

the efficiency in the prototype was available only at the com-
pressor exit, i. e. the graphs refer to the 15-stage rig and the 
22-stage GT compressor. Obviously the sensitivity of the GT 
compressor against changes of aerodynamic speed is signifi-
cantly higher than expected from the test rig results. 

1 
E. aseload, nominal guide vane setting I 

000 

995 

990 

sss 

--• 

—0124 Gilbert 

- -- - Test Rig 

980 
0.975 
	

0.980 
	

0 985 
	

0.990 
	

0.995 	1.000 
n:1.1 

Fig. 5 Efficiency variation as a function of normalized aerodynamic speed 
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Figure 6 summarizes the results of the efficiency measure-
ments during idle and load operation as a function of the va-
riable guide vane setting angle. While the idle measurements 
are marked by line graphs, the single dots mark points under 
loaded conditions according to the operating concept of the gas 
turbine (Carets et al., 1996). Since for these points an ad-
justment of the aerodynamic speed was not possible some 
scatter is visible according to the variation of the ambient 
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conditions during the commissioning. The graphs indicate the 
good matching of the compressor blading as the optimum 
efficiency is met at nominal guide vane setting for all aerody-
namic speeds except n 2t=0.9. At this condition the higher loa-
ding of the front stages causes a drop in efficiency for open 
guide vanes as the incidence angle of the first rotor approaches 
the stability limit. 
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Fig. 6 	Efficiency variation of the gas turbine compressor as a function of IGV setting angle 
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REYNOLDS NUMBER VARIATION IN TEST RIG 
The deviations between the test rig and the CT compressor 
with respect to operation at low aerodynamic speed resulted in 
a more detailed investigation of the Reynolds number influence 
in a second rig test in which the intake pressure was varied at 
nominal guide vane setting for r),*= 0.9 and n.=1.0 by throne-
ling the intake duct (Waltke, 1997). A maximum Reynolds 
number variation by a factor of 2 could be realized by this me-
thod. The back pressure was set according to the scaled ope-
rating line. The variation of efficiency as a function of the 
Reynolds number at n,=0.9 is shown in fig. 7. The Reynolds 
number at the first blade is used as characteristic Reynolds 
number on the abscissa. The graph is normalized to the effi-
ciency at Re=1.03. Furthermore the chart contains the graph of 
a typical correlation (Stoff and Waelchli, 1991). 

This correlation is of the form 

(1) 
1 — q 

Different values for the exponent n can be found in the litera-
ture, a value of n=0.125 is most commonly used and is shown 
in the chart. The agreement of measurement and correlation is 
quite good in this case. 

A different behavior was found for the Reynolds number varia-
tion at nominal aerodynamic speed. As shown in fig. 8 the 
sensitivity of the rig against Reynolds number variations is 
much less than in the previous case. The sensitivity predicted 
by the correlation with n=0.125 is too high, a better agreement 
can be achieved for an exponent of n=0.0555. 
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Fig. 7 Efficiency variation of the test rig as a function of Reynolds number at n a*=0.9 
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Fig. 8 Efficiency variation of the test rig as a function of Reynolds number at nominal aerodynamic speed 

The influence of the Reynolds number on the ingested air flow 
shows a similar trend. In fig. 9 the variation of the normalized 
reduced massflow versus 'Reynolds number is plotted for 
n:20.9 and nominal aerodynamic speed. The measured de-
pendency can be correlated by a simple logarithmic function as 
follows: 

, 	Re I 
= 1 + a in[— 

Rere 

The coefficient a was determined as a=0.0415 for nr0.9. The 
agreement between measurements and correlation is quite 
satisfactory. For nominal aerodynamic speed the sensitivity 
against Reynolds number variation in terms of mass flow is 
again significantly reduced as was the case for the efficiency. 
As is shown in fig. 9 the measurements can be correlated quite 
well by use of a value of 0.0056 for the coefficient a in eq. 2. 
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Fig. 9 Massflow variation of the test rig as a function of Reynolds number 
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A closer investigation of the distribution of the aerodynamic 
loading of the blading showed that the measured differences in 
Reynolds number sensitivity are mainly caused by the in-
creased loading of the front stages at low aerodynamic speed. 

As is illustrated in fig. 10 the first rotor operates in point Al at 
Reynolds number Re, and rh,* = 1 according to the design 
conditions. Decreasing the Reynolds number to Rez shifts the 
operating point to Az, resulting in a slight increase of the loss 
coefficient. Due to the operation near the design conditions the 
increase of the incidence angle does not affect the loss. The 
situation changes during operation at low aerodynamic speed. 

In this case the rotor operates at point Bi for the high Reynols 
number. Decreasing Re shifts the operating point towards 82 in 
the region of the steep loss increase. In this region the rotor is 
much more sensitive against changes of the incidence angle 
and therefore reacts with a higher loss variation. 

The deviations of rig and GT results can completelely be ex-
plained by this difference in Reynolds number sensitivity. In 
particular it has to be pointed out that the variation of the 
Reynolds number during rig tests provides a means to more 
accurately predict the scaling effects for a given geometric 
design at different operating conditions. 

loss 
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Re1 > Re2 

Re
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B2 1  

-------------------------- 	------------------- 

at 
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Fig. 10 Profile loss as function of incidence angle for different Reynolds numbers 

STARTUP MEASUREMENTS  
During the early commissioning phase the GT24 compressor in 
Gilbert suffered from a rotating stall which caused an excitation 
of the shaft during startup. By adding an additional blow off 

device at stage 11 the stall could be drastically reduced, subse-
quently enabling a smooth and fast runup. As an example the 
shaft vibrations at the compressor bearing are shown in fig. 11 
for a typical start. 
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Fig. 11 Shaft vibrations at compressor bearing for typical start 

SUMMARY 
The compressor of the first GT24 at Gilbert Generating Station, 
NJ, USA, was investigated in detail during the commissioning 
phase. A comparison with earlier accomplished rig tests 
showed some unexpected differences in the off-design cha-
racteristics of the rig and the GT compressor. The reason for 
these deviations could be identified by a second series of rig 
tests as a strong dependency of the Reynolds number sensitivi-
ty on aerodynamic speed. During the first run-ups the GT com-
pressor suffered from rotating stall which could be reduced by 
optimization of the blow-off system. The results of the com-
missiong measurements prove the wide operation range as 
well as the safe operation of the compressor under all opera-
ting conditions required by the advanced cycle concept. 
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