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Abstract

The admission decision is one of the fundamental categories of demand-management deci-

sions. In the dynamic model of the single-resource capacity control problem, the distribution

of demand does not explicitly depend on external conditions. However, in reality, demand

may depend on the current external environment which represents the prevailing economic,

financial, social or other factors that affect customer behavior. We formulate a Markov De-

cision Process (MDP) to maximize expected revenues over a finite horizon that explicitly

models the current environment. We derive some structural results of the optimal admission

policy, including the existence of an environment-dependent thresholds and a comparison of

threshold levels in different environments. We also present some computational results which

illustrate these structural properties. Finally, we extend some of the results to a related

dynamic pricing formulation.
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1. Introduction

Revenue management is a field that originates in the Airline Deregulation Act of 1978

(Talluri and van Ryzin (2004 a)). There have been many studies since 1978 on different

aspects of revenue management. Detailed overviews can be found in Talluri and van Ryzin

(2004 a) and Chiang et al. (2007). An important building block model for more complicated

revenue management is single resource capacity control. It is common in airline companies to

sell identical seats at different fares. The major issue is the decision process of accepting or

rejecting a booking request of a certain class for a given resource. The static model in which
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different fare classes arrive at different, nonoverlapping time stages ordered in an increasing

fare class rewards, is first considered by Littlewood (1972). The dynamic programming model

of this problem is analyzed by Lee and Hersh (1993), and the structure of the optimality

policy is investigated by Lautenbacher and Stidham (1999). For further research on single

resource capacity control, see Brumelle and McGill (1993), Talluri and van Ryzin (2004 b),

Barz and Waldmann (2007), Lan et al. (2008), Birbil et al. (2009), and Aydın et al. (2009).

Many sophisticated models exist for the single resource problem in the revenue man-

agement literature. Most of these models assume that the arrival process of fare classes is

independent of external factors that may be varying randomly over the planning horizon.

On the other hand, there are situations where the demand rate is strongly dependent on

some external process, which we call the environmental process. We model this environ-

mental process through a Markov chain. We consider the single resource capacity control

problem in revenue management in such fluctuating demand environments. We refer to the

corresponding model as Markov-modulated single resource capacity control. Such a model

has not been discussed widely in a revenue management context. To our knowledge, the

only study that explicitly models this situation is Chapter 4 of Barz (2007). In that chapter,

Barz considers an environmental process for a single-resource control problem under very

general assumptions. In particular, her model considers an infinite horizon problem with

possibly random planning horizons. She shows that the optimal admission policy must be

of threshold type for this generic model. On the other hand, the complexity of her model

prevents further structural results on the effects of time, environments and other relevant

model parameters. To investigate these properties, we consider a discrete-time finite horizon

problem that is less general than that of Barz but otherwise follows the standard assump-

tions with respect to the general literature. This model enables us to investigate time-related

properties of the optimal policy and the effects of external environments. Moreover, for this

model, we can also analyze the effects of varying problem parameters such as arrival rates,

rewards and the transition matrix of the environmental process. This not only extends the

results of Aydın et al. (2009) to a more general setting but also allows comparing optimal

policies in different environments and for varying environment process parameters. Overall,

this analysis presents a complete picture for this problem.

Even though the fluctuating demand environment is little studied in revenue manage-

ment, there is a significant number of papers related to Markov-modulated models for inven-

tory systems, see Song and Zipkin (1993), Özekici and Parlar (1999), Arifoğlu and Özekici

(2010), Gayon et al. (2009). For example, Song and Zipkin (1993) argue that demand fre-

quently depends on external factors which they call the current state of the world. They also
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argue that this current state of the world can be described by factors based on economic,

financial and other conditions. Van Ryzin (2005) emphasizes the needs for better demand

modeling for revenue management. In particular, he mentions that standard demand mod-

els in revenue management treat causal variations based on external factors as noise. The

environment-based framework addresses this issue. Van Ryzin (2005) points out short term

market conditions as a significant factor. These include competitors’ availabilities and prices.

In addition, there is evidence that the aggregate demand is affected by external market forces

such as currency exchange rates and energy prices. Finally, weather conditions, such as fore-

casted snow storms or heat waves are important short term external factors that are known

to impact demand in hotel and airline revenue management. Although these external factors

seem to be very different from each other, they all influence the demand. This motivates

the need for modeling the effects of such factors through an environment-dependent demand

model. Finally, there is reason to believe that environment-based demand may have a big-

ger impact in revenue management problems than in inventory replenishment problems. In

inventory replenishment, the ordering decision helps absorbing some of the variability in

demand. But in revenue management there is typically no replenishment opportunity and

demand variability has to be addressed only by admission or pricing decisions.

The rest of the paper is organized as follows. We first provide the model notation and for-

mulation in Section 2. Then, we identify some structural properties of the optimal admission

control policy in Section 3. We analyze the effects of varying problem parameters in Section

4. In Section 5 we provide an example to illustrate our structural results and asses the bene-

fits of using an environment based model. Next, we extend the idea of a fluctuating demand

environment to a dynamic pricing problem in Section 6. Finally, in Section 7 we conclude

the paper. Most of the technical details involving proofs and derivations are relegated to the

Appendix.

2. Model Formulation

We formulate a discrete time, finite horizon (T periods) MDP model of the admission

control problem corresponding to single-leg capacity control.

Let Et ∈ {1, 2, · · · ,M} denote the randomly fluctuating external environment. E =

{E0, E1, · · · , ET} is assumed to be a Markov chain with transition matrix P where pij =

P{Et+1 = j|Et = i}. We assume that there is at most one arrival and that each arrival

from a fare class can request a finite number of seats in each stage. The probability that

fare class a arrives at any stage is denoted by rja when the current environment is j. The

3



probability of no arrival in a given environment is denoted by rj0. Therefore,
∑N

a=0 rja = 1 for

any j. Non-stationary demand scenarios can be handled by defining appropriate environment

and transition matrices. For each fare class a, suppose there is an upper bound Ba on the

number of fare products requested. Let qjab denote the probability that b units of inventory

is requested given that current environment is j and the requested fare class is a.

In each stage t, the firm must choose the optimal number of seats to be sold for each

fare class. We assume that customers accept the scenario of a partial satisfaction of their

request. Brumelle and Walczak (2003) showed that structural results on the optimal policy

are not valid in case of acceptance or rejection of the whole demand when there is no en-

vironment process (Also, see Van Slyke and Young (2000) and Çil et al. (2007) for related

issues). Therefore, we only analyze the case where customers accept the partial satisfaction

of their requests. For each sold ticket, the reward is c (a) if the fare class is a. The transition

probabilities and reward function are assumed to be stationary and we suppose that the fare

classes are ordered so that c (a1) ≤ c (a2) when a1 ≤ a2. We let Z+ denote the set of positive

integers and R denote the set of real numbers.

We also use the following notations:

vt(x, j) = expected maximum revenue from period t on, given that current inventory level

is x and environment is j.

∆vt (x, j) = vt (x, j)− vt (x− 1, j)

(x)+ = max {x, 0}
U (b, x) = {0, 1, · · · , min {b, x}}

The optimal expected revenue and the admission control policy for this problem can be

obtained by solving the following Bellman equation

vt(x, j) =
N∑

a=1

rja

Ba∑
b=1

qjab max
u∈U(b,x)

{
M∑

k=1

pjkvt+1(x− u, k) + c(a)u

}
(1)

+rj0

M∑

k=1

pjkvt+1(x, k)

with boundary conditions

vt(0, j) = 0 for j = 1, 2, ..., M .

vT (x, j) = 0 for any x ∈ Z+ and j = 1, 2, ..., M .

For obtaining structural results, the following equivalent representation that uses the
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definition of ∆vt turns out to be helpful

vt(x, j) =
N∑

a=1

rja

Ba∑
b=1

qjab max
u∈U(b,x)

{
c(a)u−

M∑

k=1

pjk

(
u∑

z=1

∆vt+1(x + 1− z, k)− vt+1(x, k)

)}

+ rj0

M∑

k=1

pjkvt+1(x, k)

=
N∑

a=1

rja

Ba∑
b=1

qjab max
u∈U(b,x)

{
u∑

z=1

(
c (a)−

M∑

k=1

pjk∆vt+1(x + 1− z, k)

)}
+

M∑

k=1

pjkvt+1(x, k)

(2)

where the sum is set to be zero when u = 0.

3. Structural Properties

In this section, we investigate some structural properties of the Markov-modulated single-

resource capacity control problem. To begin with, it is intuitive that if we have one more

inventory, then expected revenue should be larger. Similarly, expected revenue should be

larger if we have more time to go. These claims can be easily proven by induction on t.

Second order properties are less trivial. In the following theorem, we establish the concavity

of vt (x, j) in x.

Theorem 1. vt(x, j) is a concave function in x for any environment j and time t.

We provide the proofs of this section in Appendix A. Theorem 1 establishes that ∆vt (x, j)

decreases as we increase the inventory level x. By considering (2), we can conclude that

c (a) −∑M
k=1 pjk∆vt+1(x + 1 − z, k) is decreasing in z. Therefore, in (2) we should increase

u ≤ min {b, x} until c (a) − ∑M
k=1 pjk∆vt+1(x + 1 − z, k) becomes negative or u is equal to

min {b, x} . Since ∆vt (x, j) is decreasing in x for any j, there is a threshold level la,j
t which

is defined as

la,j
t = min

{
x : c (a) ≥

M∑

k=1

pjk∆vt+1(x, k)

}
. (3)

Explicitly, la,j
t is the maximum quantity for the inventory level such that if the current

inventory level is less than la,j
t it is optimal to reject any batch for fare class a in environment

j. However, if the inventory on hand is greater than or equal to la,j
t , then demand for fare

class a is satisfied until the inventory level drops to la,j
t − 1.
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Hence the optimal decision for fare class a at stage t and environment j, when demand

is b, is

u∗ = min
{(

x− la,j
t + 1

)+
, b

}
. (4)

Theorem 1 implies that optimal admission control policies are of threshold (or booking

limit) type as in standard single-resource capacity control. The difference in this case is

that the thresholds now depend on the current state of the environment. Nevertheless, such

policies are relatively easy to implement.

Since optimal thresholds are determined by the marginal value function via (3), we next

investigate the structure of this function. First, we analyze how the marginal value function

changes in time. Next proposition states a result on the marginal value of one additional

inventory over time.

Proposition 1. ∆vt+1 (x, j) ≤ ∆vt (x, j) for any inventory level x, environment j and time

t.

Please note that Theorem 1 and Proposition 1 extend the corresponding results in Aydın et al.

(2009) to a setting with multiple environments. With regard to Proposition 1, a corresponding

results in Aydın et al. (2009) establishes that admission thresholds decrease as time increases

when there is a single environment . When there are multiple environment states, the envi-

ronment also changes over time; hence, we cannot guarantee the decrease of the thresholds

over time when the environment changes. On the other hand, if the environment does not

change, then we can establish the admission threshold should decrease in the next period.

This result follows from comparing

M∑
k=1

pjk∆vt+1 (x, k) ≤
M∑

k=1

pjk∆vt (x, k)

which is obviously true by Proposition 1. Therefore, la,j
t ≥ la,j

t+1 for any fare class a, time t

and environment j.

Since demand varies according to the environment, optimal threshold levels change with

the environment. To better understand the effects of the environment on the optimal thresh-

olds, we must classify and order the environments. To this end, we need some assumptions

on arrival probabilities and the transition matrix of the environmental process. The following

classification is useful for this purpose.

Definition 1. A Markov chain is said to be IFR (Increasing Failure Rate) if the rows of its
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transition probability matrix are in increasing stochastic order, i.e.,

f (i) =
M∑

j=k

pij

is nondecreasing in i for all k = 1, ..., M . Similarly, a matrix X is said to be IFR if the rows

of X are in increasing stochastic order.

In reliability theory, life distribution classifications, like IFR, play a crucial role in identi-

fying the structure of optimal maintenance policies. This usually leads to optimal threshold

policies since the IFR property implies the increasing marginal deterioration of the system.

An example is the age replacement policy which states that the system is replaced as soon as

its age exceeds a critical level. The reader is referred to Barlow and Proschan (1965) for basic

concepts on life distribution classifications, and Keilson and Kesten (1977) for classifications

of Markov chains using their transition matrices. In our context, we need to impose similar

restrictions on the environmental process so that the state becomes more or less “desirable”

in generating revenue.

Let R be a matrix such that Rj,a = rja, and suppose R is IFR. This implies that en-

vironments are ordered in terms of the arrival probability of customers from higher fare

classes. For example, suppose we have 2 environments, then the second environment is said

to be “better” than the first one if it is more probable to have a demand for higher reward

fare-classes in the second environment.

Let B = max {Ba : a = 1, 2, · · · , N} and set qjab = 0 for any Ba < b ≤ B. Also, let Q

denote a 3 dimensional matrix whose (j, a, b)th component is qjab as defined above. Then

we define 2 dimensional submatrices of Q where we fix one component of Q. Let the fixed

component be denoted as a superscript while the other components are denoted by subscripts.

We also assume that the matrix Q
(a)
jb is IFR for a fixed a. Finally, we also assume that Q

(i)
ab

is IFR for fixed i.

Last, we need a condition on the transition matrix P of environment process. We assume

that P is IFR. This is also plausible. If the index of an environment i is higher than another

environment j, then we call i a “better” environment than j by the explanation above. Since

environment i is better than j, it is more likely for environment i to make a transition to an

environment that is better than an arbitrary given environment. Intuitively, the probability

that the current environment will transition in the future to a better environment increases

as the level of the current environment increases. We now summarize all of these conditions.

Condition 2. (1) P is IFR.
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(2) R is IFR.

(3) Q
(a)
jb is IFR for any fare class a.

(4) Q
(j)
ab is IFR for any environment j.

The above condition imposes an order on the environments. This order is a minimal

requirement for obtaining structural results as a function of the environment. When the

condition holds, j is a more favorable environment than i where i ≤ j. Let us discuss the

modeling implications of Condition 2. Condition 2 (1) concerns the environment transitions.

Several environment-based models in the literature have two environments in which case the

condition can be easily expressed and verified. There are also special but plausible transition

structures where the condition can be shown to hold (see Gayon et al. (2009) for examples in

a different model). In short, the environment transitions need to have a smoothness property

where better current environments are likelier to lead to better future environments which

seems natural for most applications with a few environment states representing aggregate

conditions. Condition 2 (2) can be viewed as a consequence of the environment classification

where better current states have a more favorable demand arrival distribution. Without

this condition, environment states do not necessarily have a natural order which prevents

monotonicity. Condition 2 (3) states that batch sizes are likelier to be larger in better

environments which also appears natural. Condition 2 (4) imposes constraints on the demand

batch size as a function of the class of customers. This condition is automatically satisfied for

the frequently encountered case of unit demand arrivals (see Talluri and van Ryzin (2004 a))

and for the case where the batch sizes are not class dependent.

We first investigate the expected maximum revenue from period t on for different envi-

ronments at stage t under Condition 2. In particular, in the next proposition, we establish

that the maximum expected revenue increases when the environment gets better .

Proposition 2. Under Condition 2, vt (x, i) ≤ vt (x, j) for any inventory level x, environ-

ment i ≤ j and time t.

From a practical perspective, Proposition 2 states that better starting environments lead

to better expected revenues. Second, we consider the effect of the environment on the ex-

pected marginal value of one additional inventory. This value is important in understanding

the structure of threshold values in different environments.

Proposition 3. Under Condition 2, ∆vt (x, i) ≤ ∆vt (x, j) for any inventory level x, envi-

ronment i ≤ j and time t.
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Let us discuss the implication of this proposition. Since the admission policy is determined

by the structure of the difference ∆vt (x, j), and since this difference increases in j, we can

conclude that la,j
t increases in j. Since the demand for a more valuable fare class will increase

in probability as the environment gets better, it is optimal to protect the stock more in a

better environment. For implementation purposes, this implies that the optimal admission

thresholds are non-decreasing in more favorable environments. By using Propositions 1 and

3, we have the following immediate result that extends the property in Proposition 3 to

different time periods.

Corollary 1. Under Condition 2, ∆vt+1 (x, i) ≤ ∆vt (x, j) for any inventory level x, envi-

ronment i ≤ j and time t.

By this corollary, we know that the threshold level of a fare class in a given stage will

decrease in the next stage if the environment of the next stage is worse than the one in the

previous stage. However, we cannot guarantee the decrease of the threshold if the environ-

ment of the next stage is better than the one in the previous stage. This is explored further

in Section 5.

4. Sensitivity Analysis

In this section, we will provide results on the sensitivity of the structural properties on

the model parameters. A recent paper by Çil et al. (2009) presents a general approach for

this type of analysis and Aydın et al. (2009) presents corresponding results for a standard

single-leg capacity control problem.

First, by setting zjab = qjabrja, we will use the following equivalent form of our problem

vt(x, j) =
N∑

a=1

Ba∑
b=1

zjab max
u∈U(b,x)

{
M∑

k=1

pjkvt+1(x− u, k) + c(a)u

}
+ rj0

M∑

k=1

pjkvt+1(x, k) (5)

with boundary conditions vt (0, j) = 0 and vT (x, j) = 0 for all x and t. We show the effects of

changing components of arrival probabilities (Z), transition matrix (P), and reward function

(c). We will change a component of these matrices or the reward function by a small amount

and explore the effects of this change under some specific conditions.

We first provide the results on the effects of varying the arrival probabilities. Aydın et al.

(2009) also considers a similar study on the effects of parameters, where only the fictitious

event probability is decreased when a given arrival probability is increased. We employ a

more general approach and consider decreasing any other arrival probability.
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Let us increase ziab by ε ≥ 0 for a given environment i, class a ≥ 1 and batch size b. In

order to have a valid probability distribution we will reduce zia2b2 by ε where 1 ≤ a2 ≤ a and

b2 ≤ b. Here, ε should be small enough in order to have both ziab + ε and zia2b2 − ε lie in the

interval [0, 1]. Let vε
t (x, j) be the value function for the modified system.

Proposition 4. vε
t (x, j) ≥ vt (x, j) for any environment j, time t and inventory level x.

We provide all the proofs of this section in Appendix B.

Proposition 4 formalizes that increased demand from more valuable classes improves ex-

pected revenues. Next, we consider the effects of varying arrival probabilities on the expected

marginal value of one additional inventory, since admission thresholds are determined by this

value. The marginal value for the modified system is denoted by ∆vε
t (x, j).

Proposition 5. ∆vε
t (x, j) ≥ ∆vt (x, j) for any environment j, time t and inventory level x.

Since expected marginal value of one additional inventory is greater in the modified

system, the threshold level of the modified system for a given fare class, time and environment

is greater than the one of the original model. In other words, la,j
t ≤ la,j

t,ε where la,j
t,ε denotes

the threshold level in the modified system. Please note that an increase in some arrival

probability at a given environment i causes the admission thresholds in all environments j

to increase. Propositions 4 and 5 extend the corresponding results in Aydın et al. (2009) to

multiple environment states.

Second, we analyze the effects of changing a component of P which is assumed to be IFR.

Suppose we increase pij by ε ≥ 0. To have a valid distribution, we need to reduce another

component in the ith row of P with a column index smaller than j by ε. Again, ε should

be small enough to make the changed components lie in [0, 1] interval. These changes must

preserve the IFR property of P. Let the modified solution be denoted by vε
t (x, j) and the

transition probability matrix by Pε. We have only changed the ith row of P, hence the

remaining rows of Pε are identical to P. First, we compare the expected revenue of these two

systems.

Proposition 6. Under Condition 2, vε
t (x, j) ≥ vt (x, j) for any environment j, time t and

inventory level x.

Proposition 6 establishes that a better environment probability transition matrix leads to

higher expected revenues. For practical purposes, this implies that more favorable forecasts

of future demand environments results in improved expected revenues.
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Next, we investigate the effects of such a change on the optimal policy As done in the

previous analysis on Z, we focus on the expected marginal value of one additional inventory

level. The marginal value of the modified system is denoted by ∆vε
t (x, j) . In the next

proposition we show that marginal value of the modified system is greater than the original

system.

Proposition 7. Under Condition 2, ∆vε
t (x, j) ≥ ∆vt (x, j) for any environment j, time t

and inventory level x.

As explained before, since the expected marginal value of an additional inventory is greater

in the modified system, threshold level of the modified system is greater than the one of the

original system. (i.e., la,j
t,ε ≥ la,j

t ). A more advantageous environment transition structure

leads to higher admission thresholds for all environments.

Now, we investigate the sensitivity of the marginal value function in the reward of each

fare class. We will increase the reward of a specific fare class and try to see its impact. We

define ∆vε
t+1 (x, k) as the marginal value of an additional inventory. We have the following

proposition about the effects of reward on the marginal value.

Proposition 8. ∆vε
t (x, j) ≥ ∆vt (x, j) if c (N) is increased by ε ≥ 0.

Proposition 8 establishes increasing the reward of the highest class leads to higher ad-

mission thresholds: la,j
t,ε ≥ la,j

t . As before, somewhat surprisingly, a positive perturbation of

c(N) requires a stronger protection for class N and therefore has a non-decreasing effect for

all admission thresholds. Please note a corresponding result exists in Aydın et al. (2009) for

the case with a single environment state.

We have also investigated the effect of increasing the reward of any other fare class rather

than the one with the highest reward. It is not always true that the marginal value of an

additional inventory in a modified system is greater than the one in the original system or

vice versa. We have a counter-example in the next section.

5. Numerical Illustrations

In our illustrations, we assume that an arrival customer demands only one product, this

implies that Ba = 1 for any fare class a. First, we illustrate that the threshold level decreases

as time increases and increases as the environment gets better. The transition matrix, reward
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vector, and arrival probability matrix are respectively:

P =

[
0.95 0.05

0.05 0.95

]
c (a) =





0 if a = 0

50 if a = 1

100 if a = 2

200 if a = 3

R =

[
0.7 0.2 0.1 0

0.1 0.2 0.2 0.5

]
(6)

with planning horizon T = 500. Note that 0 in vector c stands for the reward of the fictitious

event. We only show the last 10 threshold levels in our tables. Note that R has the IFR

property, hence we can label the first row of R as a bad environment and the second row as

a good environment. Threshold levels for fare class 1 (with reward 50) and 2 (with reward

100) are given in Table 1. Recall that la,j
t stands for the threshold level of fare class a at

time t in environment j. As we expect, the threshold level decreases as time increases for

any environment and the threshold level of a better environment is higher at any given time.

Also we know that the threshold level for fare class 3 (with reward 200) is always 1 for any

environment and time. Since, we always accept a request for the fare class with the highest

reward. Finally, recall that Corollary 1 established that ∆vt+1(x, i) ≤ ∆vt(x, j) for i ≤ j. It

can be observed from Table 1 that the condition i ≤ j is crucial. In fact, we observe that

l1,1
6 ≤ l1,2

7 . Therefore, the threshold is not necessarily monotone in all cases.

Table 1: Threshold levels for fare classes 1 and 2 in both environments
Time t 1 2 3 4 5 6 7 8 9 10

l1,1
t 4 4 3 3 3 2 2 1 1 1

l1,2
t 8 8 7 6 5 5 4 3 2 1

l2,1
t 2 1 1 1 1 1 1 1 1 1

l2,2
t 6 5 5 4 4 3 3 2 2 1

Next, we investigate the effects of changing the parameters of the problem. Suppose that

we decrease the arrival probability of fare class 3 from 0.5 to 0.1 and increase the arrival

probability of fare class 1 from 0.2 to 0.6 in environment 2, then we compare the threshold

levels for fare classes 1 and 2 in both systems. See Tables 7 and 8 in Appendix C for the

comparison of threshold levels for fare classes 1 and 2. As expected, threshold levels for fare

classes 1 and 2 are smaller in the modified system in any environment.

We also change the entries of P while the modified P matrix still has the IFR property.

Suppose that we have the following modified P
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Pε =

[
0.05 0.95

0.05 0.95

]
(7)

which is obtained by changing the first row of the transition matrix. The threshold levels for

fare class 2 in the modified system is greater than the one in the original system as shown in

Table 2 for environment 1.

Table 2: Threshold levels of fare class 2 in environment 1 (Change in transition matrix)
Time t 1 2 3 4 5 6 7 8 9 10

l2,1
t 2 1 1 1 1 1 1 1 1 1

l2,1
t,ε 7 6 5 5 4 4 3 2 2 1

Further, we increase the reward of the third fare class, which is the most expensive one,

from 200 to 250. Threshold levels for fare classes 1 and 2 are given in the Tables 9 and 10

in Appendix D.

The threshold levels for fare classes 1 and 2 of the modified system are greater in both

environments. We also provide a counter-example for the case when the reward of any other

fare class rather than the most expensive one is changed. Suppose that we change the reward

of fare class 2 from 100 to 150. The threshold levels of fare class 1 in environment 1 and fare

class 2 in environment 2 are given in Table 3.

Table 3: Threshold levels for fare classes 1 and 2 (Change in price of product 2)
Time t 1 2 3 4 5 6 7 8 9 10

l1,1
t 4 4 3 3 3 2 2 1 1 1

l1,1
t,ε 5 4 4 3 3 2 2 2 1 1

l2,2
t 6 5 5 4 4 3 3 2 2 1

l2,2
t,ε 4 4 4 3 3 3 2 2 1 1

Note that the threshold levels of fare-class one increase; however, the threshold levels of

fare-class two decrease. Therefore, it is not always true that expected marginal value of an

additional inventory decreases (or increases) as we increase the reward of a fare class which

is not the most expensive.

Remember that when R is IFR, we can order the environments. In addition to this

property, if P is IFR, we know that la,j
t ≤ la,i

t whenever j ≤ i. However, we cannot conclude

the same result when P is not IFR. We have the following counter-example to show this

13



claim. We use the same problem parameters except the matrix

P =

[
0.05 0.95

0.95 0.05

]
(8)

which is not IFR anymore. The threshold levels for fare class 1 (with price 50) are given

in the Table 4. Even though environment 2 can be considered better than environment 1,

threshold levels of fare-class 1 at times 3, 5, 7 and 9 in environment 1 are greater than those

in environment 2.

Table 4: Threshold levels for fare class 1 when P is not IFR
Time t 1 2 3 4 5 6 7 8 9 10

l1,1
t 6 5 5 4 4 3 3 2 2 1

l1,2
t 6 5 4 4 3 3 2 2 1 1

6. The Efficiency of the Environment-Based Model

To assess the performance of our environment based model, we consider a 2-environment

problem in which arriving customers demand only one product at a time. In this setting,

we compare the expected revenues from our model to a simple but reasonable benchmark

approach where the system manager incorrectly believes that the system will always remain

in one of the environment states (i.e. the environment will not fluctuate). In this case, the

manager solves a simpler standard dynamic program to find the optimal admission policy.

To implement the benchmark approach, let us define wj
t (x), the maximum expected total

revenue when the environment j is the environment believed to be true by the manager. The

corresponding optimal policy can be formulated by the Bellman equation

wj
t (x) =

N∑
a=1

rja max
{
wj

t+1 (x− 1) + c (a) , wj
t+1 (x)

}
+ rj0w

j
t+1 (x) (9)

with boundary conditions wj
T (x) = 0 and wj

t (0) = 0 for all x and t. R and P are as given

in (6) and c(0) = 0, c(1) = 50, c (3) = 200 and we vary c(2) between 65 and 185 (using a

step-size of 30).

For each environment state, we compute the optimal admission policy and use this policy

in our environment-based model and calculate the corresponding expected revenue for an

initial inventory level of 200 and horizon length of 500 starting with environment 1. In

addition, we compute the expected optimal revenue using the environment-dependent model

14



for the same parameters. Figure 1 reports the the percentage differences in expected revenues

due to using a simpler model for different values of c(2). It can be observed that the difference

is consistently over 15% when the manager employs the good environment state (maybe due

to optimistic expectations). On the other hand, the difference varies significantly and appears

to be an increasing as a function of c(2) when the manager employs the bad environment

state.

4

6

8

10

12

14

16

18

Bad Env.

Good Env.

0

2

4

6

8

10

12

14

16

18

65 95 125 155 185
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Good Env.

Reward of second  fare class

Figure 1: Percentage Differences when Single Environment Policies are Used Instead of the Environment-
Based Policy

Next, we explore how the benefits of the environment-based model are affected by the

demand profile similarity or dissimilarity in different environments. We use c and P as given

in (6) and we define R (ε) (where ε = 0, 0.1, 0.2, 0.3, 0.4) as follows:

R (ε) =

[
0.7− ε 0.2 0.1 0 + ε

0.1 0.2 0.2 0.5

]
.

Please note that increasing the value of ε makes the demand profiles in the two environ-

ments more similar. Therefore, when ε = 0 the demand profiles are very different from each

other and when ε = 0.4, the demand profiles are fairly similar. For each ε, we repeat the

same investigation as above and compare the revenues in an environment-based model with
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a fixed environment model. The percentage differences as a function of the environment are

reported in Table 5. As can be observed from the table, there is significant value in using the

environment-based model when the demand profiles are different but as expected this value

diminishes as the demand profiles of the different environments become similar.

Table 5: Percentage difference as function of R

ε 0 0.1 0.2 0.3 0.4
Bad Env. 8.06 4.69 1.78 0.26 0.0017
Good Env. 15.71 11.63 5.46 3.57 0.0060

Finally, we investigate the effect of total demand rate difference between the environ-

ments. The situation in mind we have is external factors that affect the aggregate demand

rate in varying degrees. In particular, if the demand rate in the first environment for a given

demand class a (a = 1, 2, 3) is r1a, then the corresponding demand rate in the second

environment is αr1a where 0 < α < 1. For the numerical experimentation, we use c as given

in (6) and the other parameters are given below.

R (α) =

[
1− 0.9α 0.4α 0.3α 0.2α

0.1 0.4 0.3 0.2

]
, P1 =

[
0.9 0.1

0.1 0.9

]
, P2 =

[
0.7 0.3

0.1 0.9

]
, P3 =

[
0.5 0.5

0.5 0.5

]

Using the above parameters, we experiment with three levels of α and repeat the earlier

experimentation by comparing the revenues using the environment-based dynamic program

versus revenues obtained by solving simpler single environment models. Please note that we

also use three different transition matrices. The results are reported in Table 6. Once again,

the benefits of using the environment-based model are important when the demand profiles

(aggregate demand rates in this experiment) are different.

Table 6: Percentage difference when the total demand rate fluctuates
P1 P2 P3

α Good Env. Bad Env. Good Env. Bad Env. Good Env. Bad Env.

0.25 3.56 8.15 0.20 17.34 3.62 8.49
0.5 0.62 3.18 0.07 5.13 0.51 3.10
0.75 0.07 0.06 0.01 0.13 0.06 0.06
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7. Extension: Markov Modulated Dynamic Pricing

In this section, we extend our investigation to a corresponding dynamic pricing problem.

A similar continuous-time problem with replenishment has been explored by Gayon et al.

(2009). In dynamic pricing, customers are not segmented to different classes but they have

different purchasing probabilities as a function of the offered price. The goal is to find the

price to charge in a given state to maximize the expected revenue. We assume that there is

only one customer in each stage and his willingness to pay is a random variable which depends

on the current environment. If the current environment is j then the price he is willing to

pay Wj has a distribution Fj (v) = P {Wj ≤ v} . The distribution function is assumed to

be differentiable and we denote the density by fj (p). We also assume that the distribution

function has an inverse F−1
j . Let vt (x, j) be the expected maximum revenue from period

t on, given that current inventory level is x and environment is j. The manager needs to

choose the price of the fare-class in each stage t with a given environment j and inventory

level x. Therefore, we now have the following Bellman equation

vt (x, j) = max
p≥0

{
(1− Fj(p))

(
p +

N∑

k=1

pjkvt+1 (x− 1, k)

)
+ Fj(p)

N∑

k=1

pjkvt+1 (x, k)

}

with vT (x, j) = 0 and vt (0, j) = 0 as boundary conditions. Since distribution function is

one-to-one, there exists a unique p such that d = F̄j (p) = 1 − Fj (p) for any 0 ≤ d ≤ 1.

Therefore, we have the following equivalent formulation

vt (x, j) = max
0≤d≤1

{
d

(
pj (d) +

N∑

k=1

pjkvt+1 (x− 1, k)

)
+ (1− d)

N∑

k=1

pjkvt+1 (x, k)

}

where pj (d) = F−1
j (1− d). By using ∆vt (x, j) = vt (x, j)− vt (x− 1, j), we have

vt (x, j) = max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt+1 (x, k)

}
+

N∑

k=1

pjkvt+1 (x, k) (10)

In (10), dpj (d) is the expected revenue during the current stage. Let Hj (d) be the

derivative of dpj (d) with respect to d, we make the following standard assumption as in

Talluri and van Ryzin (2004 a).

Condition 3. For any environment j, Hj (d) is a decreasing function in d, and this condition

also implies that Hj

(
F̄j (p)

)
= p− (1− Fj (p)) /fj (p) is increasing function of p.
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By using this condition, we know that inner part of the maximization problem is a concave

function in d, therefore; the optimal solution can be found by using

Hj (d∗) =
N∑

k=1

∆vt+1 (x, k) (11)

For the rest of this section, we assume that d∗ ∈ (0, 1). To gain insights on the the

structure of the optimal pricing policy we need to investigate the structure of ∆vt. First, we

show that marginal revenue decreases as we have more inventory.

Proposition 9. ∆vt (x, i) is a decreasing function of x for any environment i and time t.

We provide the proofs of propositions in E. Under Condition 3, Proposition 9 implies

that the optimal prices are non-increasing in the inventory on hand. Next, explore the effect

of time on the marginal revenue.

Proposition 10. ∆vt (x, i) is a decreasing function of t for any environment i and inventory

level x.

Proposition 10 provides further insights on the structure of the optimal pricing policy.

Under Condition 3, Proposition 10 implies that the optimal prices are non-increasing in the

remaining time for the same inventory level and environment. While the optimal price paths

need to be non-increasing in general, they are so when the environment does not fluctuate.

8. Conclusion and Future Research

We investigated a single resource capacity control problem with a fluctuating demand en-

vironment. Modeling fluctuating demand through a Markov-modulated environment process

is widely accepted in the inventory control literature. But there has not been much work on

such models in capacity control problems rooted in revenue management.

We were able to provide a fairly complete set of structural results on the optimal ad-

mission policy under a Markov-modulated demand process. The structural results comprise

the existence of environment-based thresholds but also extend to the effect of the time, en-

vironments and various problem parameters. Through numerical examples, we observe that

the benefit from the environment-based model is significant if the conditions in different

environments are distinctively different.

Some extensions of the model follow relatively easily as in the dynamic pricing case

presented in Section 7. Other extensions such as consumer-choice behavior and network
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revenue management merit further research. Another interesting and challenging line of

extension is to consider uncertain environment transition rates or unobservable environments.
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On-line Appendix to Structural Properties of
Markov Modulated Revenue Management Problems

A. Monotonicity Proofs (Section 3)

In this appendix, we present the proofs of our results in Section 3 using induction. Before

proving the concavity of vt (x, j) in x, we first state a lemma by Lautenbacher and Stidham

(1999).

Lemma 1. Suppose g : Z+ → R is concave. Let f : Z+ → R be defined by

f(x) = max
β=0,1,...,m

{βp + g (x− β)}

for any given p ≥ 0, and nonnegative integer m ≤ x. Then, f is concave in x ≥ 0.

Using Lemma 1, we next establish the concavity of the value function in x for each

environment.

Proof of Theorem 1. Since vT (x, j) is zero for any x and j we have the concavity of

vT (x, j) in x for any j. Suppose that vt+1(x, j) is a concave function of x for any environment

j. We can use lemma 1 by taking g as
∑M

k=1 pjkvt+1(x, k), p as c (a) , and m as min {b, x}
Therefore,

max
u∈U(b,x)

{
M∑

k=1

pjkvt+1(x− u, k) + c(a)u

}
(12)

is concave in x for any product a, batch size 0 ≤ b ≤ Ba. Since equation (1) is positive linear

combination of (12) and vt+1 (x, k), we have the concavity of vt(x, j) in x for any environment

j.

Proof of Proposition 1. Since vt (x, j) is increasing in x, ∆vt (x, j) ≥ 0. Also ∆vT (x, j) =

0, which implies that ∆vT (x, j) ≤ ∆vT−1 (x, j) . Suppose ∆vt+2 (x, j) ≤ ∆vt+1 (x, j) for any

environment j and inventory level x. Consider the following inequality,

max
u1∈U(b,x)

{
M∑

k=1

pjkvt+2(x− u1, k) + c (a) u1

}
− max

u2∈U(b,x−1)

{
M∑

k=1

pjkvt+2(x− 1− u2, k) + c (a) u2

}

≤

max
u3∈U(b,x)

{
M∑

k=1

pjkvt+1(x− u3, k) + c (a) u3

}
− max

u4∈U(b,x−1)

{
M∑

k=1

pjkvt+1(x− 1− u4, k) + c (a) u4

}

(13)

21



for any a, and batch size 0 ≤ b ≤ Ba. It is sufficient to show that this inequality holds, in

order to conclude that ∆vt+1 (x, j) ≤ ∆vt (x, j) , since the remaining terms in ∆vt (x, j) −
∆vt+1 (x, j) are clearly positive by using the induction hypothesis.

Let u∗i be the optimal value of ui in (13). We should note that la,j
t+1 ≤ la,j

t for any product

a and environment j. This can be easily seen by considering the induction hypothesis and

(3). As a result, we have u∗3 ≤ u∗1. Also, we know that u∗1 − u∗2 is either 1 or zero. Same

reasoning is valid for u∗3 − u∗4. If they are equal, then this is possible only either u∗1 = u∗2 = 0

or u∗1 = u∗2 = b.

Therefore, there are six cases we need to consider for the possible values of u∗1, u
∗
2, u

∗
3, u

∗
4.

Case (u∗1, u
∗
2, u

∗
3, u

∗
4) Inequality (13) simplifies to

1 (0, 0, 0, 0)
∑M

k=1 pjk∆vt+2 (x, k) ≤ ∑M
k=1 pjk∆vt+1 (x, k)

2 (y2 + 1, y2, 0, 0) c (a) ≤ ∑M
k=1 pjk∆vt+1 (x, k)

3 (b, b, 0, 0)
∑M

k=1 pjk∆vt+2 (x− b, k) ≤ ∑M
k=1 pjk∆vt+1 (x, k)

4 (y2 + 1, y2, y1 + 1, y1) c (a) ≤ c (a)

5 (b, b, y1 + 1, y1)
∑M

k=1 pjk∆vt+2 (x− b, k) ≤ c (a)

6 (b, b, b, b)
∑M

k=1 pjk∆vt+2 (x− b, k) ≤ ∑M
k=1 pjk∆vt+1 (x− b, k)

Here, y1 and y2 are integers such that 0 ≤ y1 ≤ y2 ≤ b − 1. Case 1 and 6 are true

due to the induction hypothesis. Also case 4 is automatically true. In case 2, suppose that∑M
k=1 pjk∆vt+1 (x, k) < c (a), then we should accept at least one customer when current

inventory level is x at stage t but u∗3 = 0. Therefore, inequality in case 2 is true. In case

5, suppose that
∑M

k=1 pjk∆vt+2 (x− b, k) > c (a). Then, at time t + 1, accepted batch size

is less than b − 1 when current inventory level is x. However u∗2 = b, which means that the

inequality in case 5 is also true. In case 3, we have c (a) ≤ ∑M
k=1 pjk∆vt+1 (x, k) since u∗3 = 0.

Also we have
∑M

k=1 pjk∆vt+2 (x− b, k) ≤ c (a) since u∗2 = b. Note that, these inequalities can

be shown by using the methodology used in case 2 and 5. Hence, we have the inequality of

case 3. Consequently, ∆vt decreases in t.

Proof of Proposition 2. For t = T we have the result trivially since vT (x, i) = 0 for any

inventory level x and environment i. Suppose vt+1 (x, i) ≤ vt+1 (x, j) for any i ≤ j. We provide

some definitions to make the proof clearer. Let

W (a, b, j) = max
u∈U(b,x)

{
M∑

k=1

pjkvt+1(x− u, k) + c(a)u

}
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and

S (a, j) =
B∑

b=1

qjabW (a, b, j)

S (0, j) =
M∑

k=1

pjkvt+1 (x, k)

for a = 1, 2, ...N. Then, we need to show the following

N∑
a=0

riaS (a, i) ≤
N∑

a=0

rjaS (a, j)

First of all, it is clear that W (a, b, j) is nondecreasing in b, and a. Also, since P is IFR,

by the induction hypothesis we know that W (a, b, j) is nondecreasing in j. Hence S (a, j) is

nondecreasing in j, because Q
(a)
jb is IFR. Also, by induction hypothesis we know S (0, j) is

nondecreasing in j. We also need to show that S (a, j) is a nondecreasing function in a. Take

a ∈ {1, 2, · · · , N} , since W (a, b, j) is nondecreasing in a and Q
(j)
ab is IFR, we know that S (a, j)

is nondecreasing in the domain {1, 2, ..., N} . It is also easy to show that S (0, j) ≤ S (1, j)

hence S (a, j) is nondecreasing in a. Since S (a, i) ≤ S (a, j) and S (a, j) is a nondecreasing

function in a, we have vt (x, i) ≤ vt (x, j) by using the IFR property of R.

Proof of Proposition 3. Clearly, we have ∆vT (x, i) = ∆vT (x, j) = 0. Suppose ∆vt+1 (x, i) ≤
∆vt+1 (x, j) for any i ≤ j. Let

W (a, b, j) = max
u∈U(b,x)

{
M∑

k=1

pjkvt+1(x− u, k) + c(a)u

}
− max

u∈U(b,x−1)

{
M∑

k=1

pjkvt+1(x− 1− u, k) + c(a)u

}

for a = 1, 2, ..., N. Also define,

S (a, j) =
B∑

b=1

qjabW (a, b, j)

S (0, j) =
M∑

k=1

pjk (vt+1(x, k)− vt+1 (x− 1, k))

for a = 1, 2, ..., N. After making these definitions, we need to show

M∑
a=0

riaS (a, i) ≤
M∑

a=0

rjaS (a, j)

for any environment i ≤ j. First of all we will show W (a, b, i) ≤ W (a, b, j) for any a ∈
{1, 2, ..., N} and b. Let u∗1 be the optimal decision when current inventory is x and environment
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is i, and let u∗2 be the optimal decision when the current inventory is x− 1 and environment

is i (u∗3 and u∗4 are also defined in a similar fashion for environment j). Using the same

reasoning that we used in the proof of the Proposition 1, we have the following relations and

results by noting that la,j
t ≥ la,i

t .

C (u∗1, u
∗
2, u

∗
3, u

∗
4) Inequality W (a, b, i) ≤ W (a, b, j) simplifies to

1 (0, 0, 0, 0)
M∑

k=1

pik∆vt+1 (x, k) ≤
M∑

k=1

pjk∆vt+1 (x, k)

2 (y2 + 1, y2, 0, 0) c (a) ≤
M∑

k=1

pjk∆vt+1 (x, k)

3 (b, b, 0, 0)
M∑

k=1

pik∆vt+1 (x− b, k) ≤
M∑

k=1

pjk∆vt+1 (x, k)

4 (y2 + 1, y2, y1 + 1, y1) c (a) ≤ c (a)

5 (b, b, y1 + 1, y1)
M∑

k=1

pik∆vt+1 (x− b, k) ≤ c (a)

6 (b, b, b, b)
M∑

k=1

pik∆vt+1 (x− b, k) ≤
M∑

k=1

pjk∆vt+1 (x− b, k)

Here, y1 and y2 are integers such that 0 ≤ y1 ≤ y2 ≤ b−1. Note that case 6 and case 1 are

obviously true due to the induction hypothesis and the IFR property of P. The remaining

cases are true as explained in the proof of Proposition 1.

Secondly, we will show that W (a, b, i) is nondecreasing in ordered quantity b for any i

and a ∈ {1, 2, ..., N} . Take 1 ≤ b < B. Let u∗1 be the optimal decision when current inventory

is x and ordered quantity is b, and let u∗2 be the optimal decision when the current inventory

is x− 1 and ordered quantity is b (u∗3 and u∗4 are also defined in a similar fashion for ordered

quantity b + 1). We have 4 cases,

C (u∗3u
∗
4) Results W (a, b, i) < W (a, b + 1, i) reduces to

1 (0, 0) (u∗1, u
∗
2) = (0, 0)

M∑
k=1

pik∆vt+1 (x, k) ≤
M∑

k=1

pik∆vt+1 (x, k)

2 (b + 1, b + 1)
x− la,j

t ≥ b + 1

(u∗1, u
∗
2) = (b, b)

M∑
k=1

pik∆vt+1 (x− b, k) ≤
M∑

k=1

pik∆vt+1 (x− b− 1, k)

3 (b + 1, b)
x− la,j

t = b

(u∗1, u
∗
2) = (b, b)

M∑
k=1

pik∆vt+1 (x− b, k) ≤ c (a)

4 (y, y − 1) (u∗1, u
∗
2) = (y, y − 1) c (a) ≤ c (a)

where 1 ≤ y < b+1. Case 1 and 4 are obviously true since right-hand side and left-hand side

are equal in both cases. Case 2 is also true since ∆vt+1 (x) is nonincreasing in x. In case 3,

suppose
∑M

k=1 pik∆vt+1 (x− b, k) > c (a). Then this fact contradicts with la,j
t = x− b.
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Clearly, S (0, i) ≤ S (0, j) since P is IFR. Since W (a, b, i) ≤ W (a, b, j) and W (a, b, i) is

nondecreasing in ordered quantity b for any i and a ∈ {1, 2, ..., N} , by using the IFR property

of Q
(a)
jb we have

S (a, i) ≤ S (a, j)

for any a ∈ {0, 1, ..., N}. Now, it is sufficient to show that S (a, j) is nondecreasing in a to

show ∆vt (x, i) ≤ ∆vt (x, j) because we can use the IFR property of R to conclude our result.

Take a1, a2 ∈ {1, 2, ..., N} with a1 ≤ a2. Since c (a1) ≤ c (a2) , we know that la1,j
t ≥ la2,j

t .

Also, we have already shown that W (a, b, j) is nondecreasing in b. It is sufficient to prove

W (a1, b, j) ≤ W (a2, b, j), then we can use the IFR property of Q
(j)
ab and W (a, b, j)’s being

nondecreasing in b to conclude that S (a1, j) ≤ S (a2, j) . Let u∗1 be the optimal decision when

current inventory is x and product type is a1, and let u∗2 be the optimal decision when the

current inventory is x − 1 and product type is a1 (u∗3 and u∗4 are also defined in a similar

fashion for product type a2). Then, there are six cases for the values of (u∗1, u
∗
2, u

∗
3, u

∗
4) as

before.

C (u∗1, u
∗
2, u

∗
3, u

∗
4) Inequality W (a1, b, i) ≤ W (a2, b, i) simplifies to

1 (0, 0, 0, 0)
M∑

k=1

pik∆vt+1 (x, k) ≤
M∑

k=1

pik∆vt+1 (x, k)

2 (0, 0, y1 + 1, y1)
M∑

k=1

pik∆vt+1 (x, k) ≤ c (a2)

3 (0, 0, b, b)
M∑

k=1

pik∆vt+1 (x, k) ≤
M∑

k=1

pik∆vt+1 (x− b, k)

4 (y2 + 1, y2, y1 + 1, y1) c (a1) ≤ c (a2)

5 (y2 + 1, y2, b, b) c (a1) ≤
M∑

k=1

pik∆vt+1 (x− b, k)

6 (b, b, b, b)
M∑

k=1

pik∆vt+1 (x− b, k) ≤
M∑

k=1

pik∆vt+1 (x− b, k)

Here, y1 and y2 are integers such that 0 ≤ y2 ≤ y1 ≤ b − 1. Note that in case 1 and

6, right hand sides and left hand sides are identical. Case 4 is true since c (a1) ≤ c (a2) . In

case 2, suppose
∑M

k=1 pik∆vt+1 (x, k) > c (a2) then we should not sell any product of type

a2 when current inventory level is x at time t, but u∗3 = y1 + 1 ≥ 1. Case 3 is also true

since ∆vt+1 (x) is nonincreasing in x. In case 5, suppose c (a1) >
∑M

k=1 pik∆vt+1 (x− b, k).

Since y2 = u∗2 ≤ b − 1, we have x − b + 1 ≤ la1,j
t and this result contradicts with our

assumption. Therefore S (a1, i) ≤ S (a2, i) for a1, a2 ∈ {1, 2, ..., N} . Also, we need to show

25



S (0, i) ≤ S (1, i) . We have the following inequality since W (1, b, i) is nondecreasing in b.

W (1, 1, i) = max
u1∈{0,1}

{
M∑

k=1

pikvt+1(x− u, k) + c(1)u

}
− max

u2∈{0,1}

{
M∑

k=1

pikvt+1(x− 1− u, k) + c(1)u

}

≤ S (1, i) =
B∑

b=1

qj1bW (1, b, i)

It is sufficient to show W (1, 1, i) ≥ S (0, i) . Note that we have u∗1 ≥ u∗2. Therefore, we

have 3 cases,

C (u∗1, u
∗
2) Inequality W (1, 1, i) ≥ S (0, i) reduces to

1 (1, 1)
M∑

k=1

pik∆vt+1 (x− 1, k) ≥
M∑

k=1

pik∆vt+1(x, k)

2 (0, 0)
M∑

k=1

pik∆vt+1 (x, k) ≥
M∑

k=1

pik∆vt+1(x, k)

3 (1, 0) c (1) ≥
M∑

k=1

pik∆vt+1(x, k)

Case 2 is obviously true, also case 1 is true since ∆vt+1 (x) is nonincreasing in x. In case

3 suppose
∑M

k=1 pik∆vt+1(x, k) > c (a) but this contradicts with u∗1 = 1.

Hence, S (a1, i) ≤ S (a2, i) for a1, a2 ∈ {0, 1, ..., N} and S (a, i) ≤ S (a, j) for i ≤ j. Since

R is IFR, we have

∆vt (x, i) =
M∑

a=0

riaS (a, i) ≤
M∑

a=0

rjaS (a, j) = ∆vt (x, j)

B. Sensitivity Analysis Proofs (Section 4)

Proof of Proposition 4. Clearly vε
T (x, j) = vT (x, j) = 0, suppose vε

t+1 (x, j) ≥ vt+1 (x, j)

for any environment j and inventory level x. For a given product a, and amount b ∈
{1, 2, ..., Ba} , by using the induction hypothesis we know

M∑

k=1

pjkvt+1(x− u, k) + c(a)u ≤
M∑

k=1

pjkv
ε
t+1(x− u, k) + c(a)u.
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for any 0 ≤ u ≤ min {b, x} . Hence we have

max
u∈U(b,x)

{
M∑

k=1

pjkvt+1(x− u, k) + c(a)u

}
≤ max

u∈U(b,x)

{
M∑

k=1

pjkv
ε
t+1(x− u, k) + c(a)u

}
(14)

Consider any environment j 6= i. Then vε
t (x, j) ≥ vt (x, j) which is clear from inequality (14).

When we consider i as an environment, it is sufficient to show the following

max
u∈U(b2,x)

{
M∑

k=1

pikv
ε
t+1(x− u, k) + c(a2)u

}
≤ max

u∈U(b,x)

{
M∑

k=1

pikv
ε
t+1(x− u, k) + c(a)u

}

Note that, since b2 ≤ b and a2 ≤ a we know

max
u∈U(b2,x)

{
M∑

k=1

pikv
ε
t+1(x− u, k) + c(a2)u

}
≤ max

u∈U(b,x)

{
M∑

k=1

pikv
ε
t+1(x− u, k) + c(a2)u

}

and

max
u∈U(b,x)

{
M∑

k=1

pjkv
ε
t+1(x− u, k) + c(a2)u

}
≤ max

u∈U(b,x)

{
M∑

k=1

pjkv
ε
t+1(x− u, k) + c(a)u

}

Hence we have the result.

Proof of Proposition 5. Clearly, ∆vε
T (x, j) = ∆vT (x, j) = 0. Suppose ∆vε

t+1 (x, j) ≥
∆vt+1 (x, j) for any environment j and inventory level x. Consider any environment j 6= i.

Then as done in proposition 1, it can be shown that ∆vε
t (x, j) ≥ ∆vt (x, j) . When we consider

i as an environment, it is sufficient to show the following inequality,

max
u∈U(b2,x)

{
M∑

k=1

pikv
ε
t+1(x− u, k) + c(a2)u

}
− max

u∈U(b2,x−1)

{
M∑

k=1

pikv
ε
t+1(x− 1− u, k) + c(a2)u

}

≤

max
u∈U(b,x)

{
M∑

k=1

pikv
ε
t+1(x− u, k) + c(a)u

}
− max

u∈U(b,x−1)

{
M∑

k=1

pikv
ε
t+1(x− 1− u, k) + c(a)u

}

Note that the right and left hand sides are similar to the definition of W (a, b, j) in the

proof of proposition 3 , and W is nondecreasing in b. (None of the IFR properties are used
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to show this, hence the same proof is also valid in here.) Therefore, it is sufficient to show,

max
u∈U(b,x)

{
M∑

k=1

pikv
ε
t+1(x− u, k) + c(a2)u

}
− max

u∈U(b,x−1)

{
M∑

k=1

pikv
ε
t+1(x− 1− u, k) + c(a2)u

}

≤

max
u∈U(b,x)

{
M∑

k=1

pikv
ε
t+1(x− u, k) + c(a)u

}
− max

u≤U(b,x)

{
M∑

k=1

pikv
ε
t+1(x− 1− u, k) + c(a)u

}

Also we know that W is nondecreasing in a as done in the proof of proposition 3. (Again

the IFR properties are not used to show this.) Hence, ∆vε
t (x, j) ≥ ∆vt (x, j) for any envi-

ronment j and inventory level x.

Proof of Proposition 6. Clearly, vε
T (x, j) = vT (x, j) = 0. Suppose vε

t+1 (x, j) ≥ vt+1 (x, j) .

It is easy to verify vε
t (x, j) ≥ vt (x, j) when j 6= i since components of P remain same except

the ith row. Now, suppose that the current environment is i. Take any a ∈ {1, 2, ..., N} and

1 ≤ b ≤ Ba. It is sufficient to show

max
u∈U(b,x)

{
M∑

k=1

pjkvt+1(x− u, k) + c(a)u

}
≤ max

u∈U(b,x)

{
M∑

k=1

pε
jkv

ε
t+1(x− u, k) + c(a)u

}

By proposition 2, we know that vt+1(x − u, k) and also vε
t+1(x − u, k) are nondecreasing

function in k. Therefore,

M∑

k=1

pjkvt+1(x− u, k) ≤
M∑

k=1

pε
jkv

ε
t+1(x− u, k)

for any u ∈ {0, 1, ..., min {b, x}}

Proof of Proposition 7. Clearly, ∆vε
T (x, j) = ∆vT (x, j) = 0. Suppose ∆vε

t+1 (x, j) ≥
∆vt+1 (x, j) for any environment j and inventory level x. Consider any environment j 6= i,

then it is easy to verify ∆vε
t (x, j) ≥ ∆vt (x, j) as done in the proof of proposition 1, because
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jth row of P and Pε are identical. When the environment is i, it is sufficient to show

max
u1∈U(b,x)

{
M∑

k=1

pikvt+1(x− u1, k) + c (a) u1

}
− max

u2∈U(b,x−1)

{
M∑

k=1

pikvt+1(x− 1− u2, k) + c (a) u2

}

≤

max
u3∈U(b,x)

{
M∑

k=1

pε
ikv

ε
t+1(x− u3, k) + c (a) u3

}
− max

u4∈U(b,x−1)

{
M∑

k=1

pε
ikv

ε
t+1(x− 1− u4, k) + c (a) u4

}

for any 1 ≤ a ≤ N, 1 ≤ b ≤ Ba. Since ∆vε
t+1 (x, j) ≥ ∆vt+1 (x, j) and ∆vε

t (x, k) is

nondecreasing in k,
M∑

k=1

pε
ik∆vε

t+1 (x, k) ≥
M∑

k=1

pik∆vt+1 (x, k)

Then la,j
t,ε ≥ la,j

t . Let u∗i be the optimal value of ui in the inequality above. As a result, we

have u∗3 ≤ u∗1. Also, we know that u∗1− u∗2 is either 1 or zero. The same reasoning is valid for

u∗3 − u∗4. If they are equal, then this is possible only either u∗1 = u∗2 = 0 or u∗1 = u∗2 = b.

Therefore, there are six cases we need to consider for the possible values of u∗1, u
∗
2, u

∗
3, u

∗
4.

Case (u∗1, u
∗
2, u

∗
3, u

∗
4) Inequality simplifies to

1 (0, 0, 0, 0)
M∑

k=1

pik∆vt+1 (x, k) ≤
M∑

k=1

pε
ik∆vε

t+1 (x, k)

2 (y2 + 1, y2, 0, 0) c (a) ≤
M∑

k=1

pε
ik∆vε

t+1 (x, k)

3 (b, b, 0, 0)
M∑

k=1

pik∆vt+1 (x− b, k) ≤
M∑

k=1

pε
ik∆vε

t+1 (x, k)

4 (y2 + 1, y2, y1 + 1, y1) c (a) ≤ c (a)

5 (b, b, y1 + 1, y1)
M∑

k=1

pik∆vt+1 (x− b, k) ≤ c (a)

6 (b, b, b, b)
M∑

k=1

pik∆vt+1 (x− b, k) ≤
M∑

k=1

pε
ik∆vε

t+1 (x− b, k)

Here, y1 and y2 are integers such that 0 ≤ y1 ≤ y2 ≤ b − 1. Case 1 is obviously true

as shown above. In case 5, suppose
M∑

k=1

pik∆vt+1 (x− b, k) > c (a), then accepted batch size

should be less than b at time t when current inventory level is x, but this result contradicts

with u∗2 = b. Similarly, in case 2, suppose c (a) >
M∑

k=1

pε
ik∆vε

t+1 (x, k). Then, we need to satisfy

at least one of the requested amount at time t in modified system when current inventory
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level is x, but we have u∗3 = 0. In case 3, we have c (a) ≤
M∑

k=1

pε
ik∆vε

t+1 (x, k) since u∗3 = 0.

Also we have
M∑

k=1

pik∆vt+1 (x− b, k) ≤ c (a) since u∗2 = b. Note that, these inequalities can

be shown by using the methodology used in case 2 and 5. Hence we have the inequality

of case 3. Case 6 is also true by the induction assumption and the fact that ∆vε
t+1 (x, k) is

nondecreasing function of k. Therefore, we have ∆vε
t (x, j) ≥ ∆vt (x, j) for any environment

j, time t and inventory level x.

Proof of Proposition 8. We denote the modified function of price as cε (a) where c (a)

and cε (a) are identical expect a = N. At the terminal stage we trivially have ∆vε
T (x, j) =

∆vT (x, j) = 0 or any inventory level x and environment j. Suppose ∆vε
t+1 (x, j) ≥ ∆vt+1 (x, j)

for ∀x, j. It is sufficient to show,

max
u1∈U(b,x)

{
M∑

k=1

pikvt+1(x− u1, k) + c (a) u1

}
− max

u2∈U(b,x−1)

{
M∑

k=1

pikvt+1(x− 1− u2, k) + c (a) u2

}

≤

max
u3∈U(b,x)

{
M∑

k=1

pikv
ε
t+1(x− u3, k) + cε (a) u3

}
− max

u4∈U(b,x−1)

{
M∑

k=1

pikv
ε
t+1(x− 1− u4, k) + cε (a) u4

}

(15)

for any 1 ≤ a ≤ N, 1 ≤ b ≤ Ba. When a 6= N, then this inequality is true by a similar proof to

that of proposition 1. In case of a = N, we know that threshold level is always 0, therefore,

optimal quantity is u∗3 = min {b, x} when inventory level is x. Similarly u∗1 = min {b, x} ,

u∗2 = min {b, x− 1} = u∗4.

Case (u∗1, u
∗
2, u

∗
3, u

∗
4) Inequality (15) simplifies to

1 (b, b, b, b)
M∑

k=1

pik∆vt+1(x− b, k) ≤
M∑

k=1

pik∆vε
t+1(x− b, k)

2 (0, 0, 0, 0)
M∑

k=1

pik∆vt+1(x, k) ≤
M∑

k=1

pik∆vε
t+1(x, k)

3 (x, x− 1, x, x− 1) c (N) ≤ cε (N)

Case 3 is true due to the increase in c (N) . Case 1 and 2 are also true by the induction

hypothesis.
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C. Sensitivity to Arrival Probability

In this section, we present results on the sensitivity of the optimal thresholds with respect

to the arrival probability of fare classes 1 and 3. In particular, we vary the arrival probability

of fare class 3 from 0.5 to 0.1, and the arrival probability of fare class 1 from 0.2 to 0.6 in

environment 2. Threshold levels for fare classes 1 and 2 are given in Tables 7 and 8.

Table 7: Threshold levels of fare class 1
Time t 1 2 3 4 5 6 7 8 9 10

l1,1
t 4 4 3 3 3 2 2 1 1 1

l1,1
t,ε 3 3 3 2 2 2 1 1 1 1

l1,2
t 8 8 7 6 5 5 4 3 2 1

l1,2
t,ε 5 5 5 4 4 3 3 2 2 1

Table 8: Threshold levels of fare class 2
Time t 1 2 3 4 5 6 7 8 9 10

l2,1
t 2 1 1 1 1 1 1 1 1 1

l2,1
t,ε 1 1 1 1 1 1 1 1 1 1

l2,2
t 6 5 5 4 4 3 3 2 2 1

l2,2
t,ε 2 2 2 2 2 2 1 1 1 1

D. Sensitivity to Price

In this section, we present results on the sensitivity of the optimal thresholds with respect

to the revenue of the third fare class, which is the most expensive one. In particular, we vary

the revenue from 200 to 250. Threshold levels for fare classes 1 and 2 are given in Tables 9

and 10.

Table 9: Threshold levels of fare class 1
Time t 1 2 3 4 5 6 7 8 9 10

l1,1
t 4 4 3 3 3 2 2 1 1 1

l1,1
t,ε 5 4 4 3 3 2 2 1 1 1

l1,2
t 8 8 7 6 5 5 4 3 2 1

l1,2
t,ε 9 8 7 6 6 5 4 3 2 1
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Table 10: Threshold levels of fare class 2
Time t 1 2 3 4 5 6 7 8 9 10

l2,1
t 2 1 1 1 1 1 1 1 1 1

l2,1
t,ε 3 2 2 2 1 1 1 1 1 1

l2,2
t 6 5 5 4 4 3 3 2 2 1

l2,2
t,ε 6 6 5 5 4 4 3 3 2 1

E. Proofs for the Pricing Model (Section 6)

Proof of Proposition 9. We know that vT (x, j) = 0, therefore ∆vT (x, j) = 0. Assume

that ∆vt+1 is increasing function of x. Then

∆vt (x− 1, j)−∆vt (x, j) =
N∑

k=1

pjk∆vt+1 (x− 1, k)−
N∑

k=1

pjk∆vt+1 (x, k)

+ max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt+1 (x− 1, k)

}

− max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt+1 (x− 2, k)

}

− max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt+1 (x, k)

}

+ max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt+1 (x− 1, k)

}

Let d1 be optimal solution for max0≤d≤1

{
dpj (d)− d

∑N
k=1 pjk∆vt (x, k)

}
and d2 be opti-

mal solution for max0≤d≤1

{
dpj (d)− d

∑N
k=1 pjk∆vt (x− 2, k)

}
, then we have
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∆vt (x− 1, j)−∆vt (x, j) ≥
N∑

k=1

pjk∆vt+1 (x− 1, k)−
N∑

k=1

pjk∆vt+1 (x, k)

+d1pj (d1)− d1

N∑

k=1

pjk∆vt+1 (x− 1, k)

−d2pj (d2) + d2

N∑

k=1

pjk∆vt+1 (x− 2, k)

−d1pj (d1) + d1

N∑

k=1

pjk∆vt+1 (x, k)

+d2pj (d2)− d2

N∑

k=1

pjk∆vt+1 (x− 1, k)

After cancellations and rearranging the terms, we have

∆vt (x− 1, j)−∆vt (x, j) ≥ (1− d1)
N∑

k=1

pjk (∆vt+1 (x− 1, k)−∆vt+1 (x, k))

+d2

N∑

k=1

pjk (∆vt+1 (x− 2, k)−∆vt+1 (x− 1, k))

Since 0 ≤ d1, d2 ≤ 1, right hand side of the last inequality is greater than 0 by using the

induction hypothesis. Hence we have the result.

Proof of Proposition 10. We know that ∆vT (x, j) = 0. Also, one can easily show

that vt (x, j) is an increasing function of x by using induction. Therefore, ∆vT (x, j) ≤
∆vT−1 (x, j) . Assume that ∆vt+1 (x, j) ≤ ∆vt (x, j) for any inventory level x and environ-
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ment j. Then

∆vt−1 (x, j)−∆vt (x, j) =
N∑

k=1

pjk∆vt (x, k)−
N∑

k=1

pjk∆vt+1 (x, k)

+ max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt (x, k)

}

− max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt (x− 1, k)

}

− max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt+1 (x, k)

}

+ max
0≤d≤1

{
dpj (d)− d

N∑

k=1

pjk∆vt+1 (x− 1, k)

}

Let d2 be optimal solution for max0≤d≤1

{
dpj (d)− d

∑N
k=1 pjk∆vt (x− 1, k)

}
and d3 be

the optimal solution for max0≤d≤1

{
dpj (d)− d

∑N
k=1 pjk∆vt+1 (x, k)

}
. Then

∆vt−1 (x, j)−∆vt (x, j) ≥
N∑

k=1

pjk (∆vt (x, k)−∆vt+1 (x, k))

+d3pj (d3)− d3

N∑

k=1

pjk∆vt (x, k)

−d2pj (d2) + d2

N∑

k=1

pjk∆vt (x− 1, k)

−d3pj (d3) + d3

N∑

k=1

pjk∆vt+1 (x, k)

+d2pj (d2)− d2

N∑

k=1

pjk∆vt+1 (x− 1, k)

After cancellations and rearranging the terms we have

∆vt−1 (x, j)−∆vt (x, j) ≥ (1− d3)
N∑

k=1

pjk (∆vt (x, k)−∆vt+1 (x, k))

+d2

N∑

k=1

pjk (∆vt (x− 1, k)−∆vt+1 (x− 1, k))
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By using the induction hypothesis and 0 ≤ d 2, d3 ≤ 1, we have the result.
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