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Programme of the lectures:

1. Algebraic structure of quantum theory

(a) quantum mechanics: Heisenberg, Weyl and resolvent algebra.

(b) infinite quantum systems.

2. Operator algebras and local (relativistic) quantum physics

(a) abstract algebras, representations

(b) locality, covariance

(c) vacuum

3. Construction of models

(a) free theories, conformal field theories

(b) wedge-local theories and Rieffel deformations

4. Scattering theory

(a) Scattering matrix

(b) Asymptotic completeness

(c) Infrared problems

5. Superselection structure and statistics

(a) DHR analysis (charges, statistics etc.)

(b) charged fields, gauge groups

(c) Infrared problems
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1 Algebraic structure of quantum theory

1.1 Quantum systems with a finite number of degrees of
freedom

• Observables describe properties of measuring devices (possible measured val-
ues, commensurability properties).

• States describe properties of prepared ensembles (probability distributions
of measured values, correlations between observables)

Mathematical description based on Hilbert space formalism, Hilbert space H.

• Observables: self-adjoint operators A on H.

• States: density matrices ρ on H (i.e. ρ ≥ 0, Tr ρ = 1).

• Expectation values A, ρ 7→ TrρA.

Remark 1.1 pure states (‘optimal information’)= rays eiφφ ∈ H, ‖φ‖ = 1 =
orthogonal projections ρ2 = ρ. ( Question: Why equivalent? Express in a basis,
there can be just one eigenvalue with multiplicity one).

• Usual framework : fixed by specifying H. E.g. for spin H = C2, for par-
ticle L2(R3). Question: What is the Hilbert space for a particle with spin?
L2(R3;C2).

• Question: Does every s.a. operator A correspond to some measurement?
Does every density matrix ρ correspond to some ensamble which can be
prepared? In general no. Superselection rules. For example, you cannot
superpose two states with different charges.

• New point of view: Observables are primary objects (we specify the family
of measuring devices). The rest of the theory follows.

1.1.1 Heisenberg algebra

Quantum Mechanics. Observables:
Qj, j = 1, . . . , n and Pk, k = 1, . . . , n.
(n = Nd, N -number of particles, d-dimension of space).

We demand that observables form (generate) an algebra.

Definition 1.2 The ”free (polynomial) ∗-algebra P” is a complex vector space
whose basis vectors are monomials (”words”) in Qj, Pk (denoted Qj1 . . . Pk1 . . . Qjn . . . Pkn).

1. Sums: Elements of P have the form∑
cj1...knQj1 . . . Pkn . (1)
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2. Products: The product operation is defined on monomials by

(Qj1 . . . Pk1 . . . Qjn . . . Pkn) · (Qj′1
. . . Pk′1 . . . Qj′n . . . Pk′n)

= Qj1 . . . Pk1 . . . Qjn . . . PknQj′1
. . . Pk′1 . . . Qj′n . . . Pk′n

3. Adjoints: Q∗j = Qj, P
∗
k = Pk,(∑

cj1...knQj1 . . . Pkn

)∗
=
∑

cj1...knPkn . . . Qj1 . (2)

4. Unit: 1.

The operations (+, ·,∗ ) are subject to standard rules (associativity, distributivity,
antilinearity etc.) but not commutativity.

• Quantum Mechanics requires the following relations :

[Qj, Qk] = [Pj, Pk] = 0,
(
[Qj, Pk]− iδj,k1

)
= 0. (3)

• Consider a two-sided ideal J generated by all linear combinations of

A[Qj, Qk]B, A[Pj, Pk]B, A
(
[Qj, Pk]− iδj,k1

)
B (4)

for all A,B ∈ P .

Definition 1.3 Quotient P\J is again a ∗-algebra, since J is a two-sided ideal
and J ∗ = J . We will call it ”Heisenberg algebra”. This is the free algebra ‘modulo
relations’ (3).

1.1.2 Weyl algebra

The elements of polynomial algebra are intrinsically unbounded (values of position
and momentum can be arbitrarily large). This causes technical problems. A way
out is to consider their bounded functions. For z = u + iv ∈ Cn we would like
to set W (z) ≈ exp(i

∑
k(ukPk + vkQk)). We cannot do it directly, because exp is

undefined for ’symbols’ Pk, Qk. But we can consider abstract symbols W (z) satis-
fying the expected relations keeping in mind the formal Baker-Campbell-Hausdorff
(BCH) relation. The BCH formula gives

eAeB = eA+B+ 1
2

[A,B] (5)

We have z = u + iv, z′ = u′ + iv′, W (z) = eA, W (z′) = eB, A = i(uP + vQ),
B = i(u′P + v′Q) and [Q,P ] = i. Thus we have

[A,B] = (−1)[uP + vQ, u′P + v′Q] = (−1)(ivu′ − iuv′) = i(uv′ − vu′). (6)

On the other hand:

Im〈z, z′〉 = Im〈u+ iv, u′ + iv′〉 = Im(−ivu′ + iuv′) = uv′ − vu′. (7)

Hence

W (z)W (z′) = e
i
2

Im〈z,z′〉W (z + z′). (8)
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Definition 1.4 The (pre-)Weyl algebra W is the free polynomial ∗-algebra gener-
ated by the symbols W (z), z ∈ Cn modulo the relations

W (z)W (z′)− e
i
2

Im〈z|z′〉W (z + z′) = 0, W (z)∗ −W (−z) = 0, (9)

where 〈z|z′〉 =
∑

k z̄kz
′
k is the canonical scalar product in Cn.

The Weyl algebra has the following properties:

1. We have W (0) = 1 (by the uniqueness of unity).

2. By the above W (z)W (z)∗ = W (z)∗W (z) = 1 i.e. Weyl operators are unitary.

3. We have(∑
z

azW (z)
)(∑

z′

bz′W (z′)
)

=
∑
z,z′

azbz′e
i
2

Im〈z,z′〉W (z + z′). (10)

Thus elements of W are linear combinations of Weyl operators W (z).

1.1.3 Representations of the Weyl algebra

Definition 1.5 A ∗-representation π : W 7→ B(H) is a homomorphism i.e. a
map which preserves the algebraic structure. That is for W,W1,W2 ∈ W:

1. linearity π(c1W1 + c2W2) = c1π(W1) + c2π(W2),

2. multiplicativity π(W1W2) = π(W1)π(W2),

3. symmetry π(W ∗) = π(W )∗.

If in addition π(1) = I, we say that the representation is unital. (In these lectures
we consider unital representations unless specified otherwise).

Example 1.6 Let H1 = L2(Rn) with scalar products 〈f, g〉 =
∫
dnx f(x)g(x). One

defines (
π1(W (z))f

)
(x) = e

i
2
uveivxf(x+ u), z = u+ iv. (11)

(Note that for u = 0 π1(W (z) is a multiplication operator and for v = 0 it is a
shift). This is Schrödinger representation in configuration space.

Remark 1.7 Heuristics: Recall that W (z) = e(i
∑
k(ukPk+vkQk)) and Baker-Campbell-

Hausdorff

(ei(uP+vQ)f)(x) = e
i
2
uv(eivQei

∑
uPf)(x) (12)

= e
i
2
uveivx(eiuPf)(x) = e

i
2
uveivx(f)(x+ u) (13)

For the last step note (eiuPf)(x) = (eiu
1
i
∂xf)(x) = (

∑
n
un

n!
∂nxf)(x) = f(x+ u).
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Example 1.8 Let H2 = L2(Rn) with scalar products 〈f, g〉 =
∫
dnx f(x)g(x). One

defines (
π2(W (z))f

)
(x) = e−

i
2
uveiuxf(x− v), z = u+ iv. (14)

This is Schrödinger representation in momentum space.

Relation between (π1,H1), (π2,H2) is provided by the Fourier transform

(Ff)(y) := (2π)−n/2
∫
dnx e−ixyf(x), (15)

(F−1f)(y) := (2π)−n/2
∫
dnx eixyf(x). (16)

F is isometric, i.e. 〈Ff,Ff〉 = 〈f, f〉, (Plancherel theorem) and invertible (Fourier
theorem). Hence it is unitary. We have

π2(W ) = Fπ1(W )F−1, W ∈ W . (17)

Definition 1.9 Let (πa,Ha), (πb,Hb) be two representations. If there exists an
invertible isometry U : Ha → Hb (a unitary) s.t.

πb( · ) = Uπa( · )U−1 (18)

the two representations are said to be (unitarily) equivalent (denoted (πa,Ha) '
(πb,Hb)). As we will see, equivalent representations describe the same set of states.

Is any representation of W unitarily equivalent to the Schrödinger representation
π1? Certainly not, because we can form direct sums e.g. π = π1 ⊕ π1 is not
unitarily equivalent to π1. We have to restrict attention to representations which
cannot be decomposed into ”smaller” ones.

Definition 1.10 Irreducibility of representations: We say that a closed subspace
K ⊂ H is invariant (under the action of π(W)) if π(W)K ⊂ K. We say that a
representation of (π,H) of W is irreducible, if the only closed invariant subspaces
are H and {0}.

Remark 1.11 The Schroedinger representation π1 is irreducible (Homework).

Lemma 1.12 Irreducibility of (π,H) is equivalent to any of the two conditions
below:

1. For any non-zero Ψ ∈ H

{π(W )Ψ |W ∈ W } = H (19)

(i.e. if every non-zero vector is cyclic).
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2. Given A ∈ B(H),

[A, π(W )] = 0 for all W ∈ W (20)

implies that A ∈ CI (”Schur lemma”)
(i.e. the commutant of π(W) is trivial).

Remark 1.13 Recall that the commutant of π(W) is defined as

π(W)′ = {A ∈ B(H) |[A, π(W )] = 0 for all W ∈ W}. (21)

Proof. For complete proof see e.g. Proposition 2.3.8 in [1]. We will show here
only that 1. ⇒ 2.: By contradiction, we assume that there is A /∈ CI in π(W)′.
If A ∈ π(W)′ then also A∗ ∈ π(W)′ hence also s.a. operators A+A∗

2
and A−A∗

2i
are

in π(W)′. Thus, we can in fact assume that there is a s.a. operator B ∈ π(W)′,
B /∈ C1. Then also bounded Borel functions of B are in π(W)′. In particular
characteristic functions χ∆(B), ∆ ⊂ R (spectral projections of B) are in π(W)′.
Since B /∈ C1, we can find 0 6= χ∆(B) 6= I. Let Ψ ∈ Ranχ∆(B) i.e. Ψ = χ∆(B)Ψ.
Then for any W ∈ W

π(W )Ψ = π(W )χ∆(B)Ψ = χ∆(B)π(W )Ψ, (22)

hence Ψ cannot be cyclic because χ∆(B) projects on a subspace which is strictly
smaller than H. �

Question: Are any two irreducible representations of the Weyl algebra unitarily
equivalent?

Answer: In general, no. After excluding pathologies yes.

Example 1.14 Let H3 be a non-separable Hilbert space with a basis ep, p ∈ Rn.
Elements of H3:

f =
∑
p

cpep, with
∑
p

|cp|2 <∞ (23)

(i.e. all cp = 0 apart from some countable set). 〈f |f ′〉 =
∑

p cpc
′
p. We define

π3(W (z))ep = e−
i
2
uveiupep+v. (24)

This representation is irreducible but not unitarily equivalent to (π1,H1) ' (π2,H2)
because H1,2 and H3 have different dimension.

Criterion: Representation (π,H) of W is of ”physical interest” if for any f ∈ H
the expectation values

z 7→ 〈f, π(W (z))f〉 (25)
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depend continuously on z.

Physical meaning of the Criterion: Set v = 0. Then u 7→ π(W (u)) is an
n-parameter unitary representation of translations on H. Hence, by the Criterion
and Stone’s theorem

π(W (u)) = ei(u1Pπ,1+···+unPπ,n), (26)

where Pπ,i is a family of commuting s.a operators on (a domain in) H. They can
be interpreted as momentum operators in this representation. Analogously, we
obtain the position operators Qπ,i. By taking derivatives of the Weyl relations
w.r.t, ul, vk one obtains [Qπ,j, Pπ,k] = iδj,k1 on a certain domain (on which the
derivatives exist).

Theorem 1.15 (Stone-von Neumann uniqueness theorem) Any irreducible repre-
sentation of W, satisfying the Criterion, is unitarily equivalent to the Schrödinger
representation.

For a proof see Theorem 4.34 and Theorem 8.15 in [2].

Remark 1.16 This theorem does not generalize to systems with infinitely many
degrees of freedom (n = ∞). In particular, it does not hold in QFT. This is one
reason why charges, internal (’gauge’) symmetries, and groups play much more
prominent role in QFT than in QM. As we will see in Section 5, they will be
needed to keep track of all these inequivalent representations.

1.1.4 States

Definition 1.17 A state ω of a physical system is described by

1. specifying a representation (π,H) of W,

2. specifying a density matrix ρ on H.

Then ω(W ) = Trρπ(W ).

Lemma 1.18 A state is a map ω :W 7→ C which satisfies

1. linearity ω(c1W1 + c2W2) = c1ω(W1) + c2ω(W2).

2. normalization ω(1) = 1.

3. positivity ω(W ∗W ) ≥ 0 for all W ∈ W.

Proof. The only non-trivial fact is positivity: Write ρ =
∑

i pi|Ψi〉〈Ψi|, pi ≥ 0,
‖Ψi‖ = 1. Then, if the sum is finite, we can write

ω(W ∗W ) =
∑
i

piTr(|Ψi〉〈Ψi|π(W ∗W ))

=
∑
i

pi〈Ψi|π(W ∗W )Ψi〉 =
∑
i

pi‖WΨi‖2, (27)
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by completing Ψi to orthonormal bases.
In the general case we can use cyclicity of the trace

Tr ρπ(W ∗W ) = Tr ρπ(W )∗π(W ) = Trπ(W )ρπ(W )∗ (28)

=
∑
i

∑
j

pj|〈ei, π(W )Ψj〉|2. (29)

The result is finite (because ρπ(W ∗W ) is trace-class) and manifestly positive. �

Definition 1.19 We say that a representation (π,H) is cyclic, if H contains a
cyclic vector Ω. (Cf. Lemma 1.12). Such representations will be denoted (π,H,Ω).
For example, any irreducible representation is cyclic.

Theorem 1.20 Any linear functional ω :W → C, which is positive and normal-
ized, is a state in the sense of Definition 1.17 above. More precisely, it induces a
unique (up to unitary equivalence) cyclic representation (π,H,Ω) s.t.

ω(W ) = 〈Ω, π(W )Ω〉, W ∈ W . (30)

Proof. GNS construction (we will come to that). �

Lemma 1.21 If (π1,H1) ' (π2,H2) then the corresponding sets of states coincide.

Proof. Let ρ1 be a density matrix in representation π1 and W ∈ W . Then

Tr ρ1π1(W ) = Tr ρ1Uπ2(W )U−1 = TrU−1ρ1Uπ2(W ). (31)

Hence it does not matter if we measure W in representation π1 on ρ1 or in π2 on
ρ2 = U−1ρ1U .�

1.1.5 Weyl C∗-algebra

Definition 1.22 We define a seminorm on W:

‖W‖ := sup
π
‖π(W )‖, W ∈ W , (32)

where the supremum extends over all cyclic representations. The completion of
W/ ker ‖ · ‖ is the Weyl C∗-algebra which we denote W̃.

A few remarks about this definition:

1. The supremum is finite because for any representation π we have

‖π(W (z))‖2 = ‖π(W (z))∗π(W (z))‖ = ‖π(1)‖ = 1 (33)

and thus ‖π(W )‖ for any W ∈ W is finite.
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2. We cannot take supremum over all representations because this is not a set.
In fact, take the direct sum of all the representations which do not have
themselves as a direct summand and call this representation Π. Then we get
the Russel’s paradox:

Π :=
⊕
{π |π /∈ π} then Π ∈ Π⇔ Π /∈ Π, (34)

where π1 ∈ π2 means here that π1 is contained in π2 as a direct summand.

3. Using the GNS theorem one can show that

‖W‖ = sup
ω
ω(W ∗W )1/2. (35)

Here the supremum extends over the set of states. Indeed:

sup
ω
ω(W ∗W )1/2 = sup

(π,Ω)

〈Ω, π(W ∗W )Ω〉 ≤ sup
π
‖π(W )‖. (36)

On the other hand

sup
π
‖π(W )‖ = sup

π
sup
‖Ψ‖=1

‖π(W )Ψ‖ = sup
π

sup
‖Ψ‖=1

〈Ψ, π(W ∗W )Ψ〉1/2

≤ sup
ω
ω(W ∗W )1/2. (37)

4. In the case of the Weyl algebra ker ‖ · ‖ = 0 so the seminorm (32) is actually
a norm. [5]

Apart from standard properties of the norm, it satisfies

‖W1W2‖ ≤ ‖W1‖ ‖W2‖ Banach algebra property (38)

‖WW ∗‖ = ‖W‖2 C∗-property (39)

This is adventageous from the point of view of functional calculus: For W ∈ W
we have f(W ) ∈ W for polynomials f , but for more complicated functions there
is no guarantee. For W ∈ W̃ we have f(W ) ∈ W̃ for any continuous function f .

Nevertheless, in the next few subsections we will still work with the pre-Weyl
algebra W .

1.1.6 Symmetries

Postulate: Symmetry transformations are described by automorphisms (invert-
ible homomorphisms) of W .

Definition 1.23 We say that a map α : W → W is an automorphism if it is a
bijection and satisfies

1. α(c1W1 + c2W2) = c1α(W1) + c2α(W2)
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2. α(W1W2) = α(W1)α(W2)

3. α(W )∗ = α(W ∗)

4. α(1) = 1.

Automorphisms of W form a group which we denote AutW.

Example 1.24 If U ∈ W is a unitary, then αU(W ) = UWU−1 is called an
inner automorphism. Inner automorphisms form a group InW. For example, for
U = W (u0) we have

αu0(W (z)) = W (u0)W (z)W (u0)−1 = ei〈u0,v〉W (z) (40)

This is translation of coordinates, as one can see in the Schroedinger representation
π1:

π1(αu0(W (z))) = ei〈u0,v〉ei(uP+vQ) = ei(uP+v(Q+u0)). (41)

Similarly, for v0 ∈ Rn

αiv0(W (z)) = W (iv0)W (z)W (iv0)−1 = e−i〈v0,u〉W (z) (42)

is a translation in momentum space.

Example 1.25 Let R ∈ SO(n). Then

αR(W (z)) = W (Rz) (43)

is an automorphism which is not inner. (Set n = 3 and let R be a rotation around
the z axis by angle θ. Then, in the Schrödinger representation

π1(αR(W (z))) = Uπ1(W (z))U−1 (44)

U = eiθLz , where Lz = QxPy − QyPx. Clearly, U is not an element of W).
Automorphisms which are not inner are called outer automorphisms. They form
a set OutW which is not a group.

As we have seen above, even if an automorphism is not inner, it can be implemented
by a unitary in some given representation.

Definition 1.26 Let (π,H) be a representation of W. Then α ∈ AutW is said
to be unitarily implementable on H if there exists some unitary U ∈ B(H) s.t.

π(α(W )) = Uπ(W )U−1, W ∈ W . (45)
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Example 1.27 A large class of automorphisms is obtained as follows

α(W (z)) = c(z)W (Sz) (46)

where c(z) ∈ C\{0} and S : Cn → Cn a continuous bijection. Weyl relations
impose restrictions on c, S:

c(z + z′) = c(z)c(z′), c(−z) = c(z), |c(z)| = 1, (47)

S(z + z′) = S(z) + S(z′), S(−z) = −S(z), Im〈Sz, Sz′〉 = Im〈z|z′〉. (48)

The latter property means that S is a real-linear symplectic transformation.
For continuous c and S such automorphisms are unitarily implementable in

all irreducible representations satisfying the Criterion (consequence of the v.N.
uniqueness theorem). See Homeworks.

Remark 1.28 ω(z1, z2) := Im〈z|z′〉 is an example of a symplectic form. In gen-
eral, we say that a bilinear form ω is symplectic if it is:

1. Antisymmetric: ω(z1, z2) = −ω(z2, z1)

2. Non-degenerate: If ω(z1, z2) = 0 for all z2, then z1 = 0.

1.1.7 Dynamics

Definition 1.29 A dynamics on W is a one-parameter group of automorphisms
on W i.e. R 3 t 7→ αt s.t. α0 = id, αt+s = αt ◦ αs.

Proposition 1.30 Suppose that the dynamics is unitarily implemented in an ir-
reducible representation π i.e. there exists a family of unitaries s.t.

π(αt(W )) = U(t)π(W )U(t)−1, W ∈ W . (49)

Suppose in addition that t 7→ U(t) continuous (in the sense of matrix elements)
and differentiable (i.e. for some 0 6= Ψ ∈ H, ∂tU(t)Ψ exists in norm).

Then there exists a continuous group of unitaries t 7→ V (t) (i.e. V (0) = 1,
V (s+ t) = V (s)V (t)) s.t.

π(αt(W )) = V (t)π(W )V (t)−1. (50)

Remark 1.31 By the Stone’s theorem we have V (t) = eitH for some self-adjoint
operator H on (a domain in) H (the Hamiltonian). Whereas αt is intrinsic, the
Hamiltonian is not. Its properties (spectrum etc.) depend in general on represen-
tation.

Proof. We have αs ◦ αt = αs+t. Hence

U(s)U(t)π(W )U(t)−1U(s)−1 = U(s+ t)π(W )U(s+ t)−1, (51)

U(s+ t)−1U(s)U(t)π(W ) = π(W )U(s+ t)−1U(s)U(t). (52)
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By irreducibility of π

U(s+ t) = η(s, t)U(s)U(t), where |η(s, t)| = 1. (53)

By multiplying U by a constant phase eiφ0 we can assume that U(0) = I, hence

η(0, t) = η(s, 0) = 1. (54)

Now consider a new family of unitaries V (s) = ξ(s)U(s), |ξ(s)| = 1. We have

V (s+ t) = η′(s, t)V (s)V (t) = ξ(s+ t)U(s+ t)

= ξ(s+ t)η(s, t)U(s)U(t) = ξ(s+ t)η(s, t)ξ(s)−1ξ(t)−1V (s)V (t).(55)

Hence

η′(s, t) =
ξ(s+ t)

ξ(s)ξ(t)
η(s, t). (56)

The task is to obtain η′(s, t) = 1 for all s, t for a suitable choice of ξ (depending on
η). The key observation is that associativity of addition in R imposes a constraint
on η: In fact, we can write

U(r + s+ t) = η(r, s+ t)U(r)U(s+ t) = η(r, s+ t)η(s, t)U(r)U(s)U(t),(57)

U(r + s+ t) = η(r + s, t)U(r + s)U(t) = η(r + s, t)η(r, s)U(r)U(s)U(t).(58)

Hence we get the ”cocycle relation” (cohomology theory)

η(r, s+ t)η(s, t) = η(r + s, t)η(r, s). (59)

Using this relation one can show that given η one can find such ξ that η′ = 1.
”cocycle is a coboundary” (Howework). Important intermediate step is to show,
using the cocycle relation that

η(s, t) = η(t, s). (60)

To express ξ as a function of η we will have to differentiate η. By assumption,
there is Ψ ∈ H, ‖Ψ‖=1 s.t. ∂tU(t)Ψ exists. By (53), we have

η(s, t) = U(t)∗U(s)∗U(s+ t) = 〈Ψ, U(t)∗U(s)∗U(s+ t)Ψ〉
= 〈U(t)Ψ, U(s)∗U(s+ t)Ψ〉. (61)

Hence ∂tη(s, t) exists and by (60) also ∂sη(s, t). �

Example 1.32 Isotropic harmonic oscillator: In the framework of the polynomial
algebra P we have (heuristically)

αt(Qi) = cos(ω0t)Qi − sin(ω0t)Pi, (62)

αt(Pi) = cos(ω0t)Pi + sin(ω0t)Qi. (63)
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In the Weyl setting αt(W (z)) = W (eitω0z). This defines a group of automorphisms
from Example 1.27 with Stz = eitω0z, c(z) = 1. (St is complex-linear). This
dynamics is unitarily implemented in the Schrödinger representation:

π1(αt(W )) = U(t)π1(W )U(t)−1, W ∈ W , (64)

U(t) = eitH , H =
∑

i

( P 2
i

2m
+

kQ2
i

2

)
, ω0 =

√
k
m

.

Example 1.33 Free motion in the framework of P:

αt(Qj) = Qj +
t

m
Pj, (65)

αt(Pk) = Pk. (66)

In the framework of W:

αt(W (z)) = W (Rez + (t/m+ i)Im z) (67)

We have that St(z) = Rez+(t/m+ i)Im z is a symplectic transformation, but only
real linear. This dynamics is unitarily implemented in the Schrödinger represen-
tation:

π1(αt(W )) = U(t)π1(W )U(t)−1, W ∈ W , (68)

U(t) = eitH , H =
∑

i
P 2
i

2m
.

By generalizing the above discussion, one can show that dynamics governed by
Hamiltonians which are quadratic in Pi, Qj correspond to groups of automorphisms
of W . But there are many other interesting Hamiltonians, for example:

H =
P 2

2m
+ V (Q) (69)

where n = 1, V ∈ C∞0 (R)R (smooth, compactly supported, real).

Theorem 1.34 (No-go theorem) Let H = P 2

2m
+ V (Q), V ∈ L1(R) ∩ L∞(R) and

U(t) = eitH . Then

U(t)π1(W )U(t)−1 ∈ π1(W̃), W ∈ W̃ , t ∈ R. (70)

implies that V = 0.

Proof. See [3]. �

Thus AutW̃ does not contain dynamics corresponding to Hamiltonians (69). A
recently proposed solution to this problem is to pass from exponentials W (z) =
ei(uP+vQ) to resolvents R(λ, z) = (iλ − uP − vQ)−1 and work with an algebra
generated by these resolvents [4].
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1.1.8 Resolvent algebra

Definition 1.35 The pre-resolvent algebra R is the free polynomial ∗-algebra gen-
erated by symbols R(λ, z), λ ∈ R\{0}, z ∈ Cn modulo the relations

R(λ, z)−R(µ, z) = i(µ− λ)R(λ, z)R(µ, z), (71)

R(λ, z)∗ = R(−λ, z), (72)

[R(λ, z), R(µ, z′)] = iIm〈z, z′〉R(λ, z)R(µ, z′)2R(λ, z), (73)

νR(νλ, νz) = R(λ, z), (74)

R(λ, z)R(µ, z′) = R(λ+ µ, z + z′)(R(λ, z) +R(µ, z′)

+ iIm〈z, z′〉R(λ, z)2R(µ, z′)), (75)

R(λ, 0) =
1

iλ
, (76)

where λ, µ, ν ∈ R\{0} and in (75) we require λ+ µ 6= 0.

Remark 1.36 Heuristically R(λ, z) = (iλ − uP − vQ)−1. Realtions (71), (72)
encode the algebraic properties of the resolvent of some self-adjoint operator. (73)
encodes the canonical commutation relations. (74), (75), (76) encode linearity of
the map (u, v) 7→ uP + vQ.

Definition 1.37 The Schrödinger representation of R is defined as follows: Let
(π1,H1) be the Schrödinger representation of W. Since it satisfies the Criterion
(i.e. it is ”regular”) we have Pi, Qj as self-adjoint operators on L2(Rn). Thus we
can define

π1(R(λ, z)) = (iλ− uP − vQ)−1. (77)

One can check that this prescription defines a representation of R which is irre-
ducible.

Definition 1.38 We define a seminorm on R

‖R‖ = sup
π
‖π(R)‖, R ∈ R, (78)

where the supremum is over all cyclic representations of R. (A cyclic representa-
tion is a one containing a cyclic vector. In particular, irreducible representations
are cyclic). The resolvent C∗-algebra R̃ is defined as the completion of R/ ker ‖ · ‖.

Remark 1.39 The supremum is finite because for any representation π we have

‖π(R(λ, z))‖ ≤ 1

λ
, (Homework). (79)

and thus ‖π(R)‖ for any R ∈ R is finite. It is not known if ker ‖ · ‖ is trivial.
To show that it would suffice to exhibit one representation of R which is faithful
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(i.e. injective: π(R) = 0 implies R = 0). A natural candidate is the Schrödinger
representation. In this case one would have to check that if∑

finite

ci1,...inπ1

(
R(λi1 , zi1) · · ·R(λin , zin)

)
= 0 (80)

Then all ci1,...in = 0.

Definition 1.40 A representation (π,H) of R̃ is regular if there exist self-adjoint
operators Pi, Qj on H s.t. for λ ∈ R\{0}

π(R(λ, z)) = (iλ− uP − vQ)−1. (81)

For example, the Schrödinger representation π1 (of R̃) is regular.

Fact: Any regular irreducible representation π of R is faithful [4]. Hence, the

Schrödinger representation of R̃ is faithful. This does not imply however that the
Schrödinger representation of R is faithful since we divided by ker ‖ · ‖!

Proposition 1.41 There is a one-to-one correspondence between regular repre-
sentations of R̃ and representations of W̃ satisfying the Criterion. (The latter are
also called ”regular”). Hence, by the Stone-von Neumann uniqueness theorem, any

irreducible regular representation of R̃ is unitarily equivalent to the Schrödinger
representation.

Proof. (Idea). Use the Laplace transformation

π(R(λ, z)) = −i
∫ σλ

0

e−λtπ(W (−tz))dt, σ = sgnλ (82)

to construct a regular representation of R̃ out of a regular representation of W̃ . �

Remark 1.42 The Laplace transform can also be useful in checking if ker ‖ · ‖ is
trivial.

Up to now, we found no essential difference between the Weyl algebra and the
resolvent algebra. An important difference is that the Weyl C∗-algebra W̃ is
simple, i.e. it has no non-trivial two sided ideals. The resolvent C∗-algebra has
many ideals. They help to accommodate interesting dynamics.

Theorem 1.43 There is a closed two-sided ideal J ⊂ R̃ s.t. in any irreducible
regular representation (π,H) one has π(J ) = K(H) where K(H) is the algebra of
compact operators on H.

Remark 1.44 We recall:

• A is a compact operator if it maps bounded operators into pre-compact op-
erators. (On a separable Hilbert space if it is a norm limit of a sequence of
finite rank operators).
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• A is Hilbert-Schmidt (A ∈ K2(H)) if ‖A‖2 := Tr(A∗A)1/2 < ∞. Hilbert-
Schmidt operators are compact.

• A convenient way to show that an operator on L2(Rn) is Hilbert-Schmidt is
to study its integral kernel K, defined by the relation:

(Af)(p) =

∫
dp′K(p, p′)f(p′). (83)

If K is in L2(Rn × Rn) then A ∈ K2(L2(Rn)) and ‖A‖2 = ‖K‖2.

• For example, consider A = f(Q)g(P ). Its integral kernel in momentum space
is determined as follows:

(f(Q)g(P )Ψ)(p) =
1√
2π

∫
dp′ eiQp

′
(Ff)(p′)(g(P )Ψ)(p)

=
1√
2π

∫
dp′ (Ff)(p′)(g(P )Ψ)(p− p′)

=
1√
2π

∫
dp′ (Ff)(p′)g(p− p′)Ψ(p− p′)

=
1√
2π

∫
dp′ (Ff)(p− p′)g(p′)Ψ(p′). (84)

Hence the integral kernel of f(Q)g(P ) if K(p, p′) = (Ff)(p− p′)g(p′). If f, g
are square-integrable, so is K.

Proof. (Idea). By the von Neumann uniqueness theorem we can assume that

π is the Schrödinger representation π1. Then it is easy to show that π(R̃) con-
tains some compact operators: For example, set ui = (0, . . . , 1︸ ︷︷ ︸

i

, . . . , 0) and vi =

(0, . . . , 1︸ ︷︷ ︸
i

, . . . , 0). Then the operator

A := π1(R(λ1, iv1)R(µ1, u1) . . . R(λn, ivn)R(µn, un))

=
n∏
j=1

(iλj −Qj)
−1

n∏
k=1

(iµj − Pj)−1 (85)

is Hilbert-Schmidt for all λi, µi ∈ R\{0}. (This can be shown by checking that it
has a square-integrabe kernel). In particular it is compact. Now it is a general
fact in the theory of C∗-algebras that if the image of an irreducibe representation
contains one non-zero compact operator then it contains all of them (Howework
or Corollary 4.1.10 of [6]). Thus, since π1 is faithful, we can set J = π−1

1 (K(H)).

This is a closed two-sided ideal in R̃ since K(H) is a closed two-sided ideal in
B(H). �
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Theorem 1.45 Let n = 1, H = P 2 + V (Q), where V ∈ C0(R)R real, continuous
vanishing at infinity and U(t) = eitH . Then

U(t)π1(R)U(t)−1 ∈ π1(R̃), for all R ∈ R̃, t ∈ R. (86)

Remark 1.46 Since π1 is faithful, we can define the group of automorphisms of
R

αt(R) := π−1
1

(
U(t)π1(R)U(t)−1

)
, (87)

which is the dynamics governed by the Hamiltonian H.

Remark 1.47 For simplicity, we assume that V ∈ S(R)R and
∫
dx V (x) = 0.

General case follows from the fact that such functions are dense in C0(R)R in
supremum norm.

Proof. Let U0(t) = eitH0 , where H0 = P 2. Since this is a quadratic Hamiltonian,
we have

U0(t)π1(R̃)U0(t)−1 ⊂ π1(R̃). (88)

Now we consider ΓV (t) := U(t)U0(t)−1. It suffices to show that ΓV (t) − 1 are

compact for all V ∈ C0(R)R since then ΓV (t) ∈ π1(R̃) by Theorem 1.43 and hence

U(t)π1(R̃)U(t)−1 = ΓV (t)U0(t)π1(R̃)U0(t)−1ΓV (t)−1 ∈ π1(R̃), (89)

using ΓV (t)−1 = ΓV (t)∗ ∈ π1(R̃).
We use the Dyson perturbation series of ΓV (t):

ΓV (t) =
∞∑
n=0

in
∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 Vt1Vt2 . . . Vtn , (90)

where Vt := U0(t)V (Q)U0(t)−1 and the integrals are defined in the strong-operator
topology, that is exist on any fixed vector. (Cf. Proposition 1.50 below).

The key observation is that
∫ t

0
ds Vs are Hilbert-Schmidt. To this end compute

the integral kernel Ks of Vs:

(Ks)(p1, p2) =
1√
2π
eip

2
1s(FV )(p1 − p2)e−ip

2
2s. (91)

This is clearly not Hilbert-Schmidt. Now let us compute the integral kernel K̂s of∫ t
0
ds Vs:

(K̂s)(p1, p2) =

∫ t

0

ds (Ks)(p1, p2) =
1√
2π

ei(p
2
1−p2

2)t − 1

i(p2
1 − p2

2)
(FV )(p1 − p2). (92)
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This is Hilbert-Schmidt. In fact:∫
dp1dp2 |(K̂s)(p1, p2)|2 = c

∫
dq1 |(FV )(q1)|2

∫
dq2

sin2(tq1q2)

(q1q2)2

= c

∫
dq1 |(FV )(q1)|2 |t|

|q1|

∫
dr

sin2(r)

r2

= c′|t|
∫
dq1
|(FV )(q1)|2

|q1|
(93)

Since (FV )(0) = 0 we have (FV )(q1) ≤ c|q1| near zero so the integral exists.
Consequently, the strong-operator continuous functions

Rn−1 3 (t2, . . . , tn) 7→
∫ t2

0

dt1 Vt1Vt2 . . . Vtn (94)

have values in the Hilbert-Schmidt class and their Hilbert-Schmidt (HS) norms
are bounded by (

c′|t2|
∫
dq1
|(FV )(q1)|2

|q1|

)1/2

‖V ‖n−1 (95)

(since ‖AB‖2 ≤ ‖A‖2‖B‖). The integral of any strong-operator continuous HS-
valued function with uniformly bounded (on compact sets) HS norm is again HS.
(See Lemma 1.49 below). So each term in the Dyson expansion (apart from n = 0)

is in π1(R̃) and the expansion converges uniformly in norm. So ΓV (t) − 1 is a
compact operator. �

Remark 1.48 The resolvent algebra admits dynamics corresponding to H = P 2 +
V (Q). But there are other interesting Hamiltonians which are not covered e.g.
H =

√
P 2 +M2. So there remain open questions...

In the above proof we used two facts, which we will now verify:

Lemma 1.49 Let Rn 3 t 7→ F (t) ∈ K2(H) be continuous in the strong operator
topology and suppose that for some compact set K ⊂ Rn we have

sup
t∈K
‖F (t)‖2 <∞, (96)

where ‖F (t)‖2 = Tr(F (t)∗F (t))1/2. Then

F̂ :=

∫
K

dt F (t) (97)

is again Hilbert-Schmidt.
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Proof. We have

‖F̂‖2
2 = Tr F̂ ∗F̂ = |

∑
i

∫
K×K

dt1dt2〈ei, F (t1)∗F (t2)ei〉|

≤
∑
i

∫
K×K

dt1dt2|〈ei, F (t1)∗F (t2)ei〉|

≤
∑
i

∫
K×K

dt1dt2‖F (t1)ei‖ ‖F (t2)ei‖. (98)

Since the summands/integrals are positive, I can exchange the order of integra-
tion/summation. By Cauchy-Schwarz inequality:

‖F̂‖2
2 ≤

∫
K×K

dt1dt2
(∑

i

‖F (t1)ei‖2
)1/2 (∑

i

‖F (t2)ei‖2
)1/2

=

∫
K×K

dt1dt2 ‖F (t1)‖2‖F (t2)‖2

≤ |K|2 sup
t∈K
‖F (t)‖2

2 <∞. (99)

Where in the last step we use the assumption (96). �

Lemma 1.50 (Special case of Theorem 3.1.33 of [1]) Let R 3 t 7→ U0(t) be a
strongly continuous group of unitaries on H with generator H0 (i.e. U0(t) = eitH0,
above we had H0 = P 2) and let V be a bounded s.a. operator on H. Then H0 + V
generates a strongly continuous group of unitaries U s.t.

U(t)Ψ = U0(t)Ψ

+
∑
n≥1

in
∫

0≤t1≤···≤tn≤t
dt1 . . . dtn U0(t1)V U0(t2 − t1)V · · ·U0(tn − tn−1)V U0(t− tn)Ψ

(100)

For any Ψ ∈ H. (To get the expression for ΓV (t) it suffices to set Ψ = U0(t)−1Ψ′).

Proof. Strategy: we will treat (100) as a definition of a t ≥ 0 dependent family
of operators t 7→ U(t). We will use this definition to show that it can be naturally
extended to a group of unitaries parametrized by t ∈ R. Then, by differentiation,
we will check that its generator is H0 +V . Hence, by Stone’s theorem we will have
U(t) = eit(H0+V ).

Let U (n)(t) be the n-th term of the series of U . We have, by a change of
variables,

U (0)(t) = U0(t), U (n)(t) =

∫ t

0

dt1 U0(t1)iV U (n−1)(t− t1). (101)
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Iteratively, one can show that all U (n)(t) are well defined and strongly continuous.
It is easy to check that this is a series of bounded operators which converges in
norm: In fact

‖U (n)(t)Ψ‖ ≤ tn

n!
‖V ‖n‖Ψ‖, hence

∑
n

‖U (n)(t)Ψ‖ <∞. (102)

By taking the sum of both sides of the recursion relation (101), we get

U(t) = U0(t) +

∫ t

0

dsU0(s)iV U(t− s). (103)

Now we want to show the (semi-)group property:

U(t1)U(t2) = U0(t1)U(t2) +

∫ t1

0

dsU0(s)iV U(t1 − s)U(t2)

= U0(t1 + t2) +

∫ t2

0

dsU0(t1 + s)iV U(t2 − s)

+

∫ t1

0

dsU0(s)iV U(t1 − s)U(t2)

= U(t1 + t2) +

∫ t2

0

dsU0(t1 + s)iV U(t2 − s)

+

∫ t1

0

dsU0(s)iV U(t1 − s)U(t2)

−
∫ t1+t2

0

dsU0(s)iV U(t1 + t2 − s) (104)

Now
∫ t1+t2
t1

part of the last integral cancels the
∫ t2

0
integral (change of variables).

We are left with

U(t1)U(t2)− U(t1 + t2) =

∫ t1

0

dsU0(s)iV
(
U(t1 − s)U(t2)− U(t1 + t2 − s)).(105)

Now let Uλ(t) be defined by replacing V with λV in (100), λ ∈ R. It is clear from
(100) that the function

Ft1(λ) = Uλ(t1)Uλ(t2)− Uλ(t1 + t2) (106)

is real-analytic. By (105) we get

Ft1(λ) = λ

∫ t1

0

dsU0(s)iV Ft1−s(λ). (107)

Clearly, Ft1(0) = 0. Using this, and differentiating the above equation w.r.t. λ at
0, we get ∂λFt1(0) = 0. By iterating we get that all the Taylor series coefficients
of Ft1 at zero are zero and thus Ft1(λ) = 0 by analyticity. We conclude that the
semigroup property holds i.e.

U(t1 + t2) = U(t1)U(t2). (108)
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Now we want to show that U(t) are unitaries. A candidate for an inverse of
U(t) is U ′(t) defined by replacing H0 with H ′0 := −H0 and V by V ′ = −V . (JUMP
DOWN). We also set U ′0(t) = ei(−H0)t. Let t2 ≥ t1. Then

U(t1)U ′(t2) = U0(t1)U ′(t2) +

∫ t1

0

dsU0(s)iV U(t1 − s)U ′(t2)

= U0(t1 − t2) +

∫ t2

0

dsU ′0(−t1 + s)iV ′U ′(t2 − s)

+

∫ t1

0

dsU0(s)iV U(t1 − s)U ′(t2)

= U ′(t2 − t1) +

∫ t2

0

dsU ′0(−t1 + s)iV ′U ′(t2 − s)

+

∫ t1

0

dsU0(s)iV U(t1 − s)U ′(t2)

−
∫ t2−t1

0

dsU ′0(s)iV ′U ′(t2 − t1 − s) (109)

In the last integral the part −
∫ −t1

0
combines with the second line and −

∫ −t1+t2
−t1

cancels the first line. Thus we get

U(t1)U ′(t2)− U ′(t2 − t1) =

∫ t1

0

dsU0(s)iV
(
U(t1 − s)U ′(t2)− U ′(t2 − (t1 − s))

)
(110)

(JUMP TO HERE). By an analogous argument as above we obtain

U(t1)U ′(t2) = U ′(t2 − t1), (111)

In particular, U(t)U ′(t) = 1 and we can consistently set U(−t) := U ′(t) for t ≥ 0.
Moreover, it is easily seeen from (100), by a change of variables, that U ′(t) = U(t)∗.
Thus we have a group of unitaries. By Stone’s theorem it has a generator which
can be obtained by differentiation: Clearly we have for Ψ in the domain of H0:

∂t|t=0U0(t)Ψ = iH0Ψ (112)

Now we write

It :=
∑
n≥1

in
∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 Vt1Vt2 . . . VtnU0(t)Ψ (113)

We have

∂tIt = i
∑
n≥1

in−1

∫ t

0

dtn−1 . . .

∫ t2

0

dt1 Vt1Vt2 . . . Vtn−1VtU0(t)Ψ

+
∑
n≥1

in
∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 Vt1Vt2 . . . VtnU0(t)iH0Ψ. (114)

Taking the limit t → 0 the second term tends to zero and the first term tends to
zero apart from n = 1 (since then there are no integrals). The n = 1 term gives
iVΨ, thus, together with (112) we get that the generator of U is H0 + V . �
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1.2 Algebra of bounded operators on a Hilbert space

Motivation: Most algebras of interest in physics (e.g. C∗-algebras, W ∗-algebras)
can be realized as certain subalgebras of the algebra B(H) of all bounded operators
on some suitable Hilbert space. Important advantage: on a Hilbert space it is
easy to introduce various concepts of convergence (strong-operator, weak-operator
topology).

Definition 1.51 B(H) is the space of linear maps A : H → H s.t.

‖A‖ := sup
‖Ψ‖=1

‖AΨ‖ = sup
‖Ψ‖=1,‖Φ‖=1

|〈Φ, AΨ〉| <∞. (115)

Lemma 1.52 (Basic properties):

1. B(H) is a normed complex vector space which is complete. (Banach space).

2. B(H) is equipped with operator product B(H) ·B(H) ⊂ B(H). We have

‖AB‖ ≤ ‖A‖ ‖B‖. (116)

i.e. B(H) is a Banach algebra (B-algebra).

3. B(H) is equipped with ∗-operation B(H)∗ ⊂ B(H). We have

‖A∗‖ = ‖A‖ (117)

i.e. B(H) is a Banach∗ algebra (B∗-algebra).

4. C∗-property:

‖A∗A‖ = ‖A‖2. (118)

i.e. B(H) is a C∗-algebra.

Proof. (Of the C∗-property). On the one hand

‖A∗A‖ = sup
Φ,Ψ∈H1

|〈Φ, A∗AΨ〉| ≤ sup
Φ,Ψ∈H1

‖AΨ‖ ‖AΦ‖ = ‖A‖2. (119)

On the other hand

‖A∗A‖ ≥ sup
Φ∈H1

|〈Φ, A∗AΦ〉| = ‖A‖2. (120)

�

Basic terminology in the theory of bounded operators:

• self-adjoint: A = A∗.

• positive: (A ≥ 0) if 〈Φ, AΦ〉 ≥ 0, Φ ∈ H. (Positive eigenvalues).

22



• projection: A∗ = A = A2.

• isometry: ‖AΦ‖ = ‖Φ‖, Φ ∈ H. (Equivalently, A∗A = 1).

• partial isometry A∗A = E, E-projection. (Then also AA∗ = F , F projec-
tion).

• unitary: A∗A = AA∗ = 1.

• finite rank: dim(AH) = n <∞.

• compact operators K(H): A maps bounded sets into pre-compact. Equiva-
lently, on a separable Hilbert space, ‖A−An‖ < ε for operators An of finite
rank n and sufficiently large n (dep. on ε).

• Hilbert-Schmidt K2(H): ‖A‖2 :=
(
TrA∗A

)1/2
<∞.

• Trace-class K1(H): A = B∗C, B,C are Hilbert-Schmidt. If A positive,
TrA <∞.

Useful facts:

• A ≥ 0 iff there is a (non-unique) B s.t. A = B∗B. If we require that B ≥ 0
then it is unique and we write B =

√
A.

• polar decomposition: A = U |A|, where |A| :=
√
A∗A and U partial isome-

try. U∗U projection onto A∗H, UU∗ projection onto AH. Decomposition is
unique.

Let us look at B(H) as an abstract algebra (defined by its relations) and consider
its representations:

• The defining representation of B(H) is denoted (ι,H), i.e.

ι(A)Φ := AΦ, A ∈ B(H), Φ ∈ H. (121)

• Note that K2(H), equipped with the scalar product

〈H1|H2〉 = TrH∗1H2, (122)

is a Hilbert space. Also K2(H) is a left and right ∗-ideal in B(H), that is

B(H) · K2(H) = K2(H) ·B(H) = K2(H), K2(H)∗ = K2(H). (123)

Thus one can define a ∗-representation of B(H) in K2(H) as follows:

πHS(A)|H〉 := |AH〉. (124)

Note that

〈H|πHS(A)H〉 = 〈H|AH〉 = TrH∗AH = TrHH∗A (125)

Note that HH∗ is positive and TrHH∗ < ∞. If it is normalized, i.e.
TrHH∗ = 1, then ρ := HH∗ is a density matrix. Hence all mixed states in
QM can be described in the Hilbert space formalism using this representa-
tion.
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Remark 1.53 An abstract state ω (positive, normalized, linear functional)
on a C∗-algebra is called pure if the equation

ω = pω′ + (1− p)ω′′, where 0 < p < 1, ω′, ω′′ states, (126)

has only one solution: ω = ω′ = ω′′. General fact: ω is pure iff its
GNS representation πω is irreducible. In an irreducible representation the
physicists’ definition of pure states as ρpure = |Ψ〉〈Ψ| and mixed states as
ρmixed =

∑
i pi|Ψi〉〈Ψi| works.

Remark 1.54 In terms of Theorem 1.20 (GNS construction) the situation
is the following: Consider a state ω(A) = Tr ρA, A ∈ B(H), where ρ is a
density matrix (mixed in the physicists’ sense). This state induces a cyclic
representation (πω,Hω,Ωω) s.t.

ω(A) = 〈Ωω, πω(A)Ωω〉. (127)

This representation is unitarily equivalent to a subrepresentation of πHS. The
isometry V : Hω → K2(H) given by

V πω(A)Ωω = |A√ρ〉 (128)

satisfies V πω(A) = πHS(A)V . Hence πHS is reducible.

• Pathological representations/states: By the Hahn-Banach theorem there ex-
ist positive, linear and normalized functionals σ on B(H) s.t. σ(C) = 0 for
any C ∈ K(H) but σ(1) = 1. The GNS construction gives a representation
πσ which maps all compact operators to zero.

Also σ( · ) is ’less continuous’ than ω( · ) = Tr ρ( · ). Any state on a C∗-algebra
is continuous w.r.t. the norm topology, but not necessarily in terms of the
weak topology (i.e. convergence of matrix elements).

1 = σ(1) = σ( lim
N→∞

N∑
n=0

|en〉〈en|) = lim
N→∞

σ(|en〉〈en|) = 0. (129)

On the other hand

1 = ω(1) = Tr ρ(lim
N

N∑
n=0

|en〉〈en|) =
∑
`

lim
N

N∑
n=0

〈e′`,
√
ρen〉〈en,

√
ρe′`〉

= lim
N

∑
`

N∑
n=0

〈e′`,
√
ρen〉〈en,

√
ρe′`〉 = lim

N
Tr ρ(

N∑
n=0

|en〉〈en|) (130)

To exchange limN with
∑

` we used the dominated convergence theorem and
the bound

〈e′`,
√
ρ

N∑
n=0

en〉〈en,
√
ρe′`〉 ≤ 〈e′`, ρe′`〉. (131)
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Let us consider more systematically various notions of convergence in B(H).
A sequence {An ∈ B(H)}n∈N is said to be convergent to A ∈ B(H) in:

(a) weak operator topology (”weakly”) if 〈Ψ, (A−An)Φ〉 → 0 for any Ψ,Φ ∈ H.

(b) strong operator topology (”strongly”) if ‖(A− An)Ψ‖ → 0 for any Ψ ∈ H.

(c) norm if ‖A− An‖ → 0.

For example, limN→∞
∑N

n=1 |en〉〈en| = 1 exists in weak and strong operator topol-
ogy, but not in norm (if dimH =∞). In general (c)⇒ (b)⇒ (a) but the converse
implications do not hold.

Definition 1.55 A positive linear and normalized functional ω : B(H) → C
(state) is called normal if for every sequence of projections Qn, n ∈ N, which
converges strongly to some projection Q one has

ω(lim
n
Qn) = ω(Q) = lim

n
ω(Qn). (132)

Note: σ is not normal in this sense. (H is assumed to be separable here. For non-
separable H one has to use generalized sequences (’nets’) {Qi}i∈I. Here I is an
index set together with a partial ordering (reflexive, transitive amd antisymmetric)
which satisfies: For any i, i′ ∈ I there is j s.t. j > i, j > i′).

Proposition 1.56 [1] Let ω be a normal state on B(H). Then there exists a
density matrix ρω s.t.

ω(A) = Tr ρωA, A ∈ B(H). (133)

It turns out that topological and algebraic concepts are closely tied for ∗-subalgebras
of B(H):

Theorem 1.57 [1] (von Neumann bicommutant theorem) Let A be a unital ∗-
algebra of operators on a Hilbert space. Then A is dense in A′′ in the weak and
strong topology.

Remark 1.58 We note/recall the following:

1. The commutant of A in B(H) is defined as follows:

A′ = {B ∈ B(H) | [B,A] = 0 for all A ∈ A}. (134)

2. A unital ∗-algebra of operators on a Hilbert space s.t. A′′ = A is called a
von Neumann algebra. In particular, it is a C∗-algebra.

3. For separable H it suffices to add limits of strongly convergent sequences to
obtain the strong closure of a ∗-algebra. (Nets not needed).
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1.3 Weyl algebra for systems with infinitely many degrees
of freedom

Algebraic approach is adventageous in order to perform the transition from finite
to infinite systems.

• Finite systems: Cn, 〈 · , · 〉, σ(z, z′) = Im〈z, z′〉. Pre-Weyl algebra W is the
free ∗-algebra generated by W (z), z ∈ Cn, subject to relations

W (z)W (z′) = e
i
2
σ(z,z′)W (z + z′), W (z)∗ = W (−z), z ∈ Cn. (135)

Remark 1.59 This form of Weyl relations corresponds to W (z) = ei(uP+vQ),
z = u + iv via BCH. If we wanted Wnew(z) = ei(vP+uQ), z = u + iv, that
would lead to a minus sign in front of σ:

Wnew(z)Wnew(z′) = e−
i
2
σ(z,z′)Wnew(z + z′) (136)

This convention will be more convenient in the case of systems with infinitely
many degrees of freedom.

• Infinite systems: infinite dimensional complex-linear space D with scalar
product 〈 · , · 〉 (pre-Hilbert space). Define the symplectic form σ(f, g) =
Im 〈f, g〉, f, g ∈ D. Pre-Weyl algebra W is the free ∗-algebra generated by
W (f), f ∈ D, subject to relations

W (f)W (g) = e−
i
2
σ(f,g)W (f + g), W (f)∗ = W (−f), f, g ∈ D. (137)

Example 1.60 : D = S(Rd),

〈f, g〉 =

∫
ddx f(x)g(x). (138)

Heuristics: W (f) = ”ei
(
ϕ(Re f)+π(Im f)

)
”, where

ϕ(g) :=

∫
ddx g(x)ϕ(x), π(h) :=

∫
ddxh(x)π(x) (139)

are spatial means of the quantum ”field operator” ϕ(x) and its ”canonical conjugate
momentum” π(x). The fields ϕ, π satisfy formally

[ϕ(x), π(y)] = iδ(x− y)1, (140)

[ϕ(x), ϕ(y)] = [π(x), π(y)] = 0. (141)

ϕ(x), π(y) are not expected to be operators, but only operator valued distributions.
But ϕ(g), π(h) are expected to be operators and we have

[ϕ(g), π(h)] = i

∫
ddx g(x)h(x)1 = i〈g, h〉1. (142)
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Example 1.61 : D = S(Rd),

〈f, g〉 =

∫
ddp f(p)g(p). (143)

Here Rd is interpreted as momentum space.

Heuristic interpretation: W (f) = e
i√
2

(a∗(f)+a(f))
where

a∗(f) =

∫
ddp f(p)a∗(p), a(f) =

∫
ddp f(p)a(p). (144)

are creation and annihilation operators of particles with momentum in the support
of f . The commutation relations are

[a(p), a∗(q)] = δ(p− q)1, (145)

[a(p), a(q)] = [a(p), a∗(q)] = 0. (146)

Similarly as before a priori these are only operator valued distributions. For
smeared versions we have:

[a(g), a∗(h)] =

∫
ddp g(p)h(p)1 = 〈g, h〉1. (147)

1.3.1 Fock space

We recall the definition and basic properties of a Fock space over h := L2(Rd, ddx).
We have for n ∈ N

⊗nh = h⊗ · · · ⊗ h = L2(Rnd, dndx), (148)

⊗nsh = Sn(h⊗ · · · ⊗ h) = L2
s(Rnd, dndx), (149)

⊗0
sh := CΩ, where Ω is called the vacuum vector. (150)

Here Sn is the symmetrization operator defined by

Sn =
1

n!

∑
σ∈Pn

σ, where σ(f1 ⊗ · · · ⊗ fn) = fσ(1) ⊗ · · · ⊗ fσ(n), (151)

Pn is the set of all permutations and L2
s(Rnd, dndx) is the subspace of symmetric

(w.r.t. permutations of variables) square integrable functions. The (symmetric)
Fock space is given by

Γ(h) := ⊕n≥0 ⊗ns h = ⊕n≥0L
2
s(Rnd, dndx). (152)

We can write Ψ ∈ Γ(h) in terms of its Fock space components Ψ = {Ψ(n)}n≥0. We
define a dense subspace Γfin(h) ⊂ Γ(h) consisting of such Ψ that Ψ(n) = 0 except
for finitely many n. Next, we define a domain

D := {Ψ ∈ Γfin(h) |Ψ(n) ∈ S(Rnd) for all n }. (153)
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Now, for each p ∈ Rd we define an operator a(p) : D → Γ(h) by

(a(p)Ψ)(n)(k1, . . . , kn) =
√
n+ 1Ψ(n+1)(p, k1, . . . , kn),

In particular a(p)Ω = 0. (154)

Note that the adjoint of a(p) is not densely defined, since formally

(a∗(p)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

δ(p− k`)Ψ(n−1)(k1, . . . , k`−1, k`+1, . . . , kn) (155)

However, a∗(p) is well defined as a quadratic form on D ×D. Expressions

a(g) =

∫
ddp a(p)g(p), a∗(g) =

∫
ddp a∗(p)g(p), g ∈ S(Rd), (156)

give well-defined operators on D which can be extended to Γfin(h). On this domain
they act as follows

(a(g)Ψ)(n)(k1, . . . , kn) =
√
n+ 1

∫
ddp g(p)Ψ(n+1)(p, k1, . . . , kn), (157)

(a∗(g)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

g(k`)Ψ
(n−1)(k1, . . . , k`−1, k`+1, . . . , kn).(158)

These expressions can be used to define a(g), a∗(g) for g ∈ L2(Rd). Since these
operators leave Γfin(h) invariant, one can compute on this domain:

[a(f), a∗(g)] = 〈f, g〉1 (159)

for f, g ∈ L2(Rd). (Formally, this follows from [a(p), a∗(q)] = δ(p− q)).
Now we are ready to define canonical fields and momenta: Let µ : Rd 7→ R+ be

positive, measurable function of momentum s.t. if f ∈ S(Rd) then µ1/2f, µ−1/2f ∈
L2(Rd). (Examples: µ(p) = 1, µm(p) =

√
p2 +m2, m ≥ 0). We set for f, g ∈

S(Rd)

ϕµ(f) :=
1√
2

(
a∗(µ−1/2f̂) + a(µ−1/2 ˆ̄f)

)
, (160)

πµ(g) :=
1√
2

(
a∗(iµ1/2ĝ) + a(iµ1/2 ˆ̄g)

)
, (161)

where f̂(p) := (Ff)(p). For µ := µm this is the canonical field and momentum
of the free scalar relativistic quantum field theory of mass m ≥ 0. From (159) we
have

[ϕµ(f), πµ(g)] =
1

2

(
− 〈iˆ̄g, f̂〉+ 〈 ˆ̄f, iĝ〉

)
=
i

2
(〈ˆ̄g, f̂〉+ 〈 ˆ̄f, ĝ〉) = i〈f̄ , g〉, (162)

where in the last step we made use of Plancherel theorem and

〈ḡ, f〉 =

∫
ddx g(x)f(x) = 〈f̄ , g〉. (163)
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Remark 1.62 Note that (160), (161) arise by smearing the operator-valued dis-
tributions:

ϕµm(x) =
1

(2π)d/2

∫
ddk√

2µm(k)

(
e−ikxa∗(k) + eikxa(k)

)
, (164)

πµm(x) =
i

(2π)d/2

∫
ddk

√
µm(k)

2

(
e−ikxa∗(k)− eikxa(k)

)
. (165)

Consider a unitary operator u on h. Then, its ’second quantization’ is the
following operator on the Fock space:

Γ(u)|Γ(n)(h) = u⊗ · · · ⊗ u, (166)

Γ(u)Ω = Ω. (167)

where Γ(n)(h) is the n-particle subspace. We have the useful relations:

Γ(u)a∗(h)Γ(u)∗ = a∗(uh), Γ(u)a(h)Γ(u)∗ = a(uh). (168)

(Note that a∗(h)∗ = a(h)).
Consider a self-adjoint operator b on h. Then, its ’second quantization’ is the

following operator on the Fock space:

dΓ(b)|Γ(n)(h) =
n∑
i=1

1⊗ · · · b · · · ⊗ 1, (169)

dΓ(b)Ω = 0. (170)

Suppose that b = b(k) is a multiplication operator in momentum space on h =
L2(Rd). Then as an equality of quadratic forms on D ×D we have

dΓ(b) =

∫
ddk b(k)a∗(k)a(k). (171)

Moreover, suppose that U(t) = eitb. Then

Γ(U(t)) = eitdΓ(b). (172)

1.3.2 Representations of the Weyl algebra

Now we are ready to define several representatons ofW on Γ(h). We set D = S(Rd)
and σ(f, g) := Im 〈f, g〉 with standard scalar product in L2(Rd):

Definition 1.63 Let µ be as above. The corresponding Fock space representation
of W is given by

ρµ(W (f)) = ei(ϕµ(Re f)+πµ(Im f)). (173)

In terms of creation and annihilation operators, we have

ρµ(W (f)) = e
i√
2

(a∗(f̂µ)+a(f̂µ))
, (174)

where f̂µ(p) := (µ−
1
2 R̂ef + iµ

1
2 Îmf)(p). Note that for µ = 1 we have f̂µ(p) = f̂(p)

and thus we reproduce Examples 1.60,1.61.
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Theorem 1.64 Representations ρµm are faithful, irreducible and ρµm1
is not uni-

tarily equivalent to ρµm2
for m1 6= m2. (So Stone-von Neumann uniqueness theo-

rem does not hold for systems with infinitely many degrees of freedom).

Proof. See Theorem X.46 of [7].

1.3.3 Symmetries

Symmetries are represented by their automorphic action on the algebra.

Definition 1.65 Let (D, σ) be a symplectic space. A symplectic transformation S
is a linear bijection S : D → D s.t.

σ(Sf, Sg) = σ(f, g), f, g ∈ D. (175)

Note that S−1 is also a symplectic transformation.

Fact: Every symplectic transformation induces an automorphism of W according
to the relation:

αS(W (f)) = W (Sf), f ∈ D. (176)

Proposition 1.66 Let S be a symplectic transformation s.t. also ‖(̂Sf)µ‖ = ‖f̂µ‖.
(For µ = 1 this is just unitarity of S w.r.t. the scalar product in L2(Rd)). Then
there exists a unitary operator Uµ,S on Γ(h) s.t.

Uµ,Sρµ(W )U∗µ,S = ρµ(αS(W )), W ∈ W , (177)

and Uµ,SΩ = Ω. (Converse also true).

Proof. We skip the index µ. Since we know that W acts irreducibly on Γ(h), we
have that

D := { ρ(W )Ω |W ∈ W } (178)

is dense in Γ(h). On this domain we set

USρ(W (f))Ω = ρ(W (Sf))Ω, (179)

and extend by linearity to W . By invertibility of S this has a dense range. We
check that it is an isometry on this domain. For this it suffices to verify

〈USρ(W (f))Ω, USρ(W (g))Ω〉 = 〈ρ(W (f))Ω, ρ(W (g))Ω〉. (180)

We have

l.h.s. = 〈ρ(W (Sf))Ω, ρ(W (Sg))Ω〉 = 〈Ω, ρ(W (−Sf)W (Sg))Ω〉
= e

i
2

Im〈f,g〉〈Ω, ρ(W (S(g − f)))Ω〉, (181)
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where we made use of the fact that S is symplectic. Let us set h := S(g− f). We
have

〈Ω, ρ(W (h))Ω〉 = 〈Ω, e
i√
2

(a∗(ĥµ)+a(ĥµ))
Ω〉

= e−
1
2
‖ĥµ‖2〈Ω, e

i√
2
a∗(ĥµ)

e
i√
2
a(ĥµ)

Ω〉

= e−
1
2
‖ĥµ‖2 = e−

1
2
‖( ̂S(g−f))µ‖2 = e−

1
2
‖(ĝ−f)µ‖2

= r.h.s. of (180), (182)

where we used Baker-Campbell-Hausdorff (which can be justified by expanding
exponentials into convergent series) and the additional assumption on S.

Now the converse: suppose that αS is unitarily implemented in ρµ by a unitary
Uµ,S s.t. Uµ,SΩ = Ω. Then, in particular,

〈Ω, ρµ(W (Sf))Ω〉 = 〈Ω, ρµ(αS(W (f)))Ω〉
= 〈Ω, Uµ,Sρµ(W (f))U∗µ,SΩ〉 = 〈Ω, ρµ(W (f))Ω〉. (183)

Hence,

e−
1
2
‖(Ŝf)µ‖2 = e−

1
2
‖f̂µ‖2 (184)

which concludes the proof. �

1.3.4 Symmetries in the case µ = 1 (”non-local” quantum field)

We set D = S(Rd), 〈f, g〉 =
∫
ddxf(x)g(x), σ(f, g) = Im 〈f, g〉, m > 0.

• Note that any unitary u on h = L2(Rd), which preserves D, gives rise to a
symplectic transformation S = u|D.

• By Proposition 1.66, the automorphism induced by S is unitarily imple-
mented on Γ(h).

• A natural candidate for the implementing unitary is Γ(u).

1. Space translations: (Saf)(x) = f(x−a) (or (̂Saf)(p) = e−iakf̂(p)). Obviously

〈(Saf), (Sag)〉 =

∫
ddx f(x− a)g(x− a) = 〈f, g〉. (185)

(This implies that Sa is symplectic). The implementing unitary is U(a) =
Γ(e−ipa) = e−iadΓ(p), where ’p’ means the corresponding multiplication oper-
ator on L2(Rd, ddp). P := dΓ(p) =

∫
d3k ka∗(k)a(k) can be called the ’total

momentum operator’. Indeed by (168):

αa(W (f)) = W (Saf) = e
i√
2

(
a∗(e−iapf̂)+a(e−iapf̂)

)
= Γ(e−ipa)e

i√
2

(
a∗(f̂)+a(f̂)

)
Γ(e−ipa)∗. (186)
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2. Rotations: (SRf)(x) = f(R−1x), R ∈ SO(d).

〈(SRf), (SRg)〉 =

∫
ddx f(R−1x)g(R−1x) = 〈f, g〉 (187)

The implementing unitary is U(R) = Γ(uR), where (uRg)(x) = g(R−1x) is a
unitary representation of rotations on L2(Rd).

3. Time translations: (̂Stf)(p) = eitω(p)f̂(p) where ω(p) is a reasonable disper-
sion relation of a particle. Since we want to build a relativistic theory, we
set ω(p) =

√
p2 +m2, m > 0. Clearly:

〈(Stf), (Stg)〉 = 〈f, g〉. (188)

The implementing unitary is U(t) = Γ(eitω(p)) = eitdΓ(ω(p)), where

H := dΓ(ω(p)) =

∫
d3k ω(k)a∗(k)a(k), (189)

can be called the ’total energy operator’ or the Hamiltonian.

Remark 1.67 Note that ft := S−tf satisfies the Schrödinger equation:

i∂tft(x) = ω(−i∇)ft. (190)

4. Lorentz transformations

• Minkowski spacetime: (Rd+1, g), g = (1,−1,−1,−1).

• Lorentz group: L = O(1, d) = {Λ ∈ GL(1 + d) |ΛgΛT = g }
• Proper Lorentz group: L+ = SO(1, d) = {Λ ∈ O(1, d) | det Λ = 1 }

(preserves orientation).

• Ortochronous Lorentz group: L↑ = {Λ ∈ O(1, d) | eTΛe ≥ 0 }, where
e = (1, 0, 0, 0). (Preserves the direction of time)

• Proper ortochronous Lorentz group: L↑+ = L↑∩L+ is a symmetry group
of the SM of particle physics.

• The full Lorentz group consists of four disjoint components:

L = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
− (191)

For d = 3 they can be defined using time reversal T (t, x) = (−t, x) and
parity P (t, x) = (t,−x) transformations:

L↓+ = TPL↑+, L↑− = PL↑+, L↓− = TL↑+. (192)
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Now we set

(SΛf)(p) =

√
ω(Λ−1p)

ω(p)
f(Λ−1p), f ∈ D, (193)

where Λ−1p is defined by Λ−1(ω(p), p) = (ω(Λ−1p),Λ−1p). We have

〈(SΛf), (SΛf)〉 = 〈f, g〉. (194)

This can be shown (Homework) using that ddp
ω(p)

is a Lorentz invariant measure

(unique for a fixed m and normalization, see Theorem IX.37 of [7]). Formally∫
dd+1p̃ δ(p̃2 −m2)θ(p̃0)F (p̃) =

∫
ddp

2ω(p)
F (ω(p), p), (195)

where p̃ = (p0, p), p̃2 = (p0)2 − p2.

SΛ arises by restriction to D of a unitary representation uΛ of L↑+ acting on
h = L2(Rd) by formula (193). The implementing unitary is U(Λ) := Γ(uΛ).

5. Poincaré transformations: The (proper ortochronous) Poincaré group P↑+ =

Rd+1 o L↑+ is a set of pairs (x̃,Λ) with the multiplication:

(x̃1,Λ1)(x̃2,Λ2) = (x̃1 + Λ1x̃2,Λ1Λ2). (196)

It acts naturally on Rd+1 by (x̃,Λ)ỹ = Λỹ + x̃. (Here we set x̃ = (t, x)).

Note that (x̃,Λ) = (x̃, I)(0,Λ). Accordingly, we define

S(x̃,Λ) := Sx̃ ◦ SΛ = St ◦ Sx ◦ SΛ (197)

as a symplectic transformation on D corresponding to (x̃,Λ). We still have
to check if (x̃,Λ) 7→ αS(x̃,Λ)

is a representation of a group, that is whether

αS(x̃1,Λ1)
◦ αS(x̃2,Λ2)

= αS(x̃1,Λ1)(x̃2,Λ2)
. (198)

We use the fact that all these automorphisms can be implemented in the
(faithful) representation ρµ=1. We have

ρ1(α(x̃,Λ)(W (f))) = ρ1

(
W (S(x̃,Λ)f)

)
= ρ1

(
W (St ◦ Sx ◦ SΛf)

)
= U(t)U(x)U(Λ)ρ1

(
W (f)

)(
U(t)U(x)U(Λ)

)∗
(199)

To verify (198) it suffices to check that

U(x̃,Λ) := U(t)U(x)U(Λ) = Γ(eiω(p)t)Γ(e−ipx)Γ(uΛ)

= Γ(eiω(p)te−ipxuΛ) (200)

is a unitary representation of P↑+ on Γ(h). For this it suffices that

u(x̃,Λ) = eiω(p)te−ipxuΛ (201)

is a unitary representation of P↑+ on h = L2(Rd). (Homework).
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Summing up, for any m > 0 we have a representation P ↑+ 3 (x̃,Λ) 7→ α
(m,µ=1)
(x̃,Λ) of

the Poincaré group in AutW . In the representation ρµ=1 automorphisms α(m,µ=1)

are unitarily implemented by a representation P ↑+ 3 (x̃,Λ) 7→ U(x̃,Λ).

Nevertheless, (W , α(m,µ=1), ρµ=1) does not give rise to a decent (local) relativis-
tic QFT. Problem with causality:

• W (f), suppf ⊂ O should be an observable localized in an open bounded
region O ⊂ Rd at t = 0.

• αt(W (f)) should be localized in {O + |t|~n , |~n| = 1} in a causal theory.

• However, αt(W (f)) = W (Stf), (̂Stf)(p) = eiω(p)tf̂(p) thus Stf is not com-
pactly supported. (Infinite propagation speed of the Schrödinger equation).
In fact, since eiω(p)t is not entire analytic (cut at p = im), its inverse Fourier
transform cannot be a compactly supported distribution (see Theorem IX.12
of [7]).

1.3.5 Symmetries in the case µ(p) =
√
p2 +m2 (”local” quantum field)

We set D = S(Rd), 〈f, g〉 =
∫
ddxf(x)g(x), σ(f, g) = Im 〈f, g〉.

• Recall that we need symplectic transformations S s.t. ‖(Sf)µ‖ = ‖fµ‖,
where f̂µ(p) := (µ−

1
2 R̂ef + iµ

1
2 Îmf)(p).

• Note that ‖(Sf)µ‖ = ‖fµ‖ does not imply in this case that S is symplectic.

• Strategy: Take the unitary u on h corresponding to a given symmetry (which
we know from µ = 1 case) and find S s.t. ufµ = (Sf)µ. Then check that S
is symplectic.

1. Space translations: We have R̂e(Saf)(p) = ŜaRef(p) = e−iapR̂ef(p) and

analogously for Im. Thus (̂Saf)µ(p) = e−iapf̂µ(p) and therefore ‖(̂Saf)µ‖ =

‖f̂µ‖ so the symmetry is unitarily implemented. The implementing unitary
is the same as in the µ = 1 case.

2. Rotations: Again ̂Re(SRf)(p) = ŜRRef(p) = uRR̂ef(p) and analogously for
Im. Since µ is rotation invariant (depends only on p2), we have uRµ(p)u∗R =

µ(p) and therefore ŜRfµ(p) = (uRf̂µ)(p). Thus ‖(̂SRf)µ‖ = ‖f̂µ‖ so the
symmetry is unitarily implemented. The implementing unitary is the same
as in the µ = 1 case.

3. Time translations: First note that (̂S ′tf)(p) = eitω(p)f̂(p) does NOT satisfy
the additional condition. For example, for f real we have

(̂S ′tf)µ(p) =
(
µ−

1
2 (p) cos (ω(p)t) + iµ

1
2 (p) sin (ω(p)t)

)
f̂(p). (202)
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The L2 norm of this (S ′tf)µ does depend on t. (Thus αS′t is not implemented
in this representation by unitaries preserving the vacuum).

Instead, we consider the following group of transformations:

(Stf)(x) = (cos(tµ) + iµ−1 sin(tµ))Re f(x)

+i(cos(tµ) + iµ sin(tµ))Im f(x). (203)

Think of µ as a function of p2 = −∇2
x. Thus we can compute real and

imaginary parts as for functions:

Re (Stf) = cos(tµ)Re f − µ sin(tµ)Im f, (204)

Im (Stf) = µ−1 sin(tµ))Re f + cos(tµ)Im f (205)

This is a symplectic transformation

σ(Stf, Stg) = 〈Re (Stf), Im(Stg)〉 − (f ↔ g) (206)

We note that terms involving Re fRe g and Im f Im g cancel because are
invariant under (f ↔ g). The remaining two terms give

σ(Stf, Stg) = 〈cos2(tµ)Re f, Im g〉 − 〈sin2(tµ)Im f,Re g〉 − (f ↔ g)

= 〈Re f, Im g〉 − 〈Im f,Re g〉 = σ(f, g). (207)

Next, we check ‖(Stf)µ‖ = ‖fµ‖:

(Stf)µ = µ−
1
2 Re (Stf) + iµ

1
2 Im (Stf)

=
(

cos(tµ) + i sin(tµ)
)(
µ−

1
2 Re f + iµ

1
2 Im f

)
= eiµtfµ. (208)

Hence clearly ‖(Stf)µ‖ = ‖fµ‖ and this group of automorphisms is unitarily
implemented on Fock space by unitaries preserving the vacuum. They are
given by U(t) = Γ(eiµt) = eidΓ(µ(p)). Thus the Hamiltonian is dΓ(µ(p)) =∫
ddk µ(k)a∗(k)a(k).

Remark 1.68 Note that ft := (Stf) in (203) is the unique solution of the
Klein-Gordon equation:

(∂2
t −∇2

x +m2)ft(x) = 0 (209)

with the initial conditions ft=0(x) = f(x) and (∂tf)t=0(x) = (∇2
x−m2)Im f(x)+

iRe f(x). In contrast to the Schrödinger equation, KG equation has fi-
nite propagation speed: If suppft=0, supp ∂tft=0 ⊂ O then supp ft ⊂ {O +
|t|~n , |~n| = 1}. This theory has good chances to be local.

4. Lorentz transformations: There exist symplectic transformations SΛ which
satisfy ‖(SΛf)µ‖ = ‖(SΛ)µ‖ and preserve localization (for f ∈ C∞0 (Rd) we
have (SΛf) ∈ C∞0 (Rd)) (Homework).
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5. Poincaré transformations: For (x̃,Λ) ∈ P↑+ we define

S(x̃,Λ) := Sx̃ ◦ SΛ = St ◦ Sx ◦ SΛ (210)

as a symplectic transformation on D corresponding to (x̃,Λ). Obviously,
‖(S(x̃,Λ)f)µ‖ = ‖fµ‖, since the individual factors satisfy this. (We note that
Sx is as in the µ = 1 case but St, SΛ are different). The proof that (x̃,Λ) 7→
αS(x̃,Λ)

is a representation of a group goes as in µ = 1 case, exploiting that
these automorphisms are implemented on Fock space by the same group of
unitaries as in the µ = 1 case.

Summing up, for any m ≥ 0 we have a representation P ↑+ 3 (x̃,Λ) 7→ α
(m)
(x̃,Λ)

of the Poincaré group in AutW . In the representation ρµm automorphisms α(m)

are unitarily implemented by the representation P ↑+ 3 (x̃,Λ) 7→ U(x̃,Λ), the same
as in the µ = 1 case. Time evolution is governed by the KG equation which has
finite propagation speed and Lorentz transformations act locally: we expect that
(W , α(m), ρµm) gives rise to a local (causal) relativistic QFT.

1.3.6 Spectrum condition (positivity of energy)

In this subsection we study the spectrum of the group of unitaries on Γ(h) im-
plementing translations in ρµ, µ =

√
p2 +m2. (The discussion below is equally

valid for ρµ=1 since µm(p) = ω(p), hence unitaries implementing translations are
the same in both representations).

U(t, x) = eiHt−iPx = eidΓ(µ(p))t−idΓ(p)x (211)

H,P 1, . . . , P d is a family of commuting s.a. operators on Γ(h). Such a family has
a joint spectral measure E: Let ∆ ∈ Rd+1 be a Borel set and χ∆ its characteristic
function. Then E(∆) := χ∆(H,P 1, . . . , P d). The joint spectrum of H,P 1, . . . , P d,
denoted Sp (H,P ) is defined as the support of E. Physically, these are the mea-
surable values of total energy and momentum of our system.

Theorem 1.69 Sp (H,P ) ⊂ V +, where V + = { (p0, p) ∈ Rd+1 | p0 ≥ |p| } is the
closed future lightcone.

Proof. We have to show that for ∆ ∩ V + = ∅, ∆ bounded Borel set, we have
E(∆) = 0. Let χε∆ ∈ C∞0 (Rd+1) approximate χ∆ pointwise as ε → 0. (This
regularization is needed because the Fourier transform of a sharp characteristic
function may not be L1). Note that χ∆(H,P ) leaves Γ(n)(h) invariant, thus it
suffices to show that its matrix elements vanish on these subspaces. We have for
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Ψ,Φ ∈ Γ(n)(h):

〈Ψ, χ∆(H,P )Φ〉
= lim

ε→0
〈Ψ, χε∆(H,P )Φ〉

= lim
ε→0

(2π)−
(d+1)

2

∫
dt dx〈Ψ, U(t, x)Φ〉χ̌ε∆(t, x)

= lim
ε→0

(2π)−
(d+1)

2

∫
dt dx

∫
dndp (Ψ · Φ)(p1, . . . , pn)ei(p̃1+···+p̃n)·x̃χ̌ε∆(t, x)

=

∫
dndp (Ψ · Φ)(p1, . . . , pn)χ∆(p̃1 + · · ·+ p̃n), (212)

where we made use of Fubini and dominated convergence. Note that p̃ = (µ(p), p) ∈
V + for all p ∈ Rd. Since V + is a cone, also p̃1 + · · · + p̃n ∈ V +. Thus the last
expression is zero if ∆ ∩ V + = ∅. �

Remark 1.70 In the proof above we used the following conventions for the Fourier
transform on Rd+1:

f̂(p0, p) := (2π)−
(d+1)

2

∫
ddxdt eip

0t−ipxf(t, x), (213)

f̌(t, x) := (2π)−
(d+1)

2

∫
ddpdp0 e−ip

0t+ipxf(p0, p). (214)

A more detailed analysis of the spectrum exhibits that

• for m > 0

Sp (H,P ) = {0} ∪ {Hm} ∪G2m, where (215)

Hm := { (p0, p) ∈ Rd+1 | p0 =
√
p2 +m2}, (216)

G2m := { (p0, p) ∈ Rd+1 | p0 ≥
√
p2 + (2m)2}. (217)

{0} is a simple eigenvalue corresponding to the vacuum vector Ω. Hm is called
the mass hyperboloid. The corresponding spectral subspace E(Hm)Γ(h) sat-
isfies

E(Hm)Γ(h) = Γ(1)(h) = h. (218)

Thus it is invariant under (x̃,Λ) 7→ U(x̃,Λ). In fact it carries the familiar
irreducible representation of u(x,Λ) given by (201). According to Wigner’s
definition of a particle, E(Hm)Γ(h) describes single-particle states of a par-
ticle of mass m and spin 0. G2m can be called the multiparticle spectrum.
(PICTURE).

• For m = 0 we have

Sp (H,P ) = V+. (219)

Again, there is a simple eigenvalue at {0} (embedded in the multiparticle
spectrum) which corresponds to the vacuum vector Ω. Hm=0 is the boundary
of V+. The subspace E(Hm=0)Γ(h) = h carries states of a single massless
particle of mass zero.
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