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Abstract. In this note we summarize some comparison results for the Lorentzian distance function
in spacetimes, with applications to the study of the geometric analysis of the Lorentzian distance
function on spacelike hypersurfaces. In particular, we will consider spacelike hypersufaces whose
image under the immersion is bounded in the ambient spacetime and derive sharp estimates for the
mean curvature of such hypersurfaces under appropriate hypotheses on the curvature of the ambient
spacetime. The results in this note are part of our recent paper [1], where complete details and
further related results may be found.
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THE LORENTZIAN DISTANCE FUNCTION

Consider Mn+1 an (n + 1)-dimensional spacetime, and let p,q be points in M. Using
the standard terminology and notation from Lorentzian geometry, one says that q is in
the chronological future of p, written p ¿ q, if there exists a future-directed timelike
curve from p to q. Similarly, q is in the causal future of p, written p < q, if there exists a
future-directed causal (i.e., nonspacelike) curve from p to q. Obviously, p ¿ q implies
p < q. As usual, p≤ q means that either p < q or p = q.

For a subset S⊂M, one defines the chronological future of S as I+(S) = {q∈M : p¿
q for some p∈ S}, and the causal future of S as J+(S) = {q∈M : p≤ q for some p∈ S}.
Thus S∪ I+(S) ⊂ J+(S). In particular, the chronological future I+(p) and the causal
future J+(p) of a point p ∈M are

I+(p) = {q ∈M : p¿ q}, and J+(p) = {q ∈M : p≤ q}.

As is well-known, I+(p) is always open, while J+(p) is neither open nor closed in
general.

If q ∈ J+(p), then the Lorentzian distance d(p,q) is the supremum of the Lorentzian
lengths of all the future-directed causal curves from p to q (possibly, d(p,q) = +∞).
If q /∈ J+(p), then the Lorentzian distance d(p,q) = 0 by definition. In particular,
d(p,q) > 0 if and only is q ∈ I+(p). Let us recall that the Lorentzian distance function
d : M×M → [0,+∞] for an arbitrary spacetime may fail to be continuous in general,
and may also fail to be finite valued; globally hyperbolic spacetimes turn out to be the
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natural class of spacetimes for which the Lorentzian distance function is finite-valued
and continuous (see, for instance, [3] and [2]).

Given a point p ∈ M, one can define the Lorentzian distance function from p by
dp(q) = d(p,q). In order to guarantee the smoothness of dp as a function on M, one
needs to restrict this function on certain special subsets of M. Consider

T−1M|p = {v ∈ TpM : v is a future-directed timelike unit vector}

the fiber of the unit future observer bundle of M at p, and set sp : T−1M|p → [0,+∞] the
function given by

sp(v) = sup{t ≥ 0 : dp(γv(t)) = t},
where γv : [0,a)→M is the future inextendible geodesic starting at p with initial velocity
v. Then, one can define the subset Ĩ +(p)⊂ TpM as

Ĩ +(p) = {tv : for all v ∈ T−1M|p and 0 < t < sp(v)}

and consider the subset I +(p) = expp(int(Ĩ +(p))) ⊂ I+(p). Observe that expp :
int(Ĩ +(p))→I +(p) is a diffeomorphism and I +(p)⊂M is an open subset (possible
empty). In the following result we summarize the main properties about the Lorentzian
distance function (see [4, Section 3.1]).

Lemma 1 Let M be a spacetime and p ∈M.

1. If M is strongly causal at p, then sp(v) > 0 for all v ∈ T−1M|p and I +(p) 6= /0.
2. If I +(p) 6= /0, then the Lorentzian distance function dp is smooth on I +(p) and

its gradient ∇dp is a past-directed timelike (geodesic) unit vector field on I +(p).

COMPARISON RESULTS FOR THE LORENTZIAN DISTANCE
FROM A POINT

For every c ∈ R, let us define

fc(s) =





√
ccoth(

√
cs) if c > 0 and s > 0

1/s if c = 0 and s > 0√−ccot(
√−cs) if c < 0 and 0 < s < π/

√−c.

It is worth pointing out that the index of a Jacobi field Jc along a timelike geodesic γc
in a Lorentzian space form of constant curvature c is given by Iγc(Jc,Jc) =− fc(s)〈x,x〉,
where Jc(0) = 0 and Jc(s) = x⊥ γ ′c(s). On the other hand, when I +(p) 6= /0, fc(s) is the
future mean curvature of the level set Σc(s) = {q ∈I +(p) : dp(q) = s} ⊂Mn+1

c .
Our first result assumes that the sectional curvatures of the timelike planes of M are

bounded from above by a constant c and reads as follows.

Lemma 2 [1, Lemma 3.1] Let M be a spacetime such that KM(Π) ≤ c, c ∈ R, for all
timelike planes in M. Assume that there exists a point p ∈ M such that I +(p) 6= /0,



and let q ∈I +(p) (with dp(q) < π/
√−c when c < 0). Then for every spacelike vector

x ∈ TqM orthogonal to ∇dp(q) it holds that

∇2
dp(x,x)≥− fc(dp(q))〈x,x〉,

where ∇2
stands for the Hessian operator on M.

Observe that if KM(Π) ≤ c for all timelike planes in an (n + 1)-dimensional spacetime
M, then for every unit timelike vector Z ∈ T M one gets that RicM(Z,Z)≥−nc. Our next
result holds under this weaker hypothesis on the Ricci curvature of M. When c = 0 this
is nothing but the so called timelike convergence condition.

Lemma 3 [1, Lemma 3.3] Let M be an (n + 1)-dimensional spacetime such that
RicM(Z,Z) ≥ −nc, c ∈ R, for every unit timelike vector Z. Assume that there exists a
point p ∈ M such that I +(p) 6= /0, and let q ∈ I +(p) (with dp(q) < π/

√−c when
c < 0). Then

∆dp(q)≥−n fc(dp(q)),

where ∆ stands for the (Lorentzian) Laplacian operator on M.

On the other hand, under the assumption that the sectional curvatures of the timelike
planes of M are bounded from below by a constant c, we get the following result.

Lemma 4 [1, Lemma 3.2] Let M be a spacetime such that KM(Π) ≥ c c ∈ R, for all
timelike planes in M. Assume that there exists a point p ∈ M such that I +(p) 6= /0,
and let q ∈I +(p) (with dp(q) < π/

√−c when c < 0). Then for every spacelike vector
x ∈ TqM orthogonal to ∇dp(q) it holds that

∇2
dp(x,x)≤− fc(dp(q))〈x,x〉,

where ∇2
stands for the Hessian operator on M.

The proofs of Lemma 2, Lemma 3 and Lemma 4 follow from the fact that

∇2
dp(x,x) =−

∫ s

0
(〈J′(t),J′(t)〉−〈R(J(t),γ ′(t))γ ′(t),J(t)〉)dt = Iγ(J,J)

where γ is the radial future directed unit timelike geodesic from p to q and J is the Jacobi
field along γ with J(0) = 0 and J(s) = x, and it is strongly based on the maximality of
the index of Jacobi fields. For the details, see [1, Section 3].

SPACELIKE HYPERSURFACES CONTAINED IN I +(p)

Consider ψ : Σn →Mn+1 a spacelike hypersurface immersed into a spacetime M. Since
M is time-oriented, there exists a unique future-directed timelike unit normal field
N globally defined on Σ. Let A stand for the shape operator of Σ with respect to
N. We will assume that there exists a point p ∈ M such that I +(p) 6= /0 and that



ψ(Σ) ⊂ I +(p). Let r = dp denote the Lorentzian distance function with respect to p,
and let u = r◦ψ : Σ→(0,∞) be the function r along the hypersurface, which is a smooth
function on Σ. Our first objective is to compute the Laplacian of u. To do that, observe
that

∇r = ∇u−〈∇r,N〉N
along Σ, where ∇u stands for the gradient of u on Σ. In particular,

〈∇r,N〉=
√

1+ |∇u|2 ≥ 1.

Moreover,

∇2
r(X ,X) = ∇2u(X ,X)+

√
1+ |∇u|2〈AX ,X〉 (1)

for every tangent vector field X ∈ T Σ, where ∇2
r and ∇2u stand for the Hessian of r

and u in M and Σ, respectively. Assume now that KM(Π) ≤ c (resp. KM(Π) ≥ c) for
all timelike planes in M, and that u < π/

√−c on Σ when c < 0. Then by the Hessian
comparison results for r given in Lemma 2 (resp. Lemma 4), one gets that

∇2
r(X ,X)≥ (≤)− fc(u)(1+ 〈X ,∇u〉2)

for every unit tangent vector field X ∈ T Σ, and therefore by (1)

∇2u(X ,X)≥ (≤)− fc(u)(1+ 〈X ,∇u〉2)−
√

1+ |∇u|2〈AX ,X〉.

Tracing this inequality, one gets the following inequality for the Laplacian of u

∆u≥ (≤)− fc(u)(n+ |∇u|2)+nH
√

1+ |∇u|2,

where H = −(1/n)tr(A) is the mean curvature of Σ. Similarly, under the assumption
RicM(Z,Z) ≥ −nc, c ∈ R, for every unit timelike vector Z, we know from the Lapla-
cian comparison result given in Lemma 3 that ∆r ≥ −n fc(r) along the hypersurface.
Therefore, we conclude that

∆u = ∆r +∇2
r(N,N)+nH

√
1+ |∇u|2 ≥−n fc(u)+∇2

r(N,N)+nH
√

1+ |∇u|2.

Summarizing, if ψ(Σ)⊂I +(p) (and u < π/
√−c on Σ when c < 0)

(a) KM(Π)≤ c implies that ∆u≥− fc(u)(n+ |∇u|2)+nH
√

1+ |∇u|2;
(b) KM(Π)≥ c implies that ∆u≤− fc(u)(n+ |∇u|2)+nH

√
1+ |∇u|2; and

(c) RicM(Z,Z)≥−nc implies ∆u≥−n fc(u)+∇2
r(N,N)+nH

√
1+ |∇u|2.

For further details, see [1, Section 3].



SPACELIKE HYPERSURFACES BOUNDED BY A LEVEL SET OF
THE LORENTZIAN DISTANCE

For the applications of our comparison results to the estimate of the mean curvature of
spacelike hypersurfaces, we will make use of a generalized version of the well-known
Omori-Yau maximum principle. Following the terminology introduced by Pigola, Rigoli
and Setti [5, Definition 1.10], the Omori-Yau maximum principle is said to hold on an
n-dimensional Riemannian manifold Σn if, for any smooth function u ∈ C ∞(Σ) with
u∗ = supΣ u < +∞ there exists a sequence of points {pk}k∈N in Σ with the properties

(i) u(pk) > u∗− 1
k
, (ii) |∇u(pk)|<

1
k
, and (iii) ∆u(pk) <

1
k
.

Equivalently, for any u∈C ∞(Σ) with u∗ = infΣ u >−∞ there exists a sequence of points
{pk}k∈N in Σ satisfying

(i) u(pk) < u∗+
1
k
, (ii) |∇u(pk)|< 1

k
, and (iii) ∆u(pk) >−1

k
.

In this sense, the classical maximum principle given by Omori [6] and Yau [7] states
that the Omori-Yau maximum principle holds on every complete Riemannian manifold
with Ricci curvature bounded from below. More generally, as shown by Pigola, Rigoli
and Setti [5, Example 1.13], a sufficiently controlled decay of the radial Ricci curvature
suffices to imply the validity of the Omori-Yau maximum principle. Now we are ready
to give our main results.

Theorem 5 [1, Theorem 4.1] Let M be an (n + 1)-dimensional spacetime such that
RicM(Z,Z) ≥ −nc, c ∈ R, for every unit timelike vector Z. Let p ∈ M be such that
I +(p) 6= /0, and let ψ : Σ → Mn+1 be a spacelike hypersurface such that ψ(Σ) ⊂
I +(p)∩ B+(p,δ ) for some δ > 0 (with δ ≤ π/

√−c when c < 0), where B+(p,δ )
denotes the future inner ball of radius δ ,

B+(p,δ ) = {q ∈ I+(p) : dp(q) < δ}.
If the Omori-Yau maximum principle holds on Σ, then its future mean curvature H
satisfies

inf
Σ

H ≤ fc(sup
Σ

u),

where u denotes the Lorentzian distance dp along the hypersurface.

For a sketch of the proof, observe that since RicM(Z,Z)≥−nc, we have that

∆u≥−n fc(u)+∇2
r(N,N)+nH

√
1+ |∇u|2.

Applying the Omori-Yau maximum principle to the function u, we get that

1
k

> ∆u(pk)≥−n fc(u(pk))+∇2
r(N(pk),N(pk))+nH(pk)

√
1+ |∇u(pk)|2.



That is,

inf
Σ

H ≤ H(pk)≤
1/k +n fc(u(pk))−∇2

r(N(pk),N(pk))
n
√

1+ |∇u(pk)|2
.

On the other hand,

N(pk) = N∗(pk)−〈N(pk),∇r(pk)〉∇r(pk),
∇r(pk) = ∇u(pk)−〈∇r(pk),N(pk)〉N(pk),

with N∗(pk) orthogonal to ∇r(pk). Then, |N∗(pk)|2 = |∇u(pk)|2 and limk→∞ N∗(pk) = 0.
Finally, taking into account that ∇2

r(N(pk),N(pk)) = ∇2
r(N∗(pk),N∗(pk)) and making

k → ∞ we get the result. For further details, see [1, Section 4].

Theorem 6 [1, Theorem 4.2] Let M be an (n + 1)-dimensional spacetime such that
KM(Π) ≥ c, c ∈ R, for all timelike planes in M. Let p ∈ M be such that I +(p) 6= /0,
and let ψ : Σ → Mn+1 be a spacelike hypersurface such that ψ(Σ) ⊂ I +(p). If the
Omori-Yau maximum principle holds on Σ (and infΣ u < π/

√−c when c < 0), then its
future mean curvature H satisfies

sup
Σ

H ≥ fc(inf
Σ

u),

where u denotes the Lorentzian distance dp along the hypersurface. In particular, if
infΣ u = 0 then supΣ H = +∞.

As a direct application of Theorem 6 we get the following.

Corollary 7 [1, Corollary 4.3] Under the assumptions of Theorem 6, if H is bounded
from above on Σ, then there exists some δ > 0 such that ψ(Σ) ⊂ O+(p,δ ), where
O+(p,δ ) denotes the future outer ball of radius δ ,

O+(p,δ ) = {q ∈ I+(p) : dp(q) > δ}.
For a sketch of the proof of Theorem 6, observe that since KM(Π)≥ c, we know that

∆u≤− fc(u)(n+ |∇u|2)+nH
√

1+ |∇u|2.
Applying the Omori-Yau maximum principle to the positive function u, we get that

−1
k

< ∆u(pk)≤− fc(u(pk))(n+ |∇u(pk)|2)+nH(pk)
√

1+ |∇u(pk)|2.

It follows from here that

sup
Σ

H ≥ H(pk)≥ −1/k + fc(u(pk))(n+ |∇u(pk)|2)
n
√

1+ |∇u(pk)|2
.

Therefore, making k→∞ here we get the result. The last assertion follows from the fact
that lims→0 fc(s) = +∞. On the other hand, for a proof of Corollary 7, simply observe
that supΣ H < +∞ implies that infΣ u > 0. For further details, see [1, Section 4].



In particular, when the ambient spacetime is a Lorentzian space form, Theorems 5
and 6 yield the following consequences.

Theorem 8 [1, Theorem 4.5] Let Mn+1
c be a Lorentzian space form of constant sectional

curvature c and let p ∈ Mn+1
c . Let us consider ψ : Σ → Mn+1

c a spacelike hypersurface
such that ψ(Σ)⊂I +(p)∩B+(p,δ ) for some δ > 0 (with δ ≤ π/

√−c if c < 0). If the
Omori-Yau maximum principle holds on Σ, then

inf
Σ

H ≤ fc(sup
Σ

u)≤ fc(inf
Σ

u)≤ sup
Σ

H,

where u denotes the Lorentzian distance dp along the hypersurface.

Corollary 9 [1, Corollary 4.6] Let Mn+1
c be a Lorentzian space form of constant sec-

tional curvature c and let p ∈Mn+1
c . If Σ is a complete spacelike hypersurface in Mn+1

c
with constant mean curvature H which is contained in I +(p) and bounded from above
by a level set of the Lorentzian distance function dp (with dp < π/

√−c if c < 0), then Σ
is necessarily a level set of dp.

For a proof simply observe that the Ricci curvature of a spacelike hypersurface Σ in an
arbitrary spacetime M is given by

RicΣ(X ,X) = RicM(X ,X)−
(

KM(X ∧N)+
n2H2

4

)
|X |2 + |AX +

n
2

X |2

≥ RicM(X ,X)−
(

KM(X ∧N)+
n2H2

4

)
|X |2.

In particular, if Mn+1
c is a Lorentzian space form of constant sectional curvature c

then RicΣ(X ,X)≥ (
(n−1)c−n2H2/4

) |X |2. Thus, every spacelike hypersurface Σ with
bounded mean curvature in Mn+1

c has Ricci curvature bounded from below. Hence, if
complete, it satisfies the Omori-Yau maximum principle.

As observed in [1, Remark 1], our last results have specially simple and illustrative
consequences when the ambient is the Lorentz-Minkowski spacetime. For instance, we
can state the following improvement of Theorem 2 in [8].

Corollary 10 [1, Corllary 4.7] The only complete spacelike hypersurfaces with cons-
tant mean curvature in the Minkowski space Ln+1 which are contained in I +(p) (for
some fixed p ∈ Ln+1) and bounded from above by a hyperbolic space centered at p are
precisely the hyperbolic spaces centered at p.

THE LORENTZIAN DISTANCE FUNCTION FROM AN
ACHRONAL HYPERSURFACE

Given S ⊂ Mn+1 an achronal spacelike hypersurface, one can define the Lorentzian
distance function from S by dS(q) = sup{d(p,q) : p ∈ S}. As in the previous case of
the Lorentzian distance from a point, to guarantee the smoothness of dS, one needs to



restrict this function on certain special subsets of M. Let η be the future-directed Gauss
map of S, and let s : S→ [0,+∞] the function given by

s(p) = sup{t ≥ 0 : dS(γp(t)) = t},
where γp : [0,a)→M is the future inextendible geodesic starting at p with initial velocity
ηp. Then, one can define

Ĩ +(S) = {tηp : for all p ∈ S and 0 < t < s(p)}
and consider the subset I +(S) = expS(int(Ĩ +(S))) ⊂ I+(S), where expS denotes the
exponential map with respect to the hypersurface S. Below we collect some interesting
properties about dS (see [4, Section 3.2]).

Lemma 11 Let S be an achronal spacelike hypersurface in a spacetime M.

1. If S is compact and M is globally hyperbolic, then s(p) > 0 for all p ∈ S and
I +(S) 6= /0.

2. If I +(S) 6= /0, then dS is smooth on I +(S) and its gradient ∇dS is a past-directed
timelike (geodesic) unit vector field on I +(S).

Doing now a similar analysis of the Lorentzian distance function to an achronal
hypersurface, one can derive also sharp estimates for the mean curvature of spacelike
hypersurfaces which contained in its chronological future. Further details about this may
be found in [1].
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