
Fig. 4(a) shows the parameter estimates under the existence 
of the measmable disturbance (di = 5, a\ = 0) with the param­
eter estimates under the ideal condition (di = a\ = 0) overlaid. 
Since the inserted DDR's remove the disturbance from the input-
output relation, the disturbance does not slow down the iden­
tification speed. Fig. 4(6) shows the parameter estimates under 
the existence of the unmeasurable disturbance (di = 0, d2 = 1) 
with the parameter estimates under the ideal condition (di = di 
= 0) overlaid. There exists no difference between the two cases 
as far as the identification speed is concerned. 

In the simulation, the step disturbances, di and d2, were in­
jected to the plant at k = 0. Thus, strictly speaking, at k = 0, 
di(k) and d2(fc) did not satisfy equation (15). Also, it took a 
certain number of steps before the DC component was removed 
from the plant output y(k). This implies that some transient 
existed and that equation (16) was asymptotically satisfied. 
A consequence of these facts is reflected in the initial portion of 
the plotted results in Fig. 4. If identification were to have 
started after the transient was over, the DDR would not have 
caused such effect. 

V Conclusions 
Adverse effects of deterministic disturbances in linear iden­

tification have been pointed out, and a method to remove such 
effects has been presented. This method works for measurable 
and unmeasurable disturbances which can be regarded as the 
outputs of free systems with known dynamics. The unmeas­
urable disturbance must always be removed to achieve successful 
identification. When the disturbance is measurable, however, 
it does not have to be removed if it can provide a positive con­
tribution to identification. A constant disturbance was shown to 
slow down the identification speed. The best results will be ob­
tained if one selects a DDR which removes only undesirable dis­
turbances. In this technical brief, discrete series-parallel and 
parallel identification schemes for single-input, single-output 
systems were considered. The same principle, however, can be 
extended to other situations including the continuous time case 
and multi-input, and multi-output case. 
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Fig. 4(a) Measurable constant disturbance 
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Fig. 4(£>) Unmeasurab le constant disturbance 

Fig. 4 Removal of adverse disturbance effects by DDR 
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Transient Response of Fluid Lines by Frequency 
Response Conversion 

S. Katzi 

A method of frequency response conversion to transient response 
is applied to terminated fluid lines. The method can be used to 
solve transmission line problems with various input waveforms 
and terminations. Some typical results for circular lines are 
presented in non-dimensional terms. The results show that the 
transient response is a function of a characteristic number 
which depends on the fluid properties and the geometry of the 
line. 
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Nomenclature 

a = speed of sound, m/s 
d = diameter of line, m 

G(jio) = systems function in frequency domain 
j = complex operator (V — l) 

do = Bessel function of first kind zeroth order 
Ji — Bessel function of first kind first order 
k = integer variable in summations 
I = length of line, m 

M = magnitude of systems function 
Mo — magnitude of systems function at co = 0 
Mk — magnitude of systems function at w = m 
NK = characteristic number (= (Ow/u») 
Np — Prandtl number 

p,(t) = input signal pressure (fct. of time), kN/m2 

Po(t) - output signal pressure (fct. of time), kN/m2 

t = time, s 
Tp = half-period of square wave, s 
T, = settling time, s 
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VL = 
VT = 
Ze = 
ZL = 
7 = 

r = 
<t> = 
CO 

01k 

01N 

01v 

V 

volume of transmission line (= iriPl/i), m3 

volume of terminating tank, m3 

characteristic impedance of line, kN-s/m5 

load impedance, kN-s/m5 

ratio of specific heats 
complex propagation factor 
phase of systems function; radians 
phase of systems function at to = oik, radians 
angular velocity, rad/s 
angular velocity at discrete frequencies, rad/s 
wave transport frequency, (a/l), rad/s 
viscous characteristic frequency, (32 v/d2), rad/s 
kinematic viscosity, m2/s 

1 Introduction 

The dynamic behavior of pressure signals in fluid lines is 
important in fluidics, instrumentation, and control. There have 
been a large number of papers on this subject. Most of these 
papers deal with the frequency response of fluid transmission 
lines. Investigations of transient response are less common. 

Schuder and Binder [l]2 developed a theory and performed 
experiments for the step response of long pneumatic lines with 
terminations. Heat transfer effects and the time dependency 
of laminar friction were neglected. Nichols [2] derived a fre­
quency dependent propagation operator that included heat trans­
fer and the change of the laminar velocity profile. Simultane­
ously, Brown [3, 4] developed the propagation operator in 
terms of Laplace Transforms. However, the inverse Laplace 
Transform is not available in analytical form. 

Time domain solutions have been obtained for special ter­
minations, such as in semi-infinite (matched) lines by Kantola 
[5] and Karam [6]. Superposition of semi-infinite line results 
have been used by Brown and Nelson [7] and Karam and 
Leonard [8] to formulate the transient response of terminated 
lines. 

The difficulty of an analytical solution for the transient re­
sponse of terminated fluid lines has led many investigators to 
computer methods. Zielke [9] and Brown [10] have presented 
a quasi-method of characteristics that accounts for frequency 
dependent shear and heat transfer. This method has been ap­
plied by Kirshner and Katz [11] to find the step and pulse 
response of blocked lines. However the method is time con­
suming and requires a computer with large storage capacity. 
Hausner [12] has determined the step response of blocked lines 
by using numerical inversion of the Laplace Transform. Here 
again the procedure requires much computing time. 

The approach considered here is the conversion of the fre­
quency response formulation for terminated transmission lines 
into transient response. The foundation for this approach is 
based on the work of Leonhard [13] and has been suggested 
for application to lines by Streeter and Wylie [14]. An anal­
ogous method has been applied to Laplace Transform inversion 
by Dubner and Abate [15]. 

This paper presents the frequency conversion method with 
respect to terfninated line response for a wide range of inputs. 

2 Frequency Response Conversion to Transient 
Response 

This process requires that the input function be described in 
terms of a Fourier series. When input functions are non-periodic, 
therefore, they must be considered in a periodic form. For 
example, to obtain the step response, the step input is modelled 

as a square wave with half-period longer than the system settling 
time. Once the input is expressed as a sum of discrete frequency 
terms, the output response is merely the superposition of the 
system responses to these discrete frequencies. 

Suppose a system function, G(s), has no known analytic in­
verse Laplace Transform. To find the step response of this 
system we apply a square wave with half-period, Tp, which is 
longer than the settling time, T,. When the settling time is 
unknown it must be estimated and then adjusted as required 
by the subsequent results. The Fourier series representing the 
square wave input, p,(t) is: 

ww = v. + £ ^ T(2fc - 1) 
sin old (D 

where 

oik = (2k - l)ir/Tp 

To normalize the time variable we introduce the wave trans­
port frequency, oiN, as the ratio of the acoustic velocity, "a," 
to the line length, "I" so that equation (1) can be written as: 

p,(oiNt) = Vs + 2 J 
x(2fc - 1) 

~ (oiNt) 
Ollf 

(2) 

Now in the frequency domain the system function for the 
fluid line is G(joi) and it may be represented by magnitude, 
M(OI/OIN), and phase, <j>(oi/oi?f). For the discrete frequencies 
of the input we designate Mk = M(uh/uif) and <j>k = <j>(oiu/oix). 
We may express the step response, [po(oixt)] 5, by multiplying 
the amplitude in equation (2) by Mk and shifting the phase 
by 4>k. Thus 

[po(wtfi)]. = — 
Mo 

2 

2Mk 

7T(2fc - 1) 

Oik 
(OiNt) + <t>k 

Ollf 
(3) 

where Mo is the magnitude of the system function at zero fre­
quency. Equation (3) represents the Fourier series for the 
step response of the system. The ramp response [po(coift)] R, is 
merely the integral of equation (3) and is: 

[pa(oiNt)]u 
MoOlNt + £ ^ 

2Mk0iN 

l)w* 
C03(j)k (4) 

( Oik \ 

— oiNt + <pk I 
OlN ) 

aNumbers in brackets designate References at end of Brief. 

With the formulation of equations (3) and (4) we may use 
superposition to find the output response to composite input 
functions that consist of step and ramp segments. The re­
sponse to other input waveforms can be obtained by describing 
the input in terms of an appropriate Fourier series and following 
the procedure indicated. 

The number of terms required to achieve a particular com­
putational accuracy depends on the system function. A system 
with a narrow bandwidth requires fewer terms for the same 
accuracy. 

3 Transient Response of Circular Lines 

For the case under consideration, the system is a circular 
line of length, I, (Fig. 1). The system function for fluid lines 
is generally presented in terms of the angular frequency ratio, 
oi/oif, where w„ is the characteristic viscous frequency. Since 
OIN is the normalizing factor in the time domain we introduce 
a characteristic number NK( = OIN/OIV) into the system function 
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Fig. 1 Circular transmission line terminated by volume 

M 

OJ/OJN 

Fig. 2 Frequency response magnitude for blocked circular line 

to bring both domains into correspondence. The system func­
tion for a terminated transmission line is: 

QU») = (5) 
— s i n h r + coshr 
ZL 

where Zc is the characteristic impedance, ZL is the load imped­
ance and r is the propagation operator. Nichols [2] and Brown 
[3, 4] have developed expressions for T and Zc. We may use 
these expressions to derive for a volume terminated line: 

01 

cow ) (f r 
z± = •(°L\ (YI\ (JLV'2 

%L ~ \oiN) \VL) \DB ) 

(6a) 

(6b) 

where 

D = 1 

B = 1 

2(7 - 1) • W W g A V o / W ) 1 ' 2 ] 
j3l2mKNpo>/o>Ny'*J0{j»KSNkNpo>/wNyi*] 

2 Jdp"1 (8NKu/m)112] 

j m (8NKu/o>Nyi* Js[j"* (8NKU/UN)U2] 

and J0 and Ji are Bessel functions, Np is the Prandtl number, 
7 is the ratio of specific heats, VL is the volume of the line and 
j is the complex operator ( V ^ I ) . 

The magnitude of the line system function (equation (5)) is 
shown in Fig. 2 for a blocked line (VT = 0). The effect of NK 

I I I I I I I I I 

1 
60 TERM SUM 

J I I I I I I L 
2. a. 4. 6. 

OJN t 

Fig. 3 Step response of blocked circular line 

is similar to that of a damping factor. Large values of NK 
represent resonant lines and small values represent damped lines. 

Fig. 3 shows some typical step responses for the blocked line 
with 60 terms. These results are in excellent agreement with 
those obtained by Hausner [12] using conventional Laplace 
Transform inversion methods. There is good agreement also 
with the experimental results obtained by Kantola [5] for a 
circular line 15.25 m long and 4.83 mm inner diameter (Ni, 
= 1.07). More detailed results are given in [16] and [17] where 
annular and rectangular lines are also considered. 

4 Summary 

Analytic formulations for the transient response of fluid trans­
mission lines are available only for a few special terminations. 
Frequency response conversion to transient response provides 
answers to a wide variety of line problems that would be im­
practical by any other means. 

Some typical results are given for the case of a blocked cir­
cular line. The type of transient response depends on the char­
acteristic number, N*. 
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Comparison of Continuous and Discrete 
Adaptive identification Algorithms1 

Bruce K. Colburn2 and Joseph S. Boland, III3 

Discretization of a popular continuous-time control al­
gorithm is effected and an equivalent discrete-time identification 
law developed and compared to a published discrete identifica­
tion algorithm developed from Lyapunov Theory. Results are 
compared as regards asymptotic stability as insured using 
Lyapunov theory. Some analysis and design guidelines are 
proposed as regards implementation and practical utility. 

I Introduction 

Stable adaptive identification and control schemes for both 
continuous and discrete time systems have been suggested by 
many authors [1-6].4 Each method is developed essentially inde­
pendent of the other, although the resulting equations are similar. 
Little definitive work on discrete-time adaptive control/iden­
tification was done until the publications of Mendel [7], Landau 
[8], and Narendra [4]. Previous to this time, most published work 
in adaptive control and adaptive identification theory dealt with 
continuous time systems. This is due in part to the fact that ob-
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taining the necessary conditions for Lyapunov stability for dis­
crete adaptive systems generally requires further functional 
analysis theorem proving than is required for the continuous-
time case. More recent results have dealt with the use of hyper-
stability theory [9] for variations in continuous-time adaptive 
laws. 

In this paper a popular continuous-time adaptive control 
algorithm is disoretized and results compared and analyzed with 
respect to a discrete identification algorithm developed pre­
viously from Lyapunov Theory. The analysis is effected using 
a linearized error characteristic equation (LECE) approach. 
The contributions in this paper are the analysis of results, 
stability comparison via the LECE technique, the advancement 
of some design guidelines for implementation of the disoretized 
continuous-time law, and synthesis procedures for developing 
other adaptation laws. 

II Discretization 

From the Kudva, Narendra discrete adaptive observer form 
in [4], the adaptive gain, or "identifier," terms are of the form 

n 

Kij(l + 1) = Kail) ~ Ca(l - 1) £ ek(l)qkixPi(l - 1) (1) 

where x„ is an nth order plant vector, Ky are the adaptive gains, 
qij are entries of a constant matrix Q = QT > 0, e is a system 
error between the plant and model, and I is a time counter, 
I = 0, 1, 2, They show that in order to guarantee asymptotic 
stability, one form of dj(l — 1) is 

Ou{l - 1) P 

£ xJQ - 1) + uKl - 1) (2) 

where /3 is a constrained function, xp are plant states, and u is 
the plant input. The form in equation (2) is important because 
it is not suggested by direct comparison of the continuous and 
the discrete-time cases. The important points to note in equa­
tion (2) are that (a) plant state and input magnitudes appear 
as a division factor in the weighting value Cy, and (6) a fixed 
constant /3 is constrained to lie within certain bounds, (3 > 0 in 
all cases however. The division factor in item (a) has been shown 
to occur in some other methods, such as instrument variable and 
recursive least squares [8], but little discussion of its significance 
has been presented. 

Rewriting the Winsor and Roy [1] control law in a form com-
patable with that in equation (1) (minus signs appear based on 
the definition of how the adaptive gain entries are added or sub­
tracted from plant or model dynamics) yields 

Kij(t) = - aiS I J j em<lmiXPidt 
J !0 m-1 

(3) 

where all terms are defined as before, and an is an a-priori de­
signer-determined positive constant. This is the same form as a 
continuous time adaptive observer by Narendra [10]. Equation 
(3) can be written in the complex frequency domain as 

n 

Kij{s) = y 2 J emqmiXPi(s) (4) 

To convert equation (4) into an "equivalent" discrete system, 
one of the many s-domain to z-domain mapping functions must 
be employed. Some of the more common ones include 

Backward Difference s = 
1 - z~ 

T 
(5) 
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