
International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

DOI : 10.5121/ijnsa.2012.4504 43

A FRAMEWORK FOR PERFORMANCE EVALUATION
OF ASIPS IN NETWORK-BASED IDS

Majid Nezakatolhoseini1 and Mohammad Amin Taherkhani2

1Department of Computer and Mechatronic, Science and Research Branch Islamic Azad
University, Tehran, Iran

m.nezakat@srbiau.ac.ir
2Department of Computer Engineering, Shahid Beheshti University, Tehran, Iran

m_taherkhani@sbu.ac.ir

ABSTRACT

Nowadays efficient usage of high-tech security tools and appliances is considered as an important
criterion for security improvement of computer networks. Based on this assumption, Intrusion Detection
and Prevention Systems (IDPS) have key role for applying the defense in depth strategy. In this situation,
by increasing network bandwidth in addition to increasing number of threats, Network-based IDPSes
have been faced with performance challenge for processing of huge traffic in the networks. A general
solution for this bottleneck is exploitation of efficient hardware architectures for performance
improvement of IDPS. In this paper a framework for analysis and performance evaluation of application
specific instruction set processors is presented for usage in application of attack detection in Network-
based Intrusion Detection Systems(NIDS). By running this framework as a security application on V850,
OR1K, MIPS32, ARM7TDMI and PowerPC32 microprocessors, their performance has been evaluated
and analyzed. For performance improvement, the compiler optimization levels are employed and at the
end; base on O2 optimization level a new combination of optimization flags is presented. The experiments
show that the framework results 18.10% performance improvements for pattern matching on ARM7TDMI
microprocessors.

KEYWORDS

Intrusion Detection, Hardware Architecture, Network based IDS, ASIP, Optimization in Compiler level

1. INTRODUCTION

More than three decades has been passed from introducing of network surveillance concept as a
basic idea for intrusion detection systems by James Anderson [1] in 1980. After this start point,
Denning [2] presented the first model of IDS and caused the researches on intrusion detection
were accelerated in next years. The evolution of intrusion detection systems is currently in a
state which this kind of security tool has become as an integral part of information technology
infrastructures.

In one hand, network infrastructures have been growing in recent years and this causes
increasing the network traffic. On the other hand, reports from Computer Security Incident
Response Teams (CSIRT) show that the number of threats and also complexity of attacks have
been dramatically increased [3]. Based on these conditions, NIDS have faced with the challenge
of real-time processing of huge network traffic. A general solution for overcoming to this
challenge is exploitation of hardware accelerated architectures. Deferent kinds of hardware
platforms including General Purpose Processors (GPP), FPGA and Application Specific
Instruction-set Processors (ASIP) and Application Specific Integrated Circuits (ASIC) have
been used for improvement of NIDS performance.

mailto:nezakat@srbiau.ac
mailto:m_taherkhani@sbu.ac

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

44

In this research, a framework is proposed containing expandable and efficient microprocessors
for implementation of NIDS. Development of this framework is due to: 1) flexibility in system
reconfiguration and 2) performance improvement. Note that the networks are vulnerable to new
attack patterns, so updating the attack patterns in NIDS is inevitable. According to this
limitation, it is very dramatic for many hardware platforms to compatible with this requirement.
Based on this challenge we attempt to provide a framework for implementation of performance-
critical section of intrusion detection engine on ASIPs as a flexible, reusable, high-performance
and low cost platform.

The contribution of this paper is listed as follow:

 A taxonomy of hardware architectures for network-based IDS is presented.

 A framework for performance evaluation of popular microprocessors is proposed.

 A new combination of compiler optimization flags has been introduced.

The paper is organized as follow: In section 2, related researches have been reviewed and a
taxonomy of hardware architecture for NIDS is introduced. The proposed framework is
presented in section 3. Section 4 describes the optimization levels in compiler. In section 5,
Implementation and experimental results are shown and finally section 6 concludes this paper.

2. TAXONOMY OF RELATED WORKS

In this section, the researches which focused on high-performance IDPS, have been classified.
Based on the classification, a taxonomy of hardware architecture for NIDS has been presented.
The taxonomy is shown in Figure 1. As shown in the Figure 1. the hardware architectures can
be reviewed based on two deferent viewpoints: presented hardware platforms and proposed
structures.

Figure 1. A Taxonomy of hardware architectures for high performance NIDS

2.1. Hardware Platforms

The taxonomy of hardware architectures is started by classification of pervious researches in
viewpoint of hardware platforms.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

45

As shown in the Figure 1. , NIDS hardware platforms could be divided in two subcategories
based on number of processing elements required to perform the overall or specific functionality
of NIDS. Considering the future architecture could be mapped to multiple cores, the pervious
architectures are classified in the single processing core. In [4] Paxson et. al. a multi-core
architecture is proposed for concurrent execution of network event processing. Also, in [5]
parallel design has been presented by using heterogeneous platform based on multi-core CPU in
addition to Graphical Processing Units (GPU).

Single Core platforms could be classified in the following sub-categories:

2.1.1. General Purpose Processor

In general, all software based implementation of network intrusion detection systems are
classified in this category. In this group, there are some NIDSs which run in user land. Many
open source network intrusion detection systems such as Snort [6] and Bro [7] are in the user
space and as a result are classified in this category.

In behavioural viewpoint, many classic algorithms and general techniques for pattern matching
and regular expression matching in NIDSs are used to implement on a general purpose
processor. Primitive versions of snort used Booyer-Moore algorithm [8] and the newer version
uses an algorithm based on aho-corasick [9] approach.

2.1.2. FPGA

Performance requirement and need for reconfigurable platforms (due to NIDS rule changes)
cause many researches focused on FPGA as a platform for their IDS designs. The proposed
structures in [10,11,12] are implemented on FPGA platform. In addition, the intrusion detection
system introduced by Katashita et al. [13] is implemented on FPGA. Although some researches
such as [10] discussed their structure could be implementable on the other platforms such as
general purpose processors or ASIC, but their result and evaluation is based on FPGA
platforms. Another interesting feature of FPGA platforms is reconfigurable capability which
motivates the researches to implement their solution on this platform.

2.1.3. Application Specific

In addition to general purpose processors and FPGA platforms, we could name a platform,
which is used for specific application such as network inspection and intrusion detection. In a
top level of this category, there are application specific instruction-set processors (ASIPs). In
[14] an architecture is proposed with the name of Keyword Match Processor. However, a FPGA
is used for simulation and initial implementation the architecture. On the other side of platforms
in the application specific spectrum, there are Application Specific Integrated Circuits (ASICs)
which are designed to operate IDS functionality. The most important advantage of this platform
is performance satisfaction and low power properties. Similar to multi cores platforms, there is a
critical gap in pervious researches which capable to analysis and synthesis an efficient
architecture on application specific platforms.

Recently benefits of exploitation of processing power in Graphical Processing Unit (GPU) are
considered for performance critical applications in network security, especially network based
intrusion detection and prevention systems [15,16]. This kind of platform can also be considered
in the application specific category.

2.1.4. Embedded Modules

In addition to above platforms, in some related works different hardware modules are proposed
to implement a specific component of NIDS. Memory is one of interesting embedded modules

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

46

in those works. Bloom filters in [17] are example of the structures which mapped to internal and
external memories to improve pattern matching effectiveness. Also the proposed structure in
[18] is implemented on static memories.

In addition to general purpose memories, Content Addressable Memories (CAM) became an
important hardware module to improve the IDS performance. CAM modules had been used in
other network services such as IP forwarding and packet classification in routers and other
network devices [19]. An advantage of CAM based platforms is parallel search capability [20].
Therefore, in some solutions for IDS pattern matching is used CAM structures to improve the
required performance. Although CAM platform have some problems to handle arbitrary pattern
matching, but some researches have attempted to propose techniques to solve the problems.
CAM based architectures are classified in the following categories:

 Binary CAM: Each cell in a binary CAM could be 0 or 1. In comparison to Ternary
CAM this module have less flexible and there are rare works such as [21] which uses
this platform to handle pattern matching in intrusion detection systems [22].

 Ternary CAM: Each cell in a ternary cam could be in 0, 1 or don't case (x) state. The
latter state is useful for matching of case insensitive patterns. In [22] this technique is
used to improve the speed of matching in IDS and Antivirus services. In [23] a TCAM
based platform is presented which capable of matching multi state regular expressions
in minimum records of Ternary CAM.

2.2. Structures

The hardware architectures for acceleration of application of deep packet inspection in intrusion
detection systems could also be categorized from view point of structure. As shown in figure 1,
the structures are proposed because of two kinds of concerns: Pattern Matching and Regular
Expression Matching.

2.2.1. Structures for Pattern Matching

In general, the pattern matching problem is describes as follow: to finding a non-null set of
patterns {p0, p1, …, pn} in an input sequence S. Whenever any of patterns is found in the input
sequence, a match is occurred. The extended version of pattern matching (for matching multiple
patterns with offset) is used in engine of many network based IDS. This type of pattern
matching is a time-consuming component. As a result, many researches have been studied on
acceleration of pattern matching as an important component of Network based intrusion
detection systems [23].

Generally, related researches on pattern matching can be categorized in the following structures:

 Automaton based structures: The main concern in the following researches is the
pattern matching and their structures are based on state automata. Some of these are as
follows: In [24], a GB pattern matching tool that supports fully TCP/IP network has
been described. This system divides TCP/IP stream to sub-streams and distributes the
load to several pattern matching units which use Deterministic Finite state machine
(DFSM) pattern matching. When the number of rules increases, the number of states
required to implement methods based on DFA is significantly increased. This can lead
to reduce the performance of these systems. Tan et al. in [10] proposed state automata
known as Bit-split finite state machine to improve the performance of intrusion
detection systems. In addition, TDP-DFA [25], CDFA [26] can be categorized in
automaton based structures.

 Lookup tables based: Lookup table based structures was introduced to improve
performance of pattern matching techniques in intrusion detection process. The main

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

47

idea behind usage of these structures is reservation of patterns in table with specific
format and in the next step parallel search is executed. The research which used lookup
tables structures, is classified in two subcategories:

o Raw Table Structure

o Hash Table Structure

In the first subcategory, generally the unrefined pattern is stored into tables. Although
in some cases the pattern may be split to fit in table rows, but the content of patterns
not to be changed. The work discussed in [22] is an instance of researches classified in
raw table structure category.

In the second subcategory, content of patterns are refined and modified using specific
hash functions. Then the modified patterns are stored in reference table. Bloom filters
are categorized to this kind of structure. The Bloom filters [27] as an efficient estimate
memory have been used in the field of research related to pattern matching in intrusion
detection. Bloom filters use a random technique for testing membership queries in the
set of strings. Predefined set of signatures that have been grouped according to their
length are stored in set of parallel Bloom filters in the form of hardware. Each of these
Bloom filters includes the special length signatures.

 BDD based: The third class in pattern matching solutions describes Binary Decision
Diagram (BDD) based structures. In [28] a pattern matching engine is proposed based
on BDD structures. In their methodology, raw patterns extracted from attack
signatures, in the next phase the extracted patterns are converted to Boolean
expressions. The next phase in their methodology discusses transformation of BDD to
ROBDD. Then, they have attempted to partition and optimized the compound BDD.
The resulted structure is implemented into content addressable memories.

2.2.2. Structures for Regular Expression Matching

Recently, increasing complexity of attacks against network resources causes intrusion detection
systems have to use regular expressions (RE) for describing the attack signatures. This change
caused RE matching to become a critical bottleneck for engine of NIDS. Usually, Deterministic
Finite state Automaton (DFA) and Nondeterministic Finite state Automaton (NFA) are used for
analysis of regular expressions. Traditional or uncompressed DFA problems which are
mentioned above lead to other DFA including compressed DFA, D2FA [29], CD2FA [30] and
PDFA [31] with the aim of maintaining a minimum throughput of uncompressed or traditional
DFA and reduction of memory space as well, are presented one after another.

In most of the researches for RE matching traditionally have been attempted to process regular
expressions as a raw input have been tried to optimized the NFA or DFA structures. But in [23],
an architecture has been proposed which is capable of detecting attack signatures (containing
patterns and RE) without using complex RE-dependent NFA or DFA structures. The proposed
architecture has fixed automata for analyzing the application protocols and other required
features can be effectively compared in table structures.

However GPP-based architectures are more flexible and more reusable in comparison with other
hardware architectures, but this kind of platform suffers from performance limitation. Design of
efficient ASIP is a shortcut to overcome this limitation and use the benefits of flexibility and
reusability of processors. In the next section, a framework is presented for analyzing and
performance evaluation of a set of popular ASIPs for development of efficient Network based
Intrusion Detection System.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

48

3. PROPOSED FRAMEWORK

For performance evaluation of V850, OR1K, MIPS32 from MIPS series, ARM7TDMI from
ARM series and PowerPC32 from PowerPC microprocessors a framework is required. Figure 2.
illustrates the proposed framework and its work flow.

Figure 2. IDS proposed framework and execution phases

This framework consists four main modules: Attack signatures, Input traffic, Intrusion detection
application, and output.

Attack signatures module – As mentioned in previous section, Snort is one of a software IDS
that has a huge database of rules an attack signatures. This database is used in the attack
signature module.

Input traffic module – Special network traffic is required for applying to the framework and
extracting the results. By the same input traffic the results can be compared with each other.

Intrusion detection application module – This module has two parts. The first one is Search tree
and the second one is Search engine. Based on Snort database, an Aho-Corasick search tree is
created in this part. Aho-Corasick string matching algorithm is a string search algorithm
(Important class of string algorithm which attempts to find the location of one or several strings
that are named pattern in the longer string or text) which was invented by Alfred V. Aho and
Margaret J. Corasick [32] in 1975. The search complexity of T[1 . . . m] with the Aho-Corasick
automaton is O(m + z) that z is the number of occurred patterns in T. Because of linear search
that increases the search speed, Aho-Corasick automaton is used in this research. In [33], all of
the documents for data structure, files and functions of Aho-Corasick are available in summary.
Search engine part has three duties. First is getting the input traffic and the second is applying
this traffic to the Search tree and receiving the result of finding or not finding the attack pattern
and the third is sending the result and some more information about the input traffic to Output
module.

Output module – If there is a definite attack pattern in input packet payload, a report is recorded
for the occurred attack in an output file.

4. OPTIMIZATION

A compiler is likely to perform many or all of the following operations: lexical analysis,
preprocessing, parsing, semantic analysis (Syntax-directed translation), code generation, and
code optimization.

In this research, code optimization as one of the compiler operations is used for increasing the
performance.

Input
Traffic

2

Intrusion Detection
Application

Search Tree

Search Engine

3 4

Attack
Signatures

Output

1
2
2

5

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

49

Compilers bridge source programs in high-level languages with the underlying hardware. A
compiler requires 1) determining the correctness of the syntax of programs, 2) generating
correct and efficient object code, 3) run-time organization, and 4) formatting output according
to assembler and/or linker conventions. A compiler consists of three main parts: the frontend,
the middle-end, and the backend [34].

The front end checks whether the program is correctly written in terms of the programming
language syntax and semantics. The middle end is where optimization takes place. The back end
is responsible for translating the Intermediate Representation (IR) from the middle-end into
assembly code.

This front-end/middle/back-end approach makes it possible to combine front ends for different
languages with back ends for different CPUs. Practical examples of this approach are the GCC,
LLVM, and the Amsterdam Compiler Kit, which have multiple front-ends, shared analysis and
multiple back-ends.

4.1. GCC

The GCC is a compiler system produced by the GNU Project supporting various programming
languages.

GCC has been ported to a wide variety of processor architectures, and is widely deployed as a
tool in commercial, proprietary and closed source software development environments. GCC is
also available for most embedded platforms, for example Symbian (called gcce), AMCC and
Freescale Power Architecture-based chips [35].

GCC 1.0 which only handled the C programming language was released in 1987, and the
compiler was extended to compile C++ in December of that year. Front ends were later
developed for Fortran, Pascal, Objective-C, Java, and Ada, among others. The current stable
version of GCC is 4.6.1, which was released on June 27, 2011.

4.2. Optimization with GCC Predefined Optimization Levels

Optimizations in GCC are done by the flags that use in gcc command line. –f<optimization
name> is used for activating a flag and –fno–<optimization name> is used for deactivating a
flag in command line. The GCC also has its own predefined levels of optimization [36] which
begin with –O and include: –O or –O1, –O2, –O3, –O0 and –Os.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Open Virtual Platform (OVP) [37] is a fast simulation with open source and free resource model
and has Application Program Interfaces (API). The focus of OVP is to accelerate the adoption
of the new way to develop embedded software, especially for System-on-Chip (SoC) and
Multiprocessor System-on-Chip (MPSoC) platforms. OVP uses libraries of processor and
behavioral models, and APIs for building the own processors, peripherals and platforms. OVP is
flexible and is free for noncommercial usages. This simulation is a product of 2008 and used in
this research.

The implementation of each proposed framework module is explained below.

Implementation of Attack signatures module – Special format is used for writing the attack
signatures in Snort. These signatures are divided to rule header and rule options sections
logically [38]. Rule header includes rule operation, protocol, source and destination IP addresses
and their netmask and source and destination port information. Rule option section includes
alert messages and information that should be considered about some parts of packet. 15597
Snort rules are used in this research.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

50

Implementation of Input traffic module – The Cyber Systems and Technology Group of MIT
Lincoln Laboratory, under Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory sponsorship, has collected and distributed the first standard corpora
for evaluation of computer network intrusion detection systems [39]. The 1998 DARPA
evaluation was designed to find the strength and weaknesses of existing approaches and lead to
large performance improvements and valid assessments of intrusion detection systems. This
research uses five hundred thousand packets from simulation output traffic of the third week on
Thursday, Lincoln Laboratory in 1999.

Implementation of Intrusion detection application module – This module was written in C
programming language. In creating the search tree, according to attack rules in Snort that are
divided to four sections consist of TCP, IP, ICMP and UDP based on their protocols, four
search tree are made with the same names. Next, by calling the Create_Aho_Tree, reading the
attack rules which already were downloaded from Snort.org site are started from *.rules files. In
search engine, darpa_traffic function is called for inspecting the incoming traffic. This function
reads the packets and then acquires the payload of them and determines their protocols,
including ICMP, IP, TCP and UDP. By calling ahocorasick_KeywordTree_search _helper
function, the packet payload is searched in corresponding tree. In this projects, only 6 (content,
nocase, offset, depth, distance and within) of 37 rule options are examined.

Implementation of Output module – An output text file is created in this module that includes a
report of attacks. This report includes source and destination IP addresses, source and
destination ports, the packet payload and alert message of found attack signature in packet.

In this research, version 2/23/2011 of OVP simulator program is used on a laptop with
Windows XP SP2, 1.60 GHz CPU and 512 MB RAM. The simulation has used the basic
microprocessors without cache and pipeline. All microprocessors have the same nominal speed,
and are equal to 100 MHz.

Execution of intrusion detection application on V850 is encountered message “Heap and stack
collision” because of memory shortage so this microprocessor is ignored. Figure 3. illustrates
the number of assembly instructions than the number of incoming packets for each
microprocessor.

Figure 3. Execution graph of intrusion detection application on four microprocessors

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

51

When there aren’t any incoming packets, the graph shows the number of assembly instructions
that are needed for making attack signature trees. However in making search tree section,
ARM7TDMI, MIPS32 and PowerPC32 have almost the same performance but gradually with
arrival of packets to the system, PowerPC32 microprocessor will be better. Because all of
microprocessors have the same speed (100 MHz) to execute the instructions so run-time of
intrusion detection application for five hundred thousand packets is explained in Table I. Run-
time of intrusion detection application in making search tree is not important because this tree is
made just for one time, so Table 1. just shows run-time of intrusion detection application
without the time that is needed for making search tree.

Table 1. Run-time of intrusion detection application for five hundred thousand packets.

Microprocessors Run-Time
PowerPC32 231.75 s
ARM7TDMI 280.95 s
MIPS32 404.66 s
OR1K 420.91 s

The performance of microprocessors are checked again for intrusion detection application but
this time the optimization levels –O1, –O2 and –O3 are used. These three optimization levels
reduce the run-time of applications. The performance is evaluated relative to the –O0 level
which is the level without optimization. –O0 level results were shown in Table 1.

Table 2. shows the performance percentage of microprocessors with optimization levels relative
to –O0 level.

Table 2. Performance increase percent of microprocessors by using predefined optimization
levels for five hundred thousand packets.

Microprocessors O1 to O0 O2 to O0 O3 to O0
PowerPC32 20.32 % 15.47 % 15.34 %
ARM7TDMI 11.91 % 13.57 % 13.41 %
MIPS32 8.23 % 8.89 % 8.78 %
OR1K 28.36 % 28.10 % 27.87 %

In order to increase performance, by focusing on ARM7TDMI microprocessor, it’s attempted to
increase the run-time of intrusion detection application on this microprocessor. For this purpose,
compiler improvement is used like the previous part.

As mentioned in Table 2. O2 level has the best functionality in the second section of intrusion
detection application (Searching attack signature in packet payloads) in ARM7TDMI. For
improving the performance, O2 level is intended as a baseline and by adding some other flags to
this level, a new combination is presented that works better than O2 level in ARM7TDMI.

As regards the intrusion detection application has too loops with many iteration and the long
jumps, first the flags in gcc that optimize the mentioned issues, are collected. By frequent
running the intrusion detection application in binary combination (O2 with another flag), triad
combination (O2 with two other flags) and so on, the following combination is obtained:

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

52

Table 3. shows the performance improvement (O2 to O0 and Offered to O0) for execution of
intrusion detection application in ARM7TDMI. According to Table 3, proposed combination
works 4.53 percent better than O2 level.

Table 3. Performance increase percent of ARM7TDMI microprocessor in O2 and offered level.

Optimization Level Improvement percentage to O0
O2 13.57 %
Offered 18.10 %

The use of compiler optimization levels will not always improve the performance. Using the C
functions, specially the functions that involve to string such as strcmp, strlen, strlwr and strstr in
the written IDS wasn’t increased more than 0.5% by predefined optimization levels. but with
eliminating mentioned functions (If it is possible) or rewriting them with loops and conditions
or using equivalent functions but with better performance led to performance range is putted in
8.23% to 28.36%. For example in the second part of intrusion detection application namely
inspecting the packet payloads, Boyer Moore algorithm was used instead of strstr that almost
works 50% better than it.

Unlike existent documents that know optimizing in O3 level is more than O1 and O2, this
research shows that optimization of these levels are not deterministic and depends on
application.

6. CONCLUSION

In this paper different kinds of hardware architectures for network based intrusion detection
systems have been reviewed. These architectures have been categorized based on hardware
platforms and the structures of hardware designs. The presented taxonomy shows the lack of
sufficient study on application specific instruction-set processor as a flexible, reusable, high
performance and low cost solution for deployment of NIDS.

In addition, a framework is presented for analyzing and performance evaluation of pattern
matching for intrusion detection on specific microprocessors including V850, OR1k, MIPS32,
ARM7TDMI and PowerPC32.

For optimization of execution time on the specific processors, different level of optimization
have been considered. This study shows that just by using the predefined optimization levels,
the performance of mentioned microprocessors can be increased between 8.23% to 28.36 which
is fairly substantial. This is important because optimization is performed with lower cost and
easier than other solutions such as hardware design changing. For more minimization of run
time of pattern matching application, a combination of compiler optimization flags is introduced
for ARM7TDMI. Offered optimization level improved run time of NIDS application around
18.10%.

-O2 -freduce-all-givs -fmove-all-movables -mcpu=arm7 -fnew-ra
-fno-expensive-optimizations -fno-force-mem
-fno-guess-branch-probability -fno-if-conversion2 -fno-crossjumping

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

53

REFERENCES

[1] J. P. Anderson, (1980) “Computer security threat monitoring and surveillance”, Technical report,
James P. Anderson Company, Fort Washington, Pennsylvania, April.

[2] D. Denning, (1987) “An intrusion-detection model”, IEEE Transactions on Software
Engineering 13 (2) 222-232.

[3] Zebo Peng, Eslab and LiTH, (2007) “Application Specific Instruction Processor Architecture”,
http://en. scientificcommons.org/zebo_peng .

[4] Jose M. Gonzalez , Vern Paxson , Nicholas Weaver, (2007) “Shunting: a hardware/software
architecture for flexible, high-performance network intrusion prevention”, Proceedings of the
14th ACM conference on Computer and communications security.

[5] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, (2011) “MIDeA: A Multi-Parallel Intrusion
Detection Architecture,” In Proc. CCS,.

[6] M. Roesch, (1999) “Snort - lightweight intrusion detection for networks”, In Proc. LISA99, the
13th Systems Administration Conference.

[7] V. Paxson, (1998) “Bro: a system for detecting network intruders in real-time”, In Proc. 7th
USENIX Security Symp., San Antonio, TX.

[8] R. S. Boyer and J. S. Moore, (1977) “A fast string searching algorithm”, Communications of
ACM, 20(10):761-772.

[9] V. Aho and M. J. Corasick, (1975) “Efficient string matching: An aid to bibliographic
search”, Communications of ACM, 18(6):333-340.

[10] L. Tan and T. Sherwood, (2005) “A high throughput string matching architecture for intrusion
detection and prevention”, In ISCA’05:32nd Annual International Symposium on Computer
Architecture, pp. 112-122.

[11] I. Sourdis, D. Pnevmatikatos, (2004) “Pre-decoded CAMs for efficient and high-speed pattern
matching”, Proc. FCCM.

[12] Z. K. Baker, V. K. Prasanna, (2004) “A Methodology for synthesis of efficient intrusion
detection systems on FPGAs”, Proc. FCCM.

[13] T. Katashita, Y. Yamaguchi, A. Maeda, and K. Toda, (2007) “FPGA based Intrusion
Detection System for 10 Gigabit Ethernet”, IEICE Transaction on Information and Systems, vol.
90, no. 12, pp. 1923-1931.

[14] L. Bu, J. A. Chandy, (2004) “FPGA based network intrusion detection using content
addressable memories”, Proc. FCCM.

[15] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos and S. Ioannidis, (2008) “Gnort:
High Performance Network Intrusion Detection Using Graphics Processors”, In Proc. 11th Int.
Symposium on Recent Advance in Intrusion Detection.

[16] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, (2010) “iNFAnt: Nfa pattern matching on
gpgpu devices”, ACM SIGCOMM Comput. Commun. Rev., 40:20–26.

[17] S. Dharmapurikar, J. W. Lockwood, (2006) “Fast and Scalable Pattern Matching for Network
Intrusion Detection Systems”, IEEE J. On Selected Areas in communication, vol. 24, no. 10.

[18] M. Aldwairi, T. Conte, P. Franzon, (2005) “Configurable string matching hardware for speedup
intrusion detection”, In Proc. ACM SIGARCH Computer Architecture News, vol. 33, no. 1, pp.
99-107.

[19] E. Spitznagel, D. Taylor, J.Turner, (2003) “Packet Classification Using Extended TCAMs”,
Proc. IEEE ICNP.

http://en

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

54

[20] K. Pagimatzis, A. Sheikholeslami, (2006) “Content-addressable memory (CAM) circuits
and architectures: A turorial and survey”, IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp.
712-727.

[21] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole and Vic Hogsett, (2002)
“Granidt: Towards Gigabit Rate Network Intrusion Detection”, In Proc. International
Conference on Field-Programmable Logic and its Applications (FPL).

[22] F. Yu, R. Katz, T. V. Lakshman, (2004) “Gigabit Rate Packet Pattern-Matching Using
TCAM”, In Proc. IEEE ICNP, pp. 174-183.

[23] M. A. Taherkhani, M. Abbaspour, (2009) “An Efficient Hardware Architecture for Deep Packet
Inspection in Hybrid Intrusion Detection Systems”, In Proc. 4th Int. Conf. on Communications
and Networking in China (ChinaCom09), August 26-28.

[24] J. Moscola, J. Lockwood, R.P. Loui, and M. Pachos, (2003) “Implementation of a Content-
Scanning Module for an Internet Firewall”, In Proceedings of FCCM.

[25] Hongbin Lu, K. Zheng, B. Liu, X. Zhang and Y. Liu, (2006) “A Memory-Efficient Parallel
String Matching Architecture for High Speed Intrusion Detection”, In IEEE Journal on Selected
Areas in Communications, Vol. 24, No.10.

[26] T. Song, D. Wang, (2011) “Another CDFA Based Multi-Pattern Matching Algorithm and
Architecture for Packet Inspection”, In Proc. of 20th Int. Conf. on Computer Communications
and Networks (ICCCN).

[27] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, (2003) “Implementation of a
Deep Packet Inspection Ciruit using Parallel Bloom Filters in Reconfigurable Hardware”, In
Proceedings of HOTi.

[28] S. Yusuf, W. Luk, (2005) “Biwise optimized CAM for Network Intrusion Detection Systems”,
IEEE FPL.

[29] S. Kumar et al, (2006) “Algorithms to Accelerate Multiple Regular Expressions Matching for
Deep Packet Inspection”, in ACM SIGCOMM'06, Pisa, Italy.

[30] S. Kumar, J. Turner, and J. Williams, (2006) “Advanced algorithms for fast and scalable deep
packet inspection”, in Proc. of ACM/IEEE Symposium on Architecture for Networking and
Sommunications Systems (ANCS’06). New York, NY, USA, ACM Press, pp. 81–92.

[31] J. Jiang, X. Wang, K. He, B. Liu, (2010) “Parallel Architecture for High Throughput DFA-Based
Deep Packet Inspection”, In Proc. of IEEE Int. Conf. on Communications (ICC), pp. 23-27.

[32] http://en.wikipedia.org/wiki/Aho-Corasick_algorithm

[33] Doxygen, (2004) “FFPT Reference Manual 1.3”, http://ffpf.sourceforge.net

[34] Compiler from Wikipedia, http://en.wikipedia.org/wiki/Compiler

[35] GNU Compiler Collection from Wikipedia, http://en.wikipedia.org/wiki/GNU_Compiler_
Collection

[36] Optimize Options - Using the GNU Compiler Collection(GCC), http://gcc.gnu.org/online
docs/gcc-4.1.1/gcc/Optimize-options.html

[37] OVP Simulation, http://www.ovpworld.org/aboutovp.php

[38] Sourcefire, Inc, (2010) “SNORT® Users Manual 2.9.0”, The Snort Project.

[39] http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html

http://en.wikipedia.org/wiki/Aho-Corasick_algorithm
http://ffpf.sourceforge.net
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/GNU_Compiler_
http://gcc.gnu.org/online
http://www.ovpworld.org/aboutovp.php
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

55

Authors

Majid Nezakatolhoseini has graduated in M.Sc. Computer Engineering with major
of Computer Architecture from Science and Research branch of Islamic Azad
University of Iran at 2011. He got his B.Sc. degree in Computer Engineering with
major of Computer Hardware from Najaf Abad Azad University of Iran at 1999.

During his Master and Bachelor degrees, he also had researches on topics such as
Network on Chip (NoC) and intelligent vehicle.
He has 7 years of experience in the field of Mobile communication networks in
MCCI which is the biggest Mobile operator in Middle East. His specialty is in
NOC (Network Operation Center).

Mohammad Amin Taherkhani received his BSc degree in Computer Engineering
Hardware Engineering- from Amirkabir University of Technology (Tehran
Polytechnic) in 2006. He also received his MSc degree in Computer Engineering -
Computer Architecture- from Shahid Beheshti University (National University of
Iran) in 2009. His research experiences and interests are: Hardware Accelerators for
Network Security Applications, High Speed Intrusion Detection and Prevention
Systems and Attack Plan Recognition.

